29 research outputs found

    Important Role of the GLP-1 Axis for Glucose Homeostasis after Bariatric Surgery.

    Get PDF
    Bariatric surgery is widely used to treat obesity and improves type 2 diabetes beyond expectations from the degree of weight loss. Elevated post-prandial concentrations of glucagon-like peptide 1 (GLP-1), peptide YY (PYY), and insulin are widely reported, but the importance of GLP-1 in post-bariatric physiology remains debated. Here, we show that GLP-1 is a major driver of insulin secretion after bariatric surgery, as demonstrated by blocking GLP-1 receptors (GLP1Rs) post-gastrectomy in lean humans using Exendin-9 or in mice using an anti-GLP1R antibody. Transcriptomics and peptidomics analyses revealed that human and mouse enteroendocrine cells were unaltered post-surgery; instead, we found that elevated plasma GLP-1 and PYY correlated with increased nutrient delivery to the distal gut in mice. We conclude that increased GLP-1 secretion after bariatric surgery arises from rapid nutrient delivery to the distal gut and is a key driver of enhanced insulin secretion.RNA-sequencing was undertaken at the CRUK Cambridge Institute Genomics Core. Cell sorting was performed at the NIHR Cambridge BRC Cell Phenotyping Hub. PL received a Society for Endocrinology Early Career Grant. GR received an Addenbrooke’s Charitable Trust / Evelyn Trust Cambridge Clinical Research Fellowship [16-69] and a Royal College of Surgeons Research Fellowship. The work was partially funded by a project grant from the EFSD/Novo Nordisk Programme for Diabetes Research in Europe

    HIV-1 Inhibits Phagocytosis and Inflammatory Cytokine Responses of Human Monocyte-Derived Macrophages to P. falciparum Infected Erythrocytes

    Get PDF
    HIV-1 infection increases the risk and severity of malaria by poorly defined mechanisms. We investigated the effect of HIV-1Ba-L infection of monocyte-derived macrophages (MDM) on phagocytosis of opsonised P. falciparum infected erythrocytes (IE) and subsequent proinflammatory cytokine secretion. Compared to mock-infected MDM, HIV-1 infection significantly inhibited phagocytosis of IE (median (IQR) (10 (0–28) versus (34 (27–108); IE internalised/100 MDM; p = 0.001) and decreased secretion of IL-6 (1,116 (352–3,387) versus 1,552 (889–6,331); pg/mL; p = 0.0078) and IL-1β (16 (7–21) versus 33 (27–65); pg/mL; p = 0.0078). Thus inadequate phagocytosis and cytokine production may contribute to impaired control of malaria in HIV-1 infected individuals

    Human germline heterozygous gain-of-function STAT6 variants cause severe allergic disease

    Get PDF
    STAT6 (signal transducer and activator of transcription 6) is a transcription factor that plays a central role in the pathophysiology of allergic inflammation. We have identified 16 patients from 10 families spanning three continents with a profound phenotype of early-life onset allergic immune dysregulation, widespread treatment-resistant atopic dermatitis, hypereosinophilia with esosinophilic gastrointestinal disease, asthma, elevated serum IgE, IgE-mediated food allergies, and anaphylaxis. The cases were either sporadic (seven kindreds) or followed an autosomal dominant inheritance pattern (three kindreds). All patients carried monoallelic rare variants in STAT6 and functional studies established their gain-of-function (GOF) phenotype with sustained STAT6 phosphorylation, increased STAT6 target gene expression, and TH2 skewing. Precision treatment with the anti-IL-4Rα antibody, dupilumab, was highly effective improving both clinical manifestations and immunological biomarkers. This study identifies heterozygous GOF variants in STAT6 as a novel autosomal dominant allergic disorder. We anticipate that our discovery of multiple kindreds with germline STAT6 GOF variants will facilitate the recognition of more affected individuals and the full definition of this new primary atopic disorder

    Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.

    Get PDF
    The early detection of relapse following primary surgery for non-small-cell lung cancer and the characterization of emerging subclones, which seed metastatic sites, might offer new therapeutic approaches for limiting tumour recurrence. The ability to track the evolutionary dynamics of early-stage lung cancer non-invasively in circulating tumour DNA (ctDNA) has not yet been demonstrated. Here we use a tumour-specific phylogenetic approach to profile the ctDNA of the first 100 TRACERx (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy (Rx)) study participants, including one patient who was also recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and analyse the tumour-volume detection limit. Through blinded profiling of postoperative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients who are very likely to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies

    Complement lectin pathway activation is associated with COVID-19 disease severity, independent of MBL2 genotype subgroups

    Get PDF
    IntroductionWhile complement is a contributor to disease severity in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, all three complement pathways might be activated by the virus. Lectin pathway activation occurs through different pattern recognition molecules, including mannan binding lectin (MBL), a protein shown to interact with SARS-CoV-2 proteins. However, the exact role of lectin pathway activation and its key pattern recognition molecule MBL in COVID-19 is still not fully understood.MethodsWe therefore investigated activation of the lectin pathway in two independent cohorts of SARS-CoV-2 infected patients, while also analysing MBL protein levels and potential effects of the six major single nucleotide polymorphisms (SNPs) found in the MBL2 gene on COVID-19 severity and outcome.ResultsWe show that the lectin pathway is activated in acute COVID-19, indicated by the correlation between complement activation product levels of the MASP-1/C1-INH complex (p=0.0011) and C4d (p<0.0001) and COVID-19 severity. Despite this, genetic variations in MBL2 are not associated with susceptibility to SARS-CoV-2 infection or disease outcomes such as mortality and the development of Long COVID.ConclusionIn conclusion, activation of the MBL-LP only plays a minor role in COVID-19 pathogenesis, since no clinically meaningful, consistent associations with disease outcomes were noted

    Resilience of Faecal Microbiota in Stabled Thoroughbred Horses Following Abrupt Dietary Transition between Freshly Cut Pasture and Three Forage-Based Diets

    No full text
    The management of competition horses in New Zealand often involves rotations of short periods of stall confinement and concentrate feeding, with periods of time at pasture. Under these systems, horses may undergo abrupt dietary changes, with the incorporation of grains or concentrate feeds to the diet to meet performance needs, or sudden changes in the type of forage fed in response to a lack of fresh or conserved forage. Abrupt changes in dietary management are a risk factor for gastrointestinal (GI) disturbances, potentially due to the negative effects observed on the population of GI microbiota. In the present study, the faecal microbiota of horses was investigated to determine how quickly the bacterial communities; (1) responded to dietary change, and (2) stabilised following abrupt dietary transition. Six Thoroughbred mares were stabled for six weeks, consuming freshly cut pasture (weeks 1, 3 and 5), before being abruptly transitioned to conserved forage-based diets, both offered ad libitum. Intestinal markers were administered to measure digesta transit time immediately before each diet change. The conserved forage-based diets were fed according to a 3 × 3 Latin square design (weeks 2, 4 and 6), and comprised a chopped ensiled forage fed exclusively (Diet FE) or with whole oats (Diet FE + O), and perennial ryegrass hay fed with whole oats (Diet H + O). Faecal samples were collected at regular intervals from each horse following the diet changes. High throughput 16S rRNA gene sequencing was used to evaluate the faecal microbiota. There were significant differences in alpha diversity across diets (p < 0.001), and a significant effect of diet on the beta diversity (ANOSIM, p = 0.001), with clustering of samples observed by diet group. There were differences in the bacterial phyla across diets (p < 0.003), with the highest relative abundances observed for Firmicutes (62–64%) in the two diets containing chopped ensiled forage, Bacteroidetes (32–38%) in the pasture diets, and Spirochaetes (17%) in the diet containing hay. Major changes in relative abundances of faecal bacteria appeared to correspond with the cumulative percentage of intestinal markers retrieved in the faeces as the increasing amounts of digesta from each new diet transited the animals. A stable faecal microbiota profile was observed in the samples from 96 h after abrupt transition to the treatment diets containing ensiled chopped forage. The present study confirmed that the diversity and community structure of the faecal bacteria in horses is diet-specific and resilient following dietary transition and emphasised the need to have modern horse feeding management that reflects the ecological niche, particularly by incorporating large proportions of forage into equine diets
    corecore