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Abstract

Accumulation of b-sheet-rich peptide (Ab) is strongly associated with Alzheimer’s disease, characterized by reduction in
synapse density, structural alterations of dendritic spines, modification of synaptic protein expression, loss of long-term
potentiation and neuronal cell death. Ab species are potent neurotoxins, however the molecular mechanism responsible for
Ab toxicity is still unknown. Numerous mechanisms of toxicity were proposed, although there is no agreement about their
relative importance in disease pathogenesis. Here, the toxicity of Ab 1–40 and Ab 1–42 monomers, oligomers or fibrils, was
evaluated using the N2a cell line. A structure-function relationship between peptide aggregation state and toxic properties
was established. Moreover, we demonstrated that Ab toxic species cross the plasma membrane, accumulate in cells and
bind to a variety of internal proteins, especially on the cytoskeleton and in the endoplasmatic reticulum (ER). Based on these
data we suggest that numerous proteins act as Ab receptors in N2a cells, triggering a multi factorial toxicity.
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Introduction

Alzheimer’s disease is the most widespread form of dementia

worldwide. Characteristic pathological lesions are senile amyloid

plaques, vascular amyloidosis and neurofibrillary tangles. The

amyloid aggregates are formed by Ab peptides of various amino-

acid lengths [1] derived from the processing of a membrane

protein (amyloid precursor protein, APP). The most abundant

peptides are Ab 1–40 and Ab 1–42, the first being the prevalent

fragment, the second the most amyloidogenic. Numerous Ab
species differing in their aggregation state have been isolated or

produced [2–5]. Ab species are active neurotoxins and it is

possible that not only one single Ab assembly is responsible of the

neurodegeneration, but probably the complexity of Alzheimer’s

disease requires numerous active Ab species to be considered, all

with the same amino acid composition but with different

aggregation state and 3D structure. One of the major challenges

in deciphering the pathogenesis of Alzheimer’s disease is to clarify

the mechanisms whereby these species lead to neuronal loss. An

abundance of different molecular alterations have been described

in cells lines and cultures following Ab exposure. Despite

significant efforts by many groups, there is still no consensus on

the relative importance of these different molecular events and

there is no clear, unique, causative pathway [6]. Several papers

have suggested that there may be a single, specific, ‘‘death

receptor’’ accounting for Ab-induced toxicity, but, to date, at least

9 different proteins have been described for that role without

reaching any general agreement. In this study different Ab 1–40

and Ab 1–42 molecular assemblies were investigated to clarify

their mechanism of toxicity. The data obtained showed that

toxicity in the N2a cell model depended on Ab peptide

aggregation states. When toxic, Ab peptides had a high tendency

to cross the plasma membrane and bind to multiple proteins,

especially those associated with membrane compartments and the

cytoskeleton. In consequence, we propose that Ab peptides can

induce cell toxicity by binding to a variety of proteins leading to

the activation of multiple pathways that can generate different,

apparently unrelated, toxic downstream events within the cell.

This model for Ab toxicity does not require the existence of one,

single, specific Ab receptor.

Results

2.1. Cellular localization of Ab 1–42 toxic oligomers
Oligomers were produced and characterized in detail (chemico-

physical and toxicological characterization) with both untagged

and EDANS (ethyldiaminonaphthalene-1-sulfonic acid)-tagged Ab
1–42 peptides (Figure S1 and Supporting Information S1)
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following procedures previously validated and published [7,8].

N2a cells were treated with Ab 1–42-EDANS toxic oligomers

(EDANS can be directly visualized in fluorescence microscopy by

the use of an UV light source and a DAPI filter). No signal was

visible after 5 minutes treatment (data not shown) while, 6 hours

after peptide exposure, most of the fluorescence appeared to be

intracellular, accumulating in the perinuclear area (unstained

nuclei); with the peptide apparently located in dense, extremely

bright granules (Figure 1A). Time dependent, oligomer distribu-

tion in cells was then recorded by Time-Lapse fluorescence

microscopy. N2a cells were treated with Ab 1–42-EDANS

oligomers and images recorded every 15 minutes, ending 16 hours

after peptide administration. Selected frames from different movies

were organized in temporal sequence (Figure 1B), clearly

demonstrating EDANS-peptide internalization in N2a cells.

As confirmation, peptide internalization was investigated in the

absence of the EDANS fluorophore after treatment of N2a cells

with toxic Ab 1–42 untagged oligomers. In this second

experimental setting, Ab 1–42 detection was performed by anti-

Ab 6E10 antibody (immunocytochemistry) using confocal micros-

copy; markers for peptide internalization were selected as follows:

vimentin (cytoskeleton), cathepsin D (lysosomes), GRP-78 (endo-

plasmic reticulum and associated membranes) and Hoechst 33285

(nuclei). N2a cells were treated as before and after 6 hours the

unlabeled peptide, detected by the 6E10 antibody, was clearly able

to enter N2a cells since its fluorescence co-localized with vimentin

and GRP-78 (Figure 1C and 1D). Unexpectedly, the internalized

peptide did not co-localize with cathepsin D and this result was

considered a negative control for the immunocytochemistry

procedure (Figure 1E). Again, oligomers were not detected in

nuclei.

2.2. Investigation of Ab binding partners
Following the suggestion that Ab toxic oligomers were able to

enter N2a cells, the possibility that these particles bind to

intracellular proteins was investigated by using a high-throughput

approach. N2a cells were lysed using a detergent-free solution in

order to preserve membrane integrity; proteins were then

separated by centrifugation into two fractions: (i) cytosol; (ii)

membrane fragments and organelles. The resulting fractions were

blotted onto nitrocellulose after SDS-PAGE fractionation and the

membrane was washed overnight in TBST to promote the

maximum of protein renaturation achievable [9–11]. The

nitrocellulose membrane was incubated for 2 hours with

100 ng/ml Ab 1–42 toxic (EDANS-tagged or untagged) oligomers

followed by staining with the 6E10 antibody. At variance with the

cytosol numerous proteins in the membrane fraction were able to

interact with Ab 1–42 oligomers (Figure 2A and 2B).

A proteomic approach was then used to identify the proteins

involved in Ab binding. A particular type of 2D gel separation was

selected [12]. After the second dimension separation, proteins

were partially electroblotted onto nitrocellulose. The membrane

was processed as described before, with exposure to 100 ng/ml Ab
1–42 oligomers. The partially transferred gel was stained by

Coomassie Instant Blue. Images of the membrane and Coomassie

stained gel were superimposed to allow the identification (on the

gel) of the Coomassie spots that contained proteins positive for Ab
binding (as verified on the membrane). Those spots were cut out

Figure 1. Ab 1–42 oligomer distribution in N2a cells. A) High magnified, fluorescence microscopy pictures showing the cellular localization of
fluorescent dye 6 hours after 30 mM Ab 1–42-EDANS large oligomers incubation. The fluorescence is mainly confined to the cytoplasm [C] and did not
penetrate into the nucleus [N]. Scale bar 10 and 5 mm. B). The kinetic of accumulation was carried out by time lapse recording experiments coupled
to fluorescence microscope acquisition (406of magnification). Each single image represents the merge between the contrast phase signal and the
fluorescence of the field excited in the UV range (from 380 to 425 nm of wavelength), Scale bar 40 mm. C-D-E) N2a cells were treated with 30 mM Ab
1–42 large oligomers for 6 hours prior to immunocytochemistry analysis. C) vimentin, D) GRP-78 and E) cathepsin D (all FITC) plus Ab 6E10 staining
(TRIC 546); nuclei were stained with Hoechst 33285. Scale bar. 15 mm. Images were merged by superimposing single fluorescence images.
doi:10.1371/journal.pone.0024909.g001
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from the gel and digested by trypsin. This procedure was applied

to seven experimental replicates, to obtain a reliable read out. In

four cases out of seven the digested spots were analyzed by

MALDI-TOF spectrometry; in the other three cases analysis was

performed by MALDI-TOF-TOF spectrometry to obtain confir-

mation of the results. The generated peak lists were used to search

the SwissProt database using the MASCOT searching algorithm

(Table 1). Many different proteins were identified, principally

coming from cytoskeleton and intracellular membrane compart-

ments. This, again, suggested the possibility for the peptide to be

internalized and to generically bind to a set of different proteins

and not to only one specific binding partner.

2.3. Ab 1–40 and Ab 1–42 peptides
In the set of experiments reported until now, only toxic

oligomers from Ab 1–42 peptides have been used. However, from

the literature it is known that other aggregation forms of Ab 1–42

as well as Ab 1–40 peptides are implicated in the Alzheimer’s

pathology; all of them having different impact on neuronal toxicity

[13]. Ab 1–40 and 1–42 peptide samples differently enriched in

amyloid assemblies to encompass the amyloidogenic process from

the monomer to the mature fibril (monomers – oligomers - fibrils)

were prepared and characterized (Figure S2, Table S1 and

Supporting Information S1) with the aim to verify if different

toxicological profiles, typical of different Ab aggregative forms,

may hide different protein-binding abilities.

Different Ab preparations were assessed for their ability to alter

N2a cells viability (Figure 3A). N2a cells were incubated with

peptide preparations for 72 hours (concentration range from 5 nM

up to 15 mM) and cell damage was evaluated by the MTT (3-(4,5-

Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) reduction

assay. The cell impairment followed a dose-response pattern. As

expected from literature, the most toxic Ab 1–42 preparation was

the one enriched in oligomers. Monomers and preparations

enriched in fibrils were less active over the same range of peptide

concentrations; in particular monomers produced no significant

change in MTT with the exception of the higher dosage; Ab 1–42

fibrils partially retained a toxic activity, however less than in

comparison with the preparation of oligomers. Interestingly, a

similar trend was observed with Ab 1–40 assemblies as well. As

expected, Ab 1–42 showed a stronger toxic effect in comparison

with Ab 1–40, being Ab 1–42 toxic species active at very low

concentrations in comparison with Ab 1–40. The difference was

especially remarkable in the comparison between the two

monomeric preparations. In general monomers did not display

the cytotoxicity observed for oligomers and fibrils, nevertheless in

the case of Ab 1–42 the monomer showed a partial toxicity at the

higher peptide concentration (5 mM). This was not recorded for

Ab 1–40 for which the monomer was still not active even at

15 mM peptide dosage.

As the six Ab 1–40 and Ab 1–42 preparations differed in their

ability to impair N2a cell viability, they were examined for their

binding ability for proteins from N2a cells. Membrane proteins

from N2a cells were blotted onto nitrocellulose after SDS-PAGE.

The nitrocellulose membranes were cut in two parts and processed

separately with solutions containing different Ab conformations.

After peptide exposure, the membranes were reunited, to be

equally probed with antibodies and uniformly processed during

film exposure to obtain the final image. Comparisons made were

between: Ab 1–42 oligomers vs Ab 1–40 monomers (Figure 3B);

Ab 1–42 monomers vs Ab 1–42 oligomers (Figure 3C); Ab 1–42

fibrils vs Ab 1–42 oligomers (Figure 3D); Ab 1–40 monomers, Ab
1–40 oligomers vs Ab 1–40 fibrils (Figure 3E). In all these

comparisons there was a direct correlation between the toxicity of

the peptide preparations and their ability to bind proteins: the

more toxic the peptide, the greater the intensity of binding to cell

proteins especially in the membrane fraction.

Discussion

Numerous and apparently unrelated molecular alterations have

been associated with Ab toxicity. Drawing these various data

together to generate an exhaustive description of the mechanism

of Ab-induced neuronal toxicity has proved difficult. Recently, the

existence of one receptor able to interact with Ab peptides

triggering the toxic response in neurons has been proposed [14].

However, this result is still quite controversial [15] because more

than one single and specific protein seem to be involved in

triggering of Ab dependent neuronal alterations. Multiple Ab
binding candidates have been described (e.g. a7 nicotinic

acetylcholine receptor [16], RAGE (Receptor for Advanced

Glycosylation End-products) [17], Ab precursor protein [18],

NMDA receptor, P75 receptor (neurotrophin receptor P75NTR)

[19], scavenger receptors [20], CD36 [21], and low density

receptor-related lipoproteins [22]). Overall, these data suggest that

Ab assemblies are toxins that interact with a variety of

heterogeneous partners instead of a single one. This was also the

outcome of a recent paper by Olzscha that showed that oligomers

of artificial amyloidogenic peptides, as well as Ab species, bind in

the cells to a wide number of pre-existent and newly synthesized

proteins simply on the basis of specific sequence features [23].

In this paper we show that Ab 1–42 oligomers covalently bound

to EDANS were able to enter N2a cells and accumulate in the

perinuclear area. Peptide internalization in cells was confirmed by

antibody tracking of untagged, Ab toxic oligomers and colocaliza-

tion studies with markers for cytoskeleton, ER, lysosomes and

nuclei. These results suggested that Ab toxic oligomers cross

plasma membrane and bind the intracellular organelles and

cytoskeleton. Far Western blot analysis was used to investigate Ab
interacting partners since this technique has been used in the past

to investigate the presence of proteins in brain extracts able to bind

synthetic Ab derived diffusible ligands (ADDLs) [24], identify the

shortest segment in Ab peptides responsible for interaction with

proteins [25], or identify the interaction partners of the cellular

form of prion protein PrPc [26]. Notably, Ab 1–42 toxic oligomers

Figure 2. Far Western Blot with cytosolic (C) and membrane
proteins (M). Fifteen mg of proteins from cytosol and membrane
fractions were blotted after electrophoresis. Far Western Blot was
performed with A) 100 ng/ml of untagged Ab 1–42 enriched in
oligomers. Actin is shown as a marker for the cytosolic fraction. B)
100 ng/ml of EDANS-tagged Ab 1–42 enriched in oligomers.
doi:10.1371/journal.pone.0024909.g002
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bound to many proteins of the membrane fraction (i.e. containing

intracellular membranes, organelles and some parts of the

polymerized cytoskeleton attached to the inner surface of the

plasma membrane), at variance with soluble cytosolic proteins

which showed less Ab oligomers binding. Among the numerous

proteins in the membrane fraction which were identified by mass

spectrometry as Ab-interacting partners, many of them are

involved in the protein synthesis (ribosomal proteins RL15,

RL7a, L3; polyadenylate binding protein 1; translation initiation

factor 3A, 5B, 3L; elongation factor 1 alpha1; isoleucyl and valyl-

trna syntetase) as well as proteins associated with the cytoskeleton.

This suggests that Ab species can potentially interfere with key

cellular functions like protein synthesis, cytoskeleton organization,

m-rna processing. These results, obtained following a totally

different approach, are backing-up the already mentioned data

from Olzscha [23] describing the nature of interactions between b
proteins and key cellular hubs involved, among different functions,

in transcription, translation vesicular transport and cytoskeleton,

these interactions were described to be correlated with the b
aggregates cytotoxicity. Interestingly proteins involved in all these

processes have been identified as well as stress response proteins to

be altered in level of expression during Ab induced cell toxicity

[27] again pointing out the multiplicity of cell processes altered as

a response to Ab stimulation.

Dahlgren et al. [13], showed that Ab 1–42 toxicity was directly

associated with its molecular assembly. This was confirmed here by us

using our Ab 1–42 samples, moreover we show that the toxicity of Ab
1–40 is secondary to peptide folding as well. For both Ab 1–40 and 1–

42, the toxicity increased with the accumulation of oligomers and

protofibrils; finally, the incorporation of oligomers into mature fibrils

reduced the toxicity of the preparations. A comparison of protein

binding capacity and toxicity of different Ab 1–40 and Ab 1–42

preparations was also carried out. The protein binding capacity in the

cell was directly correlated with peptide toxicity, confirming the

importance of the molecular assembly, irrespectively with amino acid

composition, in dictating the biological behaviour of Ab.

In conclusion, our studies demonstrate that Ab toxic species

cross the plasma membrane and accumulate within N2a cells by

docking to a variety of proteins. Therefore in our experimental

conditions, our data dismiss the hypothesis of the presence of a

single ‘‘death receptor’’ and put forward the idea that many

proteins can be, under different extents, target of Ab binding. The

ability of Ab toxic species to enter into cells and interact with many

target proteins suggests the idea that a plurality of molecular

alterations after massive protein binding could interfere generi-

cally, but concurrently, in numerous independent, physiological

pathways. This may therefore explain the presence of a large

number of molecular alterations associated with Ab-induced

toxicity in literature as well as many proposed Ab receptors that,

up to now, have always been considered independently.

Materials and Methods

Peptide storage and handling
Ab 1–40 and Ab 1–42 were prepared by solid-phase peptide

synthesis [7]. Lyophilized samples were kept at 220uC until use.

Table 1. Identification of membrane proteins able to bind Ab 1–42 large oligomers.

Identified Protein Symbol

Uniprot-
Swiss- MW Score Cov % # Matches Score

Cov
%

#
Matches

Prot# (kDa) (MS/MS) (MS/MS) (MS/MS) (MS) (MS) (MS)

60S ribosomal protein L15 RL15_MOUSE Q9CZM2 24.1 66 64 21 115 63 16

60S ribosomal protein L7a RL7A_MOUSE P12970 30.1 - - - 66 25 8

Heterogeneous nuclear ribonucleoproteins A2/B1 ROA2_MOUSE O88569 37.4 67 61 25 62 32 12

Heterogeneous nuclear ribonucleoproteins A1 ROA1_MOUSE P49312 34.3 - - - 66 40 10

Vimentin VIME_MOUSE P20152 53.6 257 70 56 257 66 41

Peripherin PERI_MOUSE P15331 54.2 149 70 44 75 41 19

T-complex protein 1 alpha B TCPA2_MOUSE P11983 60.4 81 49 36 58 23 13

Heat shock cognate 71 kDa protein HSP7C_MOUSE P63017 70.8 168 48 35 91 33 19

Heat shock-related 70 kDa protein 2 HSP72_MOUSE P17156 69.7 94 34 23 - - -

Nucleolin NUCL_MOUSE P09405 76.7 113 38 40 99 35 35

Polyadenylate-binding protein 1 PABP1_MOUSE P29341 70.6 145 59 59 104 45 27

Probable ATP-dependent RNA helicase DDX5_MOUSE Q61656 69.3 72 47 46 - - -

Ketatin, type II cytoskeletal 1b K2C1B_MOUSE Q6IFZ6 61.3 57 43 32 - - -

Elongation factor 1-alpha 1 EF1A1_MOUSE P10126 50.1 86 28 17 - - -

60S ribosomal protein L3 RL3_MOUSE P27659 46.1 103 56 39 - - -

Eukaryotic translation initiation factor 3 subunit A EIF3A_MOUSE P23116 161.8 197 54 94 - - -

Eukaryotic translation initiation factor 5B IF2P_MOUSE Q05D44 137.5 58 37 57 - - -

Eukaryotic translation initiation factor 3 subunit L EIF3L_MOUSE Q8QZY1 66.570 91 38 28 - - -

Isoleucyl-tRNA synthetase, cytoplasmic SYIC_MOUSE Q8BU330 144.2 116 47 71 - - -

Valyl-tRNA synthetase SYVC_MOUSE Q9Z1Q9 140.1 68 34 55 - - -

Trypeptidyl-peptidase 2 TPP2_MOUSE Q64514 139.8 58 30 53 - - -

Score: the protein score was calculated by the MASCOT algorithm. In the case of MS/MS identifications, the score is the combined between MS and MS/MS analyses. The
identification was considered reliable when the given score for the single protein was above 55; ppm was always under 50. Cov%: sequence coverage.
doi:10.1371/journal.pone.0024909.t001
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Peptides were never conserved in solution, they were freshly

dissolved immediately before use, and residual peptide solutions

were always discarded after each experiment. Production and

characterization of different aggregative Ab species (Ab 1–40 and

Ab 1–42 monomers, oligomers and fibrils) have been carried out

as described in a previous publications [7,8]. Monomers have been

produced following a disaggregation protocol based on the use of

formic acid and trifluoro acetic acid. Protocols for peptide

preparation are discussed in details as supplementary information

and data are provided to describe the aggregation state for each of

the Ab samples. Ab samples were prepared under sterile

conditions to avoid bacterial contamination.

EDANS fluorescence
N2a cells (commercialized by ATCC, number CCL-131, for more

information web page http://www.lgcstandards-atcc.org/LGCAd-

vancedCatalogueSearch/ProductDescription/tabid/ 1068/Default.

aspx?ATCCNum = CCL-131&Template = cellBiology) grown on

glass coverslips were treated with 30 mM EDANS (ethyldiamino-

naphthalene-1-sulfonic acid)-tagged Ab 1–42, and incubated for

5 minutes or 6 hours. Cells were washed twice in PBS and

coverglases were mounted onto glass slides using Fluor Save

mounting medium (Calbiochem, San Diego, CA). Slides were

allowed to dry, before analysis using an Olympus fluorescence

microscope (Olympus, Hamburg, Germany) equipped with an

Olympus U-RFL-T UV source and DAPI emission filter. All

fluorescence images were acquired using the same exposure

parameters. Merged images between bright-field and fluorescence

were obtained with the Adobe Photoshop software CS 8.0 (Adobe

System Incorporated).

Time Lapse recordings
N2a cells were grown on tissue culture treated Ibidi m-slides

eight-well dishes (Ibidi, Munich, Germany). Cells were treated

with 30 mM EDANS-tagged Ab 1–42, and the wells were

completely covered with mineral oil. Image recordings started

30 minutes after cell treatment using an Olympus time lapse

microscope (Olympus, Hamburg, Germany) equipped with a cell

incubator box, Olympus U-RFL-T UV source and DAPI emission

filter. Different positions were selected and images in bright-field

and in fluorescence were recorded every 15 minutes for 16 hours.

Single images were used to compose movies. Acquisition and

movie composition were done with the Cell‘R 3.0 software

(Olympus, Hamburg, Germany).

Immunocytochemistry
N2a cells were fixed with Carnoy’s solution (1 h, room

temperature) and then incubated with Hoechst 33258 dye (1 h,

Figure 3. Ab toxicity and Far Western Blot assays. A) N2a cell viability after treatment with Ab 1–40 species or Ab 1–42 species, concentration
range from 0.22 mM to 10 mM and 50 nM to 5 mM respectively. ANOVA followed by Bonferroni’s post hoc test; *** p,0.001; * p,0.05; p.0.05 not
significant (ns). Mean and SD; N = 3 or more different experiments, 4 replicates each. B-C-D-E) Comparisons of binding capacities among different
peptide preparations. Fifteen mg proteins from cytosolic (cyt) and membrane fractions (mem) were run on SDS-PAGE and blotted onto nitrocellulose.
Far Western Blot was performed with B 1) 100 ng/ml Ab 1–42 oligomers; B 2) 100 ng/ml Ab 1–40 monomers; C 1) 100 ng/ml Ab 1–42 monomers; C 2)
100 ng/ml Ab 1–42 oligomers; D1) 100 ng/ml Ab 1–42 oligomers; D2) 100 ng/ml Ab 1–42 fibrils; E1) 1 mg/ml Ab 1–40 monomers; E2) 1 mg/ml Ab 1–
40 fibrils; E3) 1 mg/ml Ab 1–40 oligomers. Membranes were incubated with peptide solutions separately; then pooled to be stained concurrently with
the same antibody incubations and the same film exposure.
doi:10.1371/journal.pone.0024909.g003
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room temperature; 1:200; Sigma-Aldrich). Cells were then

permeabilized with 0.1% Triton X-100 with 10% foetal bovin

serum and incubated overnight (4uC) with mouse primary

antibodies against the Ab 1–42 peptide (1:500; 6E10 Signet) in

PBS containing 0.1% Triton X-100 and 10% foetal bovin serum.

Cells were washed and incubated for 1 hour at room temperature

with the secondary anti-mouse IgG conjugated with Alexa 546

(1:1000; Molecular Probes, Carlsbad, CA) in PBS containing 1%

FBS. Cells were then washed and incubated overnight at 4uC with

primary antibodies against GRP78 (goat; 1:200; Santa Cruz

Biotechnology), vimentin (goat; 1:200; Chemicon) or cathepsin

(rabbit; 1:300; Santa Cruz) in PBS containing 0.1% Triton X-100

and 10% foetal bovin serum. After washing, cells were incubated

for 1 hour at room temperature with the secondary anti-rabbit or

anti-goat IgG conjugated with Alexa 488 (1:1000; Molecular

Probes, Carlsbad, CA) in PBS containing 1% FBS.

Protein extraction from N2a cells
Mild cell lysis for protein fractionation - slightly modified

method from [28,29] - was achieved with hypotonic lysis buffer

(CLBi) composed of 10 mM NaCl, 5 mM EDTA, 1 mM

KH2PO4, 5 mM NaHCO3, complete protease inhibitor cocktail

and 1 mM sodium orthovanadate in 10 mM HEPES buffer. CLBi

was added directly to the flask, and cells were scraped off and

collected. Cell lysis was improved by using a 26G needle. Cell

debris were eliminated by centrifugation (2610 min centrifugation

at 6.6 g) and the supernatant was collected as the post-nuclear

fraction. This fraction was then centrifuged for 3 hours at

14 000 rpm at 4uC (Avanti J-25 centrifuge; JA 18.1 rotor;

Beckman Coulter, Fullerton, CA). The supernatant was collected

as the cytosolic fraction; the pellet containing membrane/

organelles was washed once and suspended in PBS containing

complete protease inhibitor cocktail and 1 mM sodium orthova-

nadate. Protein was quantified by the BCA assay.

Far Western Blot assay
Proteins were diluted 1:1 with the loading buffer containing

12% (w/V) SDS and 100 mM dithiothreitol in Tris-HCl buffer

0.5 M, pH 6.8, and immediately denatured at 100uC for

5 minutes. Samples were analyzed using Tris-glycine SDS-PAGE

(1.5 mm thick, 12.5% gradient gels) and blotted in a semi-dry

apparatus (GE Healthcare Easton Turnpike, CT) onto nitrocel-

lulose. The blotting membrane was blocked from 1 hour to

overnight in 5% non-fat milk. After washing in TBST the

membrane was incubated 2 hours with 100 ng/ml Ab peptides in

TBST and the membrane was processed as for Western Blot with

the primary antibody 6E10 (1:5000, Signet Laboratories, Ded-

ham, MA) and anti-mouse HRP conjugated secondary antibody

(1:2000, DAKO, Carpinteria, CA) using an ECL detection kit (GE

Healthcare Easton Turnpike, CT).

For the experimental control the nitrocellulose membrane was

incubated only with Ab peptide and anti-mouse secondary

antibody, without the 6E10 primary antibody.

2D gel electrophoresis and mass spectrometry
2D gel electrophoresis was as described by Hartinger at al. [30].

The first dimension was done as polyacrylamide gel electropho-

resis in the presence of urea and benzyldimethyl-n-hexadecylam-

monium chloride (16-BAC). Gels were then fixed in a solution

containing isopropanol:water:acetic acid and stained with 0.15%

Coomassie blue R-250. Lanes were cut and re-equilibrated in

100 mM Tris-HCl pH 6.8 1 hour before second dimension

electrophoresis performed as conventional Tris-glycine SDS-

PAGE (1.5 mm thick, 12.5% gels). Gels were partially electro-

blotted onto nitrocellulose (0.2 mm pore size, Whatmann, GE

Healthcare, Easton Turnpike, CT) by a semi-dry apparatus (GE

Healthcare Easton Turnpike, CT) for 35 min, using 0.8 mA/cm2.

Blotting membranes were processed as for Far Western blot and

gels were stained by Coomassie Instant blue (Expedeon, Cam-

bridge, UK). Images from gels and membranes were acquired and

superimposed to select corresponding spots in the gel.

Spots were excised and processed for mass spectrometry. Spots

were destained in 40% ethanol and shrunk in acetonitrile. Proteins

were then reduced for 1 hour at 37uC by 10 mM dithiothreitol and

carbamidomethylated 20 min by 55 mM iodoacetamide. Proteins

were digested overnight by the addition of 12.5 ng/ml sequence

grade modified bovin trypsin (Roche Applied Science, Indianapolis,

IN). Trypsin digestion was blocked by addition of 0.1% TFA and

peptides were spotted onto MALDI-TOF/TOF-TOF target plates

using a-cyano-hydroxy-cinnamic acid as matrix. MS spectra were

acquired using a Reflex III MALDI-TOF (Bruker Daltonics,

Bremen, Germany); MS/MS spectra were acquired by using a 4700

MALDI-TOF-TOF (Applied Biosystem, Foster City, CA) and the 6

most abundant precursor ions were selected for fragmentation. MS

and combined MS-MS/MS data were submitted to the MASCOT

database search engine with the following searching parameters:

SwissProt 57.3 protein database; carbamidomethylation as variable

modification and oxidation of methionine and carbamylation as

fixed modifications; one missed cleavage, mass tolerance of 0.1 Da

for the peptide mass values, 0.1 Da for the ion mass values.

N2a cell culture and toxicity assay
The murine neuroblastoma line N2a is frequently used when a

cell line is needed which recapitulate neuronal features and it

represents one of the common models for amyloid toxicity. N2a

cells were grown in DMEM containing 4.5 g/l glucose (BE12-

614F, Lonza, Basel, Switzerland) supplemented with 16104 U/ml

penicillin/streptomycin (Gibco, Carlsband, CA), 2 mM L-gluta-

mine (Gibco, Carlsband, CA) and 10% foetal calf serum (FCS,

Lonza, Basel, Switzerland and heated at 56uC for 45 minutes to

inactivate complement components) at 37uC, in 5% CO2. For

toxicity assays confluent cells were trypsinized, diluted in DMEM

containing 1% FCS to minimize cell growth and plated at the

concentration of 56104 cells/ml in transparent, flat bottom 96-

multiwell plates (Iwaky, Barloworld Scientific, UK). Cells were

treated 4 hours after plating by adding 10 ml of peptide solution to

the culture medium. Cell viability was determined 72 hours after

treatment using a MTT reduction assay (Sigma-Aldrich, St. Louis

MO), according to the manufacturer’s directions.

Supporting Information

Figure S1 Ab 1–42 untagged and EDANS-tagged peptides were

aged as previously described [7] to obtain SDS-stable, A11 positive

aggregates (Figure S2B). The oligomeric morphology was

evaluated by AFM. Peptide preparations showed a large number

of rounded particles covering almost completely the mica surface

with a mean height 3.160.1 nm (out of 250 randomly selected

objects) (Figure S1A and S1B). CD spectra for both tagged and

untagged oligomers showed the typical features of b-sheet

secondary structure with a negative peak at 215 nm and a positive

value around 195 nm (Figure S1C). Tagged and untagged

oligomers were analyzed for their ability to impair N2a cell

viability upon 72 hours treatment (concentration range from

0.5 nM to 5 mM). Decrease in the cellular reduction of MTT was

considered a marker of cell viability. Ab 1–42 untagged-oligomers

were highly active, being toxic even at a concentration of 5 nM;

EDANS-tagged oligomers caused a dose-related impairment of
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N2a cells viability comparable with Ab 1–42 untagged oligomers

(Figure S1D; mean and SD, N = 3 or more different experiments,

4 replicates each). Both Ab 1–42 untagged and EDANS-tagged

oligomers were able to produce amyloid fibrils upon incubation as

demonstrated by EM after negative staining with uranyl acetate

(Figure S1E–F).

(TIF)

Figure S2 An Ab 1–42 batch of lyophilized peptide was

disaggregated as previously described to obtain a preparation closed

to the monomeric form of the peptide [7]. The Ab 1–42 sample

obtained was completely free of SDS-resistant species (Figure S2A)

and was not recognized by A11 anti-oligomers antibody (Figure S2B).

This sample contained very few and dispersed particles (average

height: 0.5660.03 nm, mean 6 S.E.) as verified by AFM, however

most of the mica surface was free of structured material (Figure S2C).

In the ThT test, the sample at time zero did not produce a signal

higher than the background, suggesting that it did not contain pre-

formed species; moreover the signal growth was very slow in the first

24 hours of incubation (data not shown). A batch of lyophilized Ab
1–40 was disaggregated using the same procedure. The disaggregated

Ab 1–40 peptide obtained did not possess SDS stable seeds and it was

not recognized by the A11 antibody (data not shown), it was also

analyzed by AFM which showed that no particle structures were

visible (Figure S2C). The sample was therefore considered completely

free of peptide aggregates. In order to confirm the Ab 1–40

enrichment in monomers, nuclear magnetic resonance (NMR) was

employed. Diffusion Order SpectroscopY (DOSY) experiments were

done to measure the diffusion coefficient of the species in solution.

The expected diffusion coefficients for solutions composed exclusively

by monomers or dimers or trimers were calculated from standard

curves. The diffusion coefficient for the solution of reversed Ab 1–40

peptide was between that expected for a solution composed

exclusively of monomers and for a solution containing only dimers

(Table S1). Disaggregated Ab 1–40 peptide was enriched in oligomers

by incubation in 100 mM TRIS-HCl buffer pH 7.4 for 30 days at

37uC with 5 minutes shaking at 1000 rpm every 30 minutes. The

aged Ab 1–40 sample was analyzed by electron and atomic force

microscopy. Most of the peptide was aggregated in round particles

with a tendency to cluster and collapse in dense cores (data not

shown). Finally Ab 1–42 and Ab 1–40 fibrils were obtained by

incubating the monomeric peptides under acid conditions at 37uC for

40 or 10 days respectively. Electron micrographs of these last samples

confirmed a substantial amount of mature fibrils (Figure S2D) which

were long, narrow and clustered in bunches.

(TIF)

Table S1 Diffusion coefficients of disaggregated Ab 1–40 peptide

in solution as determined by STD-NMR. Expected (as standard

curves) and obtained diffusion (m2/sec) for Ab 1–40 peptide at

different temperatures (5, 25 or 37uC). Nuclear magnetic resonance

(NMR) experiments were performed using a Varian 400-MHz

Mercury (Varian, Palo Alto, CA) equipped with a z-axis gradient

coil. Pulse field gradient NMR diffusion measurements give

molecular size through the measurement of diffusion coefficients.
1H spectra were acquired with 128, 160, 256 or 512 transients and

2 s recycle delay. Diffusion experiments were performed employing

an array of 20 or 30 spectra for each experiment (128, 256 or 512

transients each, with a 1 or 2 s recycle delay) varying the gradient

strength from 3.33 to 19.4 G/cm2. The lengths of and delays

between the gradient pulses were optimized depending on the

experimental conditions and ranged between 0.002 and 0.005 s and

0.2–0.7 s, respectively. Data were fitted and diffusion coefficients

determined with the Dosytoolbox software. (http://personalpages.

manchester.ac.uk/staff/mathias.nilsson/software.htm)

(DOC)

Supporting Information S1

(DOC)
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Overcoming synthetic Ab peptide aging: a new approach to an age-old problem.

Amyloid 16: 71–80.

8. Airoldi C, Colombo L, Manzoni C, Sironi E, Natalello A, et al. (2011)

Tetracycline prevents Ab oligomer toxicity through an atypical supramolecular
interaction. Org Biomol Chem 9: 463–472.

9. Birk HW, Koepsell H (1987) Reaction of monoclonal antibodies with
plasma membrane proteins after binding on nitrocellulose: renaturation of

antigenic sites and reduction of nonspecific antibody binding. Anal Biochem

164: 12–22.

10. Klinz FJ (1994) GTP-blot analysis of small GTP-binding proteins. The C-

terminus is involved in renaturation of blotted proteins. Eur J Biochem 225:
99–105.

11. Salehzada T, Silhol M, Lebleu B, Bisbal C (1991) Regeneration of enzyme
activity after western blot: activation of RNase L by 2-5A on filter-importance

for its detection. Anal Biochem 196: 410–414.

12. Macfarlane DE (1989) Two dimensional benzyldimethyl-n-hexadecylammo-

nium chloride–sodium dodecyl sulfate preparative polyacrylamide gel electro-
phoresis: a high capacity high resolution technique for the purification of

proteins from complex mixtures. Ann Biochem 176: 457–463.

13. Dahlgren KN, Manelli AM, Stine WB, Jr., Baker LK, Krafft GA, et al. (2002)

Oligomeric and fibrillar species of amyloid-b peptides differentially affect
neuronal viability. J Bio Chem 277: 32046–32053.

14. Laurén J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM (2009) Cellular
prion protein mediates impairment of synaptic plasticity by amyloid-beta

oligomers. Nature 457: 1128–1132.

15. Balducci C, Beeg M, Stravalaci M, Bastone A, Sclip A, et al. (2010) Synthetic

amyloid-beta oligomers impair long-term memory independently of cellular
prion protein. Proc Natl Acad Sci USA 107: 2295–2300.

16. Wang HY, Lee DH, Davis CB, Shank RP (2000) Amyloid peptide Abeta(1–42)
binds selectively and with picomolar affinity to alpha7 nicotinic acetylcholine

receptors. J Neurochem 75: 1155–1161.

17. Origlia N, Righi M, Capsoni S, Cattaneo A, Fang F, et al. (2008) Receptor for

advanced glycation end product-dependent activation of p38 mitogen-activated
protein kinase contributes to amyloid-beta-mediated cortical synaptic dysfunc-

tion. J Neurosci 28: 3521–3530.

18. Lorenzo A, Yuan M, Zhang Z, Paganetti PA, Sturchler-Pierrat C, et al. (2000)

Amyloid b interacts with the amyloid precursor protein: a potential toxic

mechanism in Alzheimer’s disease. Nature Neurosci 3: 460–464.

Abeta Molecular Assembly and Toxicity

PLoS ONE | www.plosone.org 7 September 2011 | Volume 6 | Issue 9 | e24909



19. Kuner P, Schubenel R, Hertel C (1998) Beta-amyloid binds to p57NTR

and activates NFkappaB in human neuroblastoma cells. J Neurosci Res 54:
798–804.

20. Srivastava RA, Jain JC (2002) Scavenger receptor class B type I expression and

elemental analysis in cerebellum and parietal cortex regions of the Alzheimer’s
disease brain. J Neurol Sci 196: 45–52.

21. Bamberger ME, Harris ME, McDonald DR, Husemann J, Landreth GE (2003)
A cell surface receptor complex for fibrillar beta-amyloid mediates microglial

activation. J Neurosci 23: 2665–2674.

22. LaDu MJ, Shah JA, Reardon CA, Getz GS, Bu G, et al. (2000) Apolipoprotein E
receptors mediate the effects of beta-amyloid on astrocyte cultures. J Biol Chem

275: 33974–33980.
23. Olzscha H, Schermann SM, Woerner AC, Pinkert S, Hecht MH, et al. (2011)

Amyloid-like aggregates sequester numerous metastable proteins with essential
cellular functions. Cell 144: 67–78.

24. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, et al. (1998)

Diffusible, nonfibrillar ligands derived from Ab1–42 are potent central nervous
system neurotoxins. Proc Natl Acad Sci U S A 95: 6448–6453.

25. Ray I, Chauhan A, Wisniewski HM, Wegiel J, Kim KS, et al. (1998) Binding of

amyloid beta-protein to intracellular brain proteins in rat and human.
Neurochem Res 23: 1277–1282.

26. Strom A, Diecke S, Hunsmann G, Stuke AW (2006) Identification of prion

protein binding proteins by combined use of far-Western immunoblotting, two
dimensional gel electrophoresis and mass spectrometry. Proteomics 6: 26–34.
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