761 research outputs found

    Off-plane motion of an oblate capsule in a simple shear flow

    Get PDF
    This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.We investigate the mechanical equilibrium state of an oblate capsule when its revolution axis is initially off the shear plane. We consider an oblate capsule with an aspect ratio of 0.5 and a strain-hardening membrane. The three-dimensional fluid-structure interaction problem is solved numerically by coupling a finite element method with a boundary integral method. The capsule converges towards the same mechanical equilibrium state whatever the initial orientation. This equilibrium depends on the capillary number Ca, which compares the viscous to the elastic forces and on the viscosity ratio between the internal and external fluids. For = 1, the tumbling and swinging motions, observed when the revolution axis is initially in the shear plane, are mechanically stable until Ca 1; when Ca is further increased, the capsule assumes the rolling motion that is observed when its revolution axis is initially aligned with the vorticity axis. When is increased, the tumbling-to-swinging transition appears for higher Ca and the swinging-to-rolling transition for lower Ca. For 5, the swinging regime completely disappears: depending on Ca, it is then either the tumbling or the rolling motion that is the mechanical equilibrium state

    Optical Tests of a 3.7-m diameter Liquid Mirror: Behavior under External Perturbations

    Full text link
    We have built and tested a 3.7-m diameter liquid mirror that rotates on a ball bearing. We have carried out extensive optical tests. We find that although the ball bearing has a poor quality, the quality of the mirror, with mercury layers 1-mm thick, is surprisingly good. Taken at face values the instantaneous Strehl ratios indicate a mirror, that is not quite diffraction limited but usable for astronomical applications. However, the large coning error of the bearing (1.5 arcseconds P-V) induces an excessive wobble, considerably worsening the time averaged PSF. The most interesting result of the interferometry is that we do not see any evidence of the strong astigmatism that may have been expected from Coriolis forces.Comment: PDF format, 34 pages, 12 figures, (some figures reduced, full size figures in Applied Optics, Vol. 39, No 36, 5651

    Online fabrication and characterization of capsule populations with a flow-focusing microfluidic system

    Get PDF
    This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.We have designed a microfluidic system that combines a double flow-focusing setup for calibrated capsule fabrication with a microchannel for the characterization of their mechanical properties. The double flow-focusing system consists of a first Y junction to create the microdroplets and of a second Y junction to introduce the cross-linking agent allowing the membrane formation. The human serum albumin (HSA) aqueous solution for the dispersed solution, hydrophobic phase for the continuous solution and cross-linking agent solution are introduced by means of syringe pumps. A wavy channel after the second junction allows to control the reticulation time. A cylindrical microchannel then enables to deform and characterize the capsules formed. The mechanical properties of the capsule membrane are obtained by inverse analysis (Chu et al. 2011). The results show that the drop size increases with the flow rate ratio between the central and lateral channels and does not change much regardless of the flow rate of the reticulation phase. The mean shear modulus of the capsules fabricated after 23 s of reticulation is of the order of the surface tension of HSA solution with Dragoxat indicating that the reticulation time is too short to form an elastic membrane around the droplet. When the reticulation time is increased to 60 s, the membrane shear modulus is multiplied by a factor of 3 confirming that a solid membrane has formed around the drop

    Wrinkling of microcapsules in shear flow

    Full text link
    Elastic capsules can exhibit short wavelength wrinkling in external shear flow. We analyse this instability of the capsule shape and use the length scale separation between the capsule radius and the wrinkling wavelength to derive analytical results both for the threshold value of the shear rate and for the critical wave-length of the wrinkling. These results can be used to deduce elastic parameters from experiments.Comment: 4 pages, 2 figures, submitted to PR

    Coupling boundary integral and shell finite element methods to study the fluid structure interactions of a microcapsule in a simple shear flow

    Get PDF
    International audienceWe simulate the motion of an initially spherical capsule in a simple shear flow in order to determine the influence of the bending resistance on the formation of wrinkles on the membrane. The fluid structure interactions are obtained numerically coupling a boundary integral method to solve for the Stokes equation with a nonlinear finite element method for the capsule wall mechanics. The capsule wall is discretized with MITC linear triangular shell finite elements. We find that, at low flow strength, buckling occurs in the central region of the capsule. The number of wrinkles on the membrane decreases with the bending stiffness and, above a critical value, wrinkles no longer form. For thickness to radius ratios below 5%, the bending stiffness does not have any significant effect on the overall capsule motion and deformation. The mean capsule shape is identical whether the wall is modeled as a shell or a two-dimensional membrane, which shows that the dynamics of thin capsules is mainly governed by shear elasticity and membrane effects

    Motion of a spherical capsule in simple shear flow: influence of the bending resistance

    Get PDF
    National audienceWe simulate the motion of an initially spherical capsule in a simple shear flow in order to determine the influence of the bending resistance on wrinkle formation on the membrane. We use a numerical method coupling a nonlinear shell finite element method for the capsule wall mechanics with a boundary integral method to solve the Stokes equation. The capsule wall is discretized with MITC linear triangular shell finite elements. We find that, at low flow strength, buckling occurs in the central region of the capsule. The number of wrinkles on the membrane decreases with the bending stiffness and above a critical value, wrinkles no longer form. For thickness to radius ratios below 5%, the bending stiffness does not have any significant effect on the overall capsule motion and deformation. The mean capsule shape is identical whether the wall is modeled as a shell or a two-dimensional membrane, which shows that the dynamics of thin capsules is mainly governed by shear elasticity and membrane effects

    Optimal design of hydraulic capsule pipelines transporting spherical capsules

    Get PDF
    Scarcity of fossil fuels is affecting efficiency of established modes of cargo transport within transportation industry. Extensive research is being carried out on improving efficiency of existing modes of cargo transport, as well as to develop alternative means of transporting goods. One such alternative method can be through the use of energy contained within fluid flowing in pipelines in order to transfer goods from one place to another. The present study focuses on the use of advanced numerical modelling tools to simulate the flow within Hydraulic Capsule Pipelines (HCPs) transporting Spherical Capsules with an aim of developing design equations. Hydraulic Capsule Pipeline is the term which refers to the transport of goods in hollow containers, typically of spherical or cylindrical shapes, termed as capsules, being carried along the pipeline by water. HCPs are being used in mineral industries and have potential for use in Oil & Gas sector. A novel modelling technique has been employed to carry out the investigations under various geometric and flow conditions within HCPs. Both qualitative and quantitative flow analysis has been carried out on the flow of spherical shaped capsules in an HCP for both on-shore and off-shore applications. Furthermore, based on Least-Cost Principle, an optimisation methodology has been developed for the design of single stage HCPs. The input to the optimisation model is the solid throughput required from the system, and the outputs are the optimal diameter of the HCPs and the pumping requirements for the capsule transporting system
    corecore