368 research outputs found
Thirty Years After Michael E. Porter: What Do We Know About Business Exit?
Although a business exit is an important corporate change initiative, the buyer’s side seems to be more appealing to management researchers than the seller’s because acquisitions imply growth, i.e., success. Yet from an optimistic viewpoint, business exit can effectively create value for the selling company. In this paper we attempt to bring the relevance of the seller’s side back into our consciousness by asking: What do we know about business exit? We start our exploration with Porter (1976), focusing on literature that investigates the antecedents of, barriers to, and outcomes of business exit. We also include studies from related fields such as finance and economics.1 Through this research we determine three clusters of findings: factors promoting business exit, exit barriers, and exit outcomes. Overall, it is the intention of this paper to highlight the importance of business exit for research and practice. Knowing what we know about business exits and their high financial value we should bear in mind that exit need not mean failure but a new beginning for a corporation
Biallelic mutations in IRF8 impair human NK cell maturation and function
Human NK cell deficiencies are rare yet result in severe and often fatal disease, particularly as a result of viral susceptibility. NK cells develop from hematopoietic stem cells, and few monogenic errors that specifically interrupt NK cell development have been reported. Here we have described biallelic mutations in IRF8, which encodes an interferon regulatory factor, as a cause of familial NK cell deficiency that results in fatal and severe viral disease. Compound heterozygous or homozygous mutations in IRF8 in 3 unrelated families resulted in a paucity of mature CD56dim NK cells and an increase in the frequency of the immature CD56bright NK cells, and this impairment in terminal maturation was also observed in Irf8–/–, but not Irf8+/–, mice. We then determined that impaired maturation was NK cell intrinsic, and gene expression analysis of human NK cell developmental subsets showed that multiple genes were dysregulated by IRF8 mutation. The phenotype was accompanied by deficient NK cell function and was stable over time. Together, these data indicate that human NK cells require IRF8 for development and functional maturation and that dysregulation of this function results in severe human disease, thereby emphasizing a critical role for NK cells in human antiviral defense
Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the Ultraviolet Anomaly in NGC 5548 with X-Ray Spectroscopy
During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide the Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly
Lymphocytes and monocytes egress peripheral blood within minutes after cessation of steady state exercise: A detailed temporal analysis of leukocyte extravasation
Acute exercise evokes an almost instantaneous lymphocytosis, followed by sustained lymphopenia that occurs within just 30–60 min after exercise cessation. The aim of this study was to characterize the immediate (order of minutes) post-exercise kinetics of lymphocyte and monocyte egress, and to determine whether this egress is associated with heart rate recovery following a single bout of steady state dynamic exercise. Eleven healthy subjects cycled for 30-min at ~70% of their estimated peak power. Blood samples were collected from an intravenous catheter before exercise, during exercise (E) at +15 and +30 min, and during passive recovery (R) at exactly +1, +2, +3, +4, +5 and +10 min after exercise cessation. Complete blood counts and flow cytometry were used to enumerate total monocytes, lymphocytes: CD3+ T-cells, CD4+ T-cells, CD8+ T-cells, NK-cells and γδ T-cells in whole blood. Both lymphocytes and monocytes displayed rapid egress kinetics, by R+3 the total numbers of all cell types examined were significantly lower than E+30. NK-cells egressed more rapidly than other lymphocyte subtypes, followed by CD8+, γδ, and then CD4+ T-cells. Further, the egress of NK-cells, CD4+, and CD8+ T-cells positively correlated with heart rate recovery after exercise cessation. In conclusion, lymphocyte and monocyte egress is rapid and occurs within minutes of exercise recovery, underscoring both the importance of collection time for post exercise blood samples, and the use of intravenous catheters to capture peak cell mobilization. The rate of egress may be dependent on how quickly hemodynamic equilibrium is restored on cessation of exercise and is, therefore, likely to be influenced by individual fitness levels
Ikaros family zinc finger 1 regulates dendritic cell development and function in humans
Ikaros family zinc finger 1 (IKZF1) is a haematopoietic transcription factor required for mammalian B-cell development. IKZF1 deficiency also reduces plasmacytoid dendritic cell (pDC) numbers in mice, but its effects on human DC development are unknown. Here we show that heterozygous mutation of IKZF1 in human decreases pDC numbers and expands conventional DC1 (cDC1). Lenalidomide, a drug that induces proteosomal degradation of IKZF1, also decreases pDC numbers in vivo, and reduces the ratio of pDC/cDC1 differentiated from progenitor cells in vitro in a dose-dependent manner. In addition, non-classical monocytes are reduced by IKZF1 deficiency in vivo. DC and monocytes from patients with IKZF1 deficiency or lenalidomide-treated cultures secrete less IFN-alpha, TNF and IL-12. These results indicate that human DC development and function are regulated by IKZF1, providing further insights into the consequences of IKZF1 mutation on immune function and the mechanism of immunomodulation by lenalidomide
Donor monocyte-derived macrophages promote human acute graft-versus-host disease
Myelopoiesis is invariably present, and contributes to pathology, in animal models of graft versus host disease (GVHD). In humans, a rich inflammatory infiltrate bearing macrophage markers has also been described in histological studies. In order to determine the origin, functional properties and role in pathogenesis of these cells, we isolated single cell suspensions from acute cutaneous GVHD and subjected them to genotype, transcriptome and in vitro functional analysis. A donor-derived population of CD11c+CD14+ cells was the dominant population of all leukocytes in GVHD. Surface phenotype and nanostring gene expression profiling indicated the closest steady-state counterpart of these cells to be monocyte-derived macrophages. In GVHD, however, there was upregulation of monocyte antigens SIRPα and S100A8/9, and transcripts associated with leukocyte trafficking, pattern recognition, antigen presentation, and co-stimulation. Isolated GVHD macrophages stimulated greater proliferation and activation of allogeneic T cells, and secreted higher levels of inflammatory cytokines than their steady-state counterparts. In HLA-matched mixed leukocyte reactions, we also observed differentiation of activated macrophages with a similar phenotype. These exhibited cytopathicity to a cell line and mediated pathological damage to skin explants, independently of T cells. Together, these results define the origin, functional properties and potential pathogenic roles of human GVHD macrophages
Space Telescope and Optical Reverberation Mapping Project. V. Optical Spectroscopic Campaign and Emission-line Analysis for NGC 5548
We present the results of an optical spectroscopic monitoring program targeting NGC 5548 as part of a larger multiwavelength reverberation mapping campaign. The campaign spanned 6 months and achieved an almost daily cadence with observations from five ground-based telescopes. The Hβ and He ii λ4686 broad emission-line light curves lag that of the 5100 +-optical continuum by 4.17+0.36-0.36 and 0.79+0.35-0.34 days, respectively. The Hβ lag relative to the 1158 ultraviolet continuum light curve measured by the Hubble Space Telescope is ∼50% longer than that measured against the optical continuum, and the lag difference is consistent with the observed lag between the optical and ultraviolet continua. This suggests that the characteristic radius of the broad-line region is ∼50% larger than the value inferred from optical data alone. We also measured velocity-resolved emission-line lags for Hβ and found a complex velocity-lag structure with shorter lags in the line wings, indicative of a broad-line region dominated by Keplerian motion. The responses of both the Hβ and He ii emission lines to the driving continuum changed significantly halfway through the campaign, a phenomenon also observed for C iv, Lyα, He ii(+O iii]), and Si iv(+O iv]) during the same monitoring period. Finally, given the optical luminosity of NGC 5548 during our campaign, the measured Hβ lag is a factor of five shorter than the expected value implied by the R BLR-L AGN relation based on the past behavior of NGC 5548
Impact of Alemtuzumab Scheduling on Graft-versus-Host Disease after Unrelated Donor Fludarabine and Melphalan Allografts
Alemtuzumab conditioning is highly effective at reducing the incidence of acute and chronic graft-versus-host disease (GVHD) in reduced-intensity fludarabine and melphalan transplantation with cyclosporine monotherapy. Less frequent and lower dose scheduling may be used with sibling donors, but an optimal regimen for matched unrelated donors has not been defined. In this retrospective observational study of 313 patients, the incidence and severity of GVHD was compared in patients receiving 3 different dose schedules: the standard 100-mg regimen (20 mg on days –7 to –3), 60 mg (30 mg on days –4 and –2), or 50 mg (10 mg on days –7 to –3). Patients treated with 100 mg, 60 mg, or 50 mg developed acute GVHD grades I to IV with an incidence of 74%, 65%, and 64%, respectively, whereas 36%, 32%, and 41% developed chronic GHVD. An excess of severe acute grades III/IV GVHD was observed in the 50-mg cohort (15% versus 2% to 6%; P = .016). The relative risk of severe acute grade GVHD remained more than 3-fold higher in the 50-mg cohort compared with the 100-mg cohort after adjustment for differences in HLA match, age, gender mismatch, cytomegalovirus risk, and diagnosis (P = .030). The findings indicate that the 60-mg alemtuzumab schedule was comparable with the 100-mg schedule, but more attenuated schedules may increase the risk of severe grade GVHD
- …
