44 research outputs found

    The birthplace and age of the isolated neutron star RX J1856.5-3754

    Full text link
    X-ray observations unveiled various types of radio-silent Isolated Neutron Stars (INSs), phenomenologically very diverse, e.g. the Myr old X-ray Dim INS (XDINSs) and the kyr old magnetars. Although their phenomenology is much diverse, the similar periods (P=2--10 s) and magnetic fields (~10^{14} G) suggest that XDINSs are evolved magnetars, possibly born from similar populations of supermassive stars. One way to test this hypothesis is to identify their parental star clusters by extrapolating backward the neutron star velocity vector in the Galactic potential. By using the information on the age and space velocity of the XDINS RX J1856.5-3754, we computed backwards its orbit in the Galactic potential and searched for its parental stellar cluster by means of a closest approach criterion. We found a very likely association with the Upper Scorpius OB association, for a neutron star age of 0.42+/-0.08 Myr, a radial velocity V_r^NS =67+/- 13$ km s^{-1}, and a present-time parallactic distance d_\pi^NS = 123^{+11}_{-15} pc. Our result confirms that the "true" neutron star age is much lower than the spin-down age (tau_{sd}=3.8 Myrs), and is in good agreement with the cooling age, as computed within standard cooling scenarios. The mismatch between the spin-down and the dynamical/cooling age would require either an anomalously large breaking index (n~20) or a decaying magnetic field with initial value B_0 ~ 10^{14} G. Unfortunately, owing to the uncertainty on the age of the Upper Scorpius OB association and the masses of its members we cannot yet draw firm conclusions on the estimated mass of the RX J1856.5-3754 progenitor.Comment: 6 pages, accepted for publication on Monthly Notices of the Royal Astronomical Societ

    Turing patterns on networks

    Full text link
    Turing patterns formed by activator-inhibitor systems on networks are considered. The linear stability analysis shows that the Turing instability generally occurs when the inhibitor diffuses sufficiently faster than the activator. Numerical simulations, using a prey-predator model on a scale-free random network, demonstrate that the final, asymptotically reached Turing patterns can be largely different from the critical modes at the onset of instability, and multistability and hysteresis are typically observed. An approximate mean-field theory of nonlinear Turing patterns on the networks is constructed.Comment: 4 pages, 4 figure

    Application of dimensionality reduction and clustering algorithms for the classification of kinematic morphologies of galaxies

    Get PDF
    Context. The morphological classification of galaxies is considered a relevant issue and can be approached from different points of view. The increasing growth in the size and accuracy of astronomical data sets brings with it the need for the use of automatic methods to perform these classifications. Aims. The aim of this work is to propose and evaluate a method for the automatic unsupervised classification of kinematic morphologies of galaxies that yields a meaningful clustering and captures the variations of the fundamental properties of galaxies. Methods.We obtained kinematic maps for a sample of 2064 galaxies from the largest simulation of the EAGLE project that mimics integral field spectroscopy images. These maps are the input of a dimensionality reduction algorithm followed by a clustering algorithm. We analysed the variation of physical and observational parameters among the clusters obtained from the application of this procedure to different inputs. The inputs studied in this paper are (a) line-of-sight velocity maps for the whole sample of galaxies observed at fixed inclinations; (b) line-of-sight velocity, dispersion, and flux maps together for the whole sample of galaxies observed at fixed inclinations; (c) line-of-sight velocity, dispersion, and flux maps together for two separate subsamples of edge-on galaxies with similar amount of rotation; and (d) line-of-sight velocity, dispersion, and flux maps together for galaxies from different observation angles mixed. Results. The application of the method to solely line-of-sight velocity maps achieves a clear division between slow rotators (SRs) and fast rotators (FRs) and can differentiate rotation orientation. By adding the dispersion and flux information at the input, low-rotation edge-on galaxies are separated according to their shapes and, at lower inclinations, the clustering using the three types of maps maintains the overall information obtained using only the line-of-sight velocity maps. This method still produces meaningful groups when applied to SRs and FRs separately, but in the first case the division into clusters is less clear than when the input includes a variety of morphologies. When applying the method to a mixture of galaxies observed from different inclinations, we obtain results that are similar to those in our previous experiments with the advantage that in this case the input is more realistic. In addition, our method has proven to be robust: it consistently classifies the same galaxies viewed from different inclinations.Fil: Rosito, M. S.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Bignone, Lucas Axel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Tissera, P. B.. Universidad Católica de Chile; Chile. Pontificia Universidad Católica de Chile; ChileFil: Pedrosa, Susana Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentin

    The birthplace and age of the isolated neutron star RX J1856.5-3754

    No full text
    X-ray observations unveiled various types of radio-silent isolated neutron stars (INSs), phenomenologically very diverse, e.g. the \u2dcMyr old X-ray-dim INSs (XDINSs) and the \u2dckyr old magnetars. Although their phenomenology is much diverse, the similar periods (P = 2-10 s) and magnetic fields ( 481014 G) suggest that XDINSs are evolved magnetars, possibly born from similar populations of supermassive stars. One way to test this hypothesis is to identify their parental star clusters by extrapolating backwards the NS velocity vector in the Galactic potential. By using the information on the age and space velocity of the XDINS RX J1856.5-3754, we computed backwards its orbit in the Galactic potential and searched for its parental stellar cluster by means of a closest approach criterion. We found a very likely association with the Upper Scorpius OB association, for a NS age of 0.42 \ub1 0.08 Myr, a radial velocity VNSr = 67 \ub1 13 km s-1, and a present-time parallactic distance dNS\u3c0 = 123+ 11- 15 pc. Our result confirms that the `true' NS age is much lower than the spin-down age (\u3c4sd = 3.8 Myr), and is in good agreement with the cooling age, as computed within standard cooling scenarios. The mismatch between the spin-down and the dynamical/cooling age would require either an anomalously large breaking index (n \u2dc 20) or a decaying magnetic field with initial value B0 48 1014 G. Unfortunately, owing to the uncertainty on the age of the Upper Scorpius OB association and the masses of its members, we cannot yet draw firm conclusions on the estimated mass of the RX J1856.5-3754 progenitor
    corecore