1,410 research outputs found

    2D-3D registration of CT vertebra volume to fluoroscopy projection: A calibration model assessment (doi:10.1155/2010/806094)

    Get PDF
    This study extends a previous research concerning intervertebral motion registration by means of 2D dynamic fluoroscopy to obtain a more comprehensive 3D description of vertebral kinematics. The problem of estimating the 3D rigid pose of a CT volume of a vertebra from its 2D X-ray fluoroscopy projection is addressed. 2D-3D registration is obtained maximising a measure of similarity between Digitally Reconstructed Radiographs (obtained from the CT volume) and real fluoroscopic projection. X-ray energy correction was performed. To assess the method a calibration model was realised a sheep dry vertebra was rigidly fixed to a frame of reference including metallic markers. Accurate measurement of 3D orientation was obtained via single-camera calibration of the markers and held as true 3D vertebra position; then, vertebra 3D pose was estimated and results compared. Error analysis revealed accuracy of the order of 0.1 degree for the rotation angles of about 1?mm for displacements parallel to the fluoroscopic plane, and of order of 10?mm for the orthogonal displacement.<br/

    Validation of driving behaviour as a step towards the investigation of Connected and Automated Vehicles by means of driving simulators

    Get PDF
    Connected and Automated Vehicles (CAVs) are likely to become an integral part of the traffic stream within the next few years. Their presence is expected to greatly modify mobility behaviours, travel demands and habits, traffic flow characteristics, traffic safety and related external impacts. Tools and methodologies are needed to evaluate the effects of CAVs on traffic streams, as well as the impact on traffic externalities. This is particularly relevant under mixed traffic conditions, where human-driven vehicles and CAVs will interact. Understanding technological aspects (e.g. communication protocols, control algorithms, etc.) is crucial for analysing the impact of CAVs, but the modification induced in human driving behaviours by the presence of CAVs is also of paramount importance. For this reason, the definition of appropriate CAV investigations methods and tools represents a key (and open) issue. One of the most promising approaches for assessing the impact of CAVs is operator in the loop simulators, since having a real driver involved in the simulation represents an advantageous approach. However, the behaviour of the driver in the simulator must be validated and this paper discusses the results of some experiments concerning car-following behaviour. These experiments have included both driving simulators and an instrumented vehicle, and have observed the behaviours of a large sample of drivers, in similar conditions, in different experimental environments. Similarities and differences in driver behaviour will be presented and discussed with respect to the observation of one important quantity of car-following, the maintained spacing

    Revealing Hidden Hierarchical Heavy Hitters in network traffic

    Get PDF
    © 2018 Association for Computing Machinery. The idea to enable advanced in-network monitoring functionality has been lately fostered by the advent of massive data-plane programmability. A specific example includes the detection of traffic aggregates with programmable switches, i.e., heavy hitters. So far, proposed solutions implement the mining process by partitioning the network stream in disjoint windows. This practice allows efficient implementations but comes at a well-known cost: the results are tightly coupled with the traffic and window's characteristics. This poster quantifies the limitations of disjoint time windows approaches by showing that they hardly cope with traffic dynamics. We report the results of our analysis and unveil that up to 34% of the total number of the hierarchical heavy hitters might not be detected with those approaches. This is a call for a new set of windowless-based algorithms to be implemented with the match-action paradigm

    The challenge of perioperative pain management in opioid-tolerant patients

    Get PDF
    The increasing number of opioid users among chronic pain patients, and opioid abusers among the general population, makes perioperative pain management challenging for health care professionals. Anesthesiologists, surgeons, and nurses should be familiar with some pharmacological phenomena which are typical of opioid users and abusers, such as tolerance, physical dependence, hyperalgesia, and addiction. Inadequate pain management is very common in these patients, due to common prejudices and fears. The target of preoperative evaluation is to identify comorbidities and risk factors and recognize signs and symptoms of opioid abuse and opioid withdrawal. Clinicians are encouraged to plan perioperative pain medications and to refer these patients to psychiatrists and addiction specialists for their evaluation. The aim of this review was to give practical suggestions for perioperative management of surgical opioid-tolerant patients, together with schemes of opioid conversion for chronic pain patients assuming oral or transdermal opioids, and patients under maintenance programs with methadone, buprenorphine, or naltrexone

    A Novel Broadband Forcecardiography Sensor for Simultaneous Monitoring of Respiration, Infrasonic Cardiac Vibrations and Heart Sounds

    Get PDF
    The precordial mechanical vibrations generated by cardiac contractions have a rich frequency spectrum. While the lowest frequencies can be palpated, the higher infrasonic frequencies are usually captured by the seismocardiogram (SCG) signal and the audible ones correspond to heart sounds. Forcecardiography (FCG) is a non-invasive technique that measures these vibrations via force sensing resistors (FSR). This study presents a new piezoelectric sensor able to record all heart vibrations simultaneously, as well as a respiration signal. The new sensor was compared to the FSR-based one to assess its suitability for FCG. An electrocardiogram (ECG) lead and a signal from an electro-resistive respiration band (ERB) were synchronously acquired as references on six healthy volunteers (4 males, 2 females) at rest. The raw signals from the piezoelectric and the FSR-based sensors turned out to be very similar. The raw signals were divided into four components: Forcerespirogram (FRG), Low-Frequency FCG (LF-FCG), High-Frequency FCG (HF-FCG) and heart sounds (HS-FCG). A beat-by-beat comparison of FCG and ECG signals was carried out by means of regression, correlation and Bland–Altman analyses, and similarly for respiration signals (FRG and ERB). The results showed that the infrasonic FCG components are strongly related to the cardiac cycle (R2 > 0.999, null bias and Limits of Agreement (LoA) of ± 4.9 ms for HF-FCG; R2 > 0.99, null bias and LoA of ± 26.9 ms for LF-FCG) and the FRG inter-breath intervals are consistent with ERB ones (R2 > 0.99, non-significant bias and LoA of ± 0.46 s). Furthermore, the piezoelectric sensor was tested against an accelerometer and an electronic stethoscope: synchronous acquisitions were performed to quantify the similarity between the signals. ECG-triggered ensemble averages (synchronized with R-peaks) of HF-FCG and SCG showed a correlation greater than 0.81, while those of HS-FCG and PCG scored a correlation greater than 0.85. The piezoelectric sensor demonstrated superior performances as compared to the FSR, providing more accurate, beat-by-beat measurements. This is the first time that a single piezoelectric sensor demonstrated the ability to simultaneously capture respiration, heart sounds, an SCG-like signal (i.e., HF-FCG) and the LF-FCG signal, which may provide information on ventricular emptying and filling events. According to these preliminary results the novel piezoelectric FCG sensor stands as a promising device for accurate, unobtrusive, long-term monitoring of cardiorespiratory functions and paves the way for a wide range of potential applications, both in the research and clinical fields. However, these results should be confirmed by further analyses on a larger cohort of subjects, possibly including also pathological patients

    Assessing safety functionalities in the design and validation of driving automation

    Get PDF
    This paper aims to contribute to the comprehensive and systematic safety assessment of Automated Driving Systems (ADSs) by identifying unknown hazardous areas of operation. The current methodologies employed in this domain typically involve estimating the distributions of situational variables based on human-centered field test, crash databases, or expert knowledge of critical values. However, due to the lack of a-priori knowledge regarding the influential factors, their critical ranges, and their distributions, these approaches may not be entirely suitable for the assessment of emerging automated driving technologies. To deal with this challenging problem, here we propose a testing methodology incorporating realistic yet unobserved driving conditions, distinguished by numerous situational variables, so to encompass unknown unsafe conditions comprehensively. Our methodology utilizes stochastic simulation and uncertainty modeling techniques to account for the variability of realistic driving conditions and their impact on ADSs' performances. By doing so, we aim to identify unsafe operational regions and triggering conditions that can lead to hazardous behaviors, thus improving the development and safety of automated driving functions. For our purposes, the Latin Hypercube Sampling technique and the recently proposed PAWN density-based sensitivity analysis method are employed. We apply this methodology for the first time in the specific field of ADSs design and validation, using an exemplificative use case. We discuss and compare the results obtained from our approach with those obtained from a traditional approach

    Smart roads e testing di veicoli autonomi

    Get PDF
    Opportunità e criticità relative alla guida autonoma e connesso ed alla realizzazione delle Smart Roa

    GRP78 Mediates Cell Growth and Invasiveness in Endometrial Cancer.

    Get PDF
    Abstract Recent studies have indicated that endoplasmic reticulum stress, the unfolded protein response activation and altered GRP78 expression can play an important role in a variety of tumors development and progression. Very recently we reported for the first time that GRP78 is increased in endometrial tumors. However, whether GRP78 could play a role in the growth and/or invasiveness of endometrial cancer cells is still unknown. Here we report that the silencing of GRP78 expression affects both cell growth and invasiveness of Ishikawa and AN3CA cells, analyzed by the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) and transwell migration assay, respectively. At variance with Ishikawa cells, AN3CA cells showed, besides an endoplasmic reticulum, also a plasma membrane GRP78 localization, evidenced by both immunofluorescence and cell membrane biotinylation experiments. Intriguingly, flow cytometry experiments showed that the treatment with a specific antibody targeting GRP78 C-terminal domain caused apoptosis in AN3CA but not in Ishikawa cells. Induction of apoptosis in AN3CA cells was not mediated by the p53 pathway activation but was rather associated to reduced AKT phosphorylation. Interestingly, immunofluorescence analysis evidenced that endometrioid adenocarcinoma tissues displayed, similarly to AN3CA cells, also a GRP78 plasma membrane localization. These data suggest that GRP78 and its plasma membrane localization, might play a role in endometrial cancer development and progression and might constitute a novel target for the treatment of endometrial cancer
    corecore