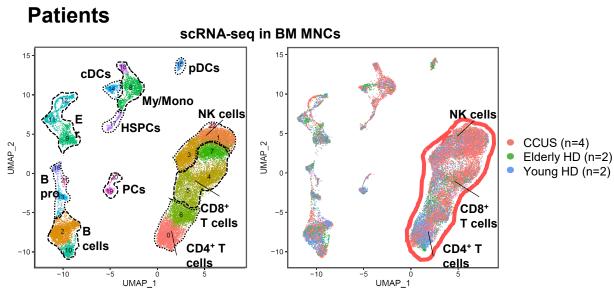
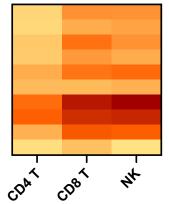
Immune microenvironment dysfunctions enable malignification at the onset of MDS

Ganan-Gomez I, Ma F, Chien KS, Yang H, Montalban-Bravo G, Wildeman BE, Kumar B, Kim YJ, Daher M, Takahashi K, Garcia-Manero G and Colla S

Background


- Myelodysplastic syndromes (MDS): clonal stem cell malignancies
- Standard therapy not curative, transient responses, poor prognosis
- Are prevention or early intervention possible in MDS?
- Clonal cytopenias of undetermined significance (CCUS): aging-related premalignant state, low-grade clonal hematologic disorders at high risk of progression to MDS and leukemia
- HSC-intrinsic alterations and extrinsic inflammatory factors cooperate to induce abnormal differentiation in CCUS (Ganan-Gomez et al. ASH Meeting 2021).

Aim


· Characterize early alterations in the bone marrow (BM) immune microenvironment that lead to the expansion of the MDS clone

Methods

- BM mononuclear cells (MNCs) from patients with CCUS and young and elderly healthy donors (HDs)
- Single-cell transcriptomics (scRNA-seq)
- In vitro functional assays
- Single-cell genomics/antigen expression analysis (Tapestri)

-Log₁₀[P val] 10 20 30 40 50

Pathway analysis of significantly upregulated genes in CCUS

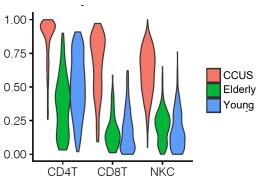
Formation of ATP by chemiosmotic coupling Interferon alpha/beta signaling Neutrophil degranulation Mitochondrial translation initiation Cytokine Signaling in Immune system Membrane Trafficking **Eukaryotic Translation Elongation** Respiratory electron transport, ATP synthesis by chemiosmotic coupling Adaptive Immune System Parasite infection

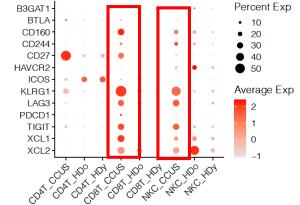
1. BM Innate Immune Cells Are Activated in CCUS

Immune microenvironment dysfunctions enable malignification at the onset of MDS

Ganan-Gomez I, Ma F, Chien KS, Yang H, Montalban-Bravo G, Wildeman BE, Kumar B, Kim YJ, Daher M, Takahashi K, Garcia-Manero G and Colla S

2. Inhibitory Crosstalk Predicted Between NK and CD8⁺ T Cells in CCUS


CellPhoneDB analysis of DEGs Ligand-expressing cells Myelomonocytic 20 NK cell cDC 15 CD8 T cell HSPC 10 pDC 5 B cell **B** Precursor CD4 T cell Plasma cell **RBC** Precursor NK cell сDC pDC CD8 T cell B cell HSPC Myelomonocytic CD4 T cell Plasma cell B Precursor **RBC** Precursor **Receptor-expressing cells**

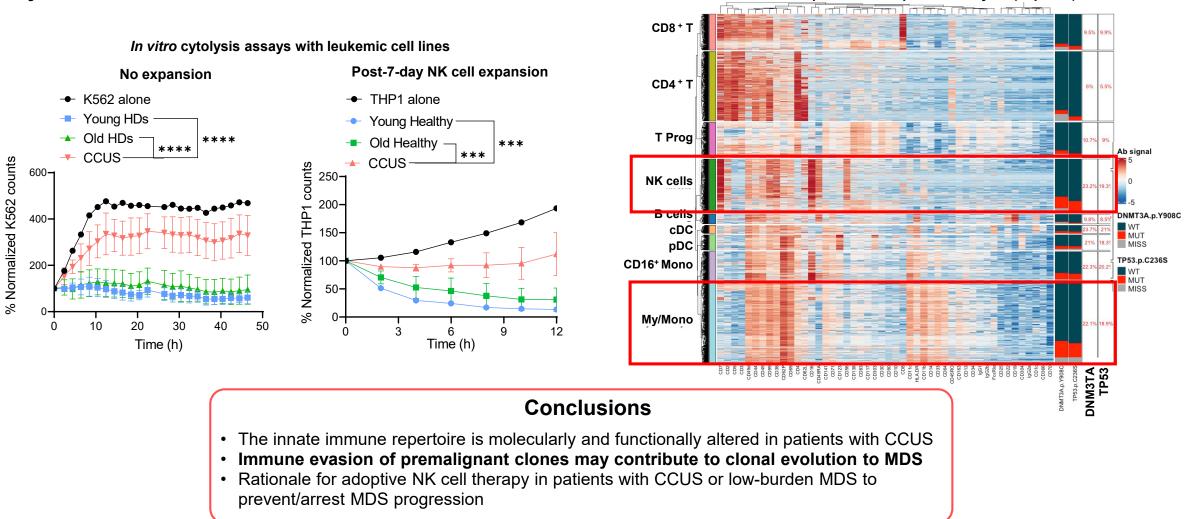

NK cell activation by CD8⁺ T cells HLA-E:CD94/NKG2C CD58:CD2 FASLG:TNFRSF1A NK cell CD8⁺ T Immunosuppresion of

CD8⁺ T cells by NK cells CD48:CD244 TGFB1:TGFBR1

3. CCUS NK/T Cells Are Terminally Differentiated toward Exhaustion

scRNA-seg in sorted CD3⁺ T and CD56⁺ NK cells Young HD (n=2) Elderly HD (n=2) CCUS (n=3) 3 3- \sim UMAP_2 NK UMAP_ CD4 T CD8 -3 -3. 10 10 -5 0 -5 0 5 UMAP 1 UMAP 1 CytoTRACE differentiation scores **Exhaustion marker expression**

Immune microenvironment dysfunctions enable malignification at the onset of MDS



Ganan-Gomez I, Ma F, Chien KS, Yang H, Montalban-Bravo G, Wildeman BE, Kumar B, Kim YJ, Daher M, Takahashi K, Garcia-Manero G and Colla S

4. NK Cells from CCUS Patients Are Irreversibly Dysfunctional

5. NK Cells Are Part of the Mutant CCUS Clone

Joint scDNA-seq and surface protein analysis (Tapestri)

