248 research outputs found

    DECENTRALIZING THE INTERNET OF MEDICAL THINGS: THE INTERPLANETARY HEALTH LAYER

    Get PDF
    Medical mobile applications have the potential to revolutionize the healthcare industry by providing patients with easy access to their personal health information, enabling them to communicate with healthcare providers remotely and consequently improving patient outcomes by providing personalized health information. However, these applications are usually limited by privacy and security issues. A possible solution is to exploit decentralization distributing privacy concerns directly to users. Solutions enabling this vision are closely linked to Distributed Ledger Technologies that have the potential to revolutionize the healthcare industry by creating a secure and transparent system for managing patient data without a central authority. The decentralized nature of the technology allows for the creation of an international data layer that is accessible to authorized parties while preserving patient privacy. This thesis envisions the InterPlanetary Health Layer along with its implementation attempt called Halo Network and an Internet of Medical Things application called Balance as a use case. Throughout the thesis, we explore the benefits and limitations of using the technology, analyze potential use cases, and look out for future directions.Medical mobile applications have the potential to revolutionize the healthcare industry by providing patients with easy access to their personal health information, enabling them to communicate with healthcare providers remotely and consequently improving patient outcomes by providing personalized health information. However, these applications are usually limited by privacy and security issues. A possible solution is to exploit decentralization distributing privacy concerns directly to users. Solutions enabling this vision are closely linked to Distributed Ledger Technologies that have the potential to revolutionize the healthcare industry by creating a secure and transparent system for managing patient data without a central authority. The decentralized nature of the technology allows for the creation of an international data layer that is accessible to authorized parties while preserving patient privacy. This thesis envisions the InterPlanetary Health Layer along with its implementation attempt called Halo Network and an Internet of Medical Things application called Balance as a use case. Throughout the thesis, we explore the benefits and limitations of using the technology, analyze potential use cases, and look out for future directions

    A Review on Blockchain for the Internet of Medical Things: Definitions, Challenges, Applications, and Vision

    Get PDF
    none3noNowadays, there are a lot of new mobile devices that have the potential to assist healthcare professionals when working and help to increase the well-being of the people. These devices comprise the Internet of Medical Things, but it is generally difficult for healthcare institutions to meet compliance of their systems with new medical solutions efficiently. A technology that promises the sharing of data in a trust-less scenario is the Distributed Ledger Technology through its properties of decentralization, immutability, and transparency. The Blockchain and the Internet of Medical Things can be considered as at an early stage, and the implementations successfully applying the technology are not so many. Some aspects covered by these implementations are data sharing, interoperability of systems, security of devices, the opportunity of data monetization and data ownership that will be the focus of this review.openGioele Bigini;Valerio Freschi;Emanuele LattanziBigini, Gioele; Freschi, Valerio; Lattanzi, Emanuel

    Decentralising the Internet of Medical Things with Distributed Ledger Technologies and Off-Chain Storages: a Proof of Concept

    Get PDF
    The privacy issue limits the Internet of Medical Things. Medical information would enhance new medical studies, formulate new treatments, and deliver new digital health technologies. Solving the sharing issue will have a triple impact: handling sensitive information easily, contributing to international medical advancements, and enabling personalised care. A possible solution could be to decentralise the notion of privacy, distributing it directly to users. Solutions enabling this vision are closely linked to Distributed Ledger Technologies. This technology would allow privacy-compliant solutions in contexts where privacy is the first need through its characteristics of immutability and transparency. This work lays the foundations for a system that can provide adequate security in terms of privacy, allowing the sharing of information between participants. We introduce an Internet of Medical Things application use case called “Balance”, networks of trusted peers to manage sensitive data access called “Halo”, and eventually leverage Smart Contracts to safeguard third party rights over data. This architecture should enable the theoretical vision of privacy-based healthcare solutions running in a decentralised manner

    Bcl-2 protein: a prognostic factor inversely correlated to p53 in non-small-cell lung cancer.

    Get PDF
    Non-small-cell lung cancer (NSCLC) prognosis is strictly related to well-established clinicopathological parameters which have unfortunately become insufficient in the prognostic evaluation of this type of cancer. As p53 and bcl-2 gene deregulations are frequently involved in several types of epithelial malignancies, we investigated the Bcl-2 and p53 protein expression in 91 and 101 cases of NSCLC respectively. The expression was then compared with established indicators of prognosis and biological behaviour of the tumours. No relationship was observed between Bcl-2 and either clinicopathological or biological parameters such as histology, grading, tumour status, nodal metastasis and proliferative activity evaluated by scoring proliferating cell nuclear antigen expression and Ki-67 immunoreactivity. However, the mean Bcl-2 expression was significantly lower in patients who developed metastasis during follow-up or died of metastatic disease (P = 0.006 and P = 0.01 respectively). Moreover, survival probability was higher in patients who expressed the Bcl-2 protein (P = 0.0002). In contrast with this, p53 protein accumulation was observed in tumours with metastatic nodal involvement (P = 0.02) or in patients who developed metastasis during follow-up (P = 0.01), although no correlation was found between p53 expression and overall survival. An inverse relationship was also found between Bcl-2 and the anti-oncogene protein product p53 (P = 0.01). Thus, a high proportion of NSCLCs express p53 and Bcl-2 proteins and their expression may have prognostic importance

    Endogenous erythropoietin as part of the cytokine network in the pathogenesis of experimental autoimmune encephalomyelitis

    Get PDF
    Erythropoietin (EPO) is of great interest as a therapy for many of the central nervous system (CNS) diseases and its administration is protective in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Endogenous EPO is induced by hypoxic/ischemic injury, but little is known about its expression in other CNS diseases. We report here that EPO expression in the spinal cord is induced in mouse models of chronic or relapsing-remitting EAE, and is prominently localized to motoneurons. We found a parallel increase of hypoxia-inducible transcription factor (HIF)-1 alpha, but not HIF-2 alpha, at the mRNA level, suggesting a possible role of non-hypoxic factors in EPO induction. EPO mRNA in the spinal cord was co-expressed with interferon (IFN)-gamma and tumor necrosis factor (TNF), and these cytokines inhibited EPO production in vitro in both neuronal and glial cells. Given the known inhibitory effect of EPO on neuroinflammation, our study indicates that EPO should be viewed as part of the inflammatory/anti-inflammatory network in MS

    Antimicrobial Activity of Xibornol and a Xibornol-Based Formulation Against Gram-Positive Pathogens of the Respiratory Tract

    Get PDF
    : Xibornol is known since the 70s and a xibornol-based formulation is commercialized as spray suspension for the antisepsis of the oral cavity and as adjuvant in pharyngeal infections caused by Gram-positive microorganisms. Herein, we evaluated the antimicrobial activity of xibornol and the xibornol-based formulation against common pathogens of the upper and lower respiratory tract.Our results indicate that xibornol alone and the xibornol-based formulation have strong antibacterial action against Streptococcus pneumoniae, Streptococcus pyogenes, and Staphyloccus aureus, as well as against the two emerging pathogens Actinomyces israelii and Corynebacterium ulcerans. These findings highlight the antimicrobial potential of these drugs in the topical control of pathogenic Gram-positive bacteria of the respiratory tract

    Erythropoietin Selectively Attenuates Cytokine Production and Inflammation in Cerebral Ischemia by Targeting Neuronal Apoptosis

    Get PDF
    Ischemic brain injury resulting from stroke arises from primary neuronal losses and by inflammatory responses. Previous studies suggest that erythropoietin (EPO) attenuates both processes. Although EPO is clearly antiapoptotic for neurons after experimental stroke, it is unknown whether EPO also directly modulates EPO receptor (EPO-R)–expressing glia, microglia, and other inflammatory cells. In these experiments, we show that recombinant human EPO (rhEPO; 5,000 U/kg body weight, i.p.) markedly reduces astrocyte activation and the recruitment of leukocytes and microglia into an infarction produced by middle cerebral artery occlusion in rats. In addition, ischemia-induced production of the proinflammatory cytokines tumor necrosis factor, interleukin 6, and monocyte chemoattractant protein 1 concentration is reduced by >50% after rhEPO administration. Similar results were also observed in mixed neuronal-glial cocultures exposed to the neuronal-selective toxin trimethyl tin. In contrast, rhEPO did not inhibit cytokine production by astrocyte cultures exposed to neuronal homogenates or modulate the response of human peripheral blood mononuclear cells, rat glial cells, or the brain to lipopolysaccharide. These findings suggest that rhEPO attenuates ischemia-induced inflammation by reducing neuronal death rather than by direct effects upon EPO-R–expressing inflammatory cells

    The Molecular Assembly of Amyloid A beta Controls Its Neurotoxicity and Binding to Cellular Proteins

    Get PDF
    Accumulation of beta-sheet-rich peptide (A beta) is strongly associated with Alzheimer's disease, characterized by reduction in synapse density, structural alterations of dendritic spines, modification of synaptic protein expression, loss of long-term potentiation and neuronal cell death. A beta species are potent neurotoxins, however the molecular mechanism responsible for A beta toxicity is still unknown. Numerous mechanisms of toxicity were proposed, although there is no agreement about their relative importance in disease pathogenesis. Here, the toxicity of A beta 1-40 and A beta 1-42 monomers, oligomers or fibrils, was evaluated using the N2a cell line. A structure-function relationship between peptide aggregation state and toxic properties was established. Moreover, we demonstrated that A beta toxic species cross the plasma membrane, accumulate in cells and bind to a variety of internal proteins, especially on the cytoskeleton and in the endoplasmatic reticulum (ER). Based on these data we suggest that numerous proteins act as A beta receptors in N2a cells, triggering a multi factorial toxicity
    • …
    corecore