465 research outputs found

    Linkage and association analysis of GAW15 simulated data: fine-mapping of chromosome 6 region

    Get PDF
    We performed linkage and family-based association analysis across chromosomes 1–22 in Replicates 1–5 of the Genetic Analysis Workshop 15 simulated data. Linkage analysis was performed using the Kong and Cox allele-sharing test as implemented in the program Merlin. Association analysis was performed using the transmission/disequilibrium test (TDT). A region on chromosome 6 was consistently highlighted as showing significant linkage to and association with the disease trait. We focused in on this region and performed fine-mapping using stepwise regression approaches using the case/control and family-based data. In this region, we also applied several new methods, implemented in the computer programs LAMP and Graphminer, respectively, that have recently been proposed for association analysis with family and/or case/control data. All methods confirmed the highly significant associations previously observed. Differentiating between potentially causal single nucleotide polymorphisms (SNPs) and other non-causal loci (associated with disease merely due to linkage disequilibrium) proved to be problematic. However, in most replicates we did identify two SNPs (either SNPs 3437 and 3439 from the dense SNP set, or SNPs 153 and 3437 from the combined non-dense/dense SNP set) that together explain most of the observed disease association in the DR/C locus region, and an additional SNP (3931 or 3933) that accounts for the association 5 cM away at locus D

    Does α-synuclein have a dual and opposing effect in preclinical vs. clinical Parkinson's disease?

    Get PDF
    Abstractα-Synuclein gene (SNCA) multiplications cause familial parkinsonism and allele-length polymorphisms within the SNCA dinucleotide repeat REP1 increase the risk for developing Parkinson's disease (PD). Since SNCA multiplications increase SNCA expression, and REP1 genotypes that increase the risk of developing PD show increased SNCA expression in cell-culture systems, animal models, and human blood and brain, PD therapies seek to reduce SNCA expression. We conducted an observational study of 1098 PD cases to test the hypothesis that REP1 genotypes correlated with reduced SNCA expression are associated with better motor and cognitive outcomes. We evaluated the association of REP1 genotypes with survival free of Hoehn and Yahr stages 4 or 5 (motor outcome) and of Modified Telephone Interview for Cognitive Status score ≤27 or Alzheimer's Disease Dementia Screening Interview score ≥2 (cognitive outcome). Median disease duration at baseline was 3.3 years and median lag time from baseline to follow-up was 7.8 years. Paradoxically, REP1 genotypes associated with increased risk of developing PD and increased SNCA expression were associated with better motor (HR = 0.87, p = 0.046, covariate-adjusted age-scale analysis; HR = 0.85, p = 0.020, covariate-adjusted time-scale analysis) and cognitive outcomes (HR = 0.90, p = 0.12, covariate-adjusted age-scale analysis; HR = 0.85, p = 0.023, covariate-adjusted time-scale analysis). Our findings raise the possibility that SNCA has a dual, opposing, and time-dependent role. This may have implications for the development of therapies that target SNCA expression

    Molecular Mechanism of Capacitative Calcium Entry Deficits in Familial Alzheimer’s Disease

    Get PDF
    Poster PresentationPresenilin (PS) is the catalytic subunit of the gamma-secretase which is responsible for the cleavage of amyloid precursor protein to form beta amyloid (Aβ). Mutations in PS associated with familial Alzheimer’s disease (FAD) increase the Aβ plaques formation in the brain and cause neurodegeneration. Apart from this, FAD-linked PS mutations have been demonstrated to disrupt intracellular calcium (Ca2+) regulation. Accumulating evidence suggests that Ca2+ disruption may play a proximal role in the AD pathogenesis. Mutant PS exaggerated Ca2+ release from the endoplasmic reticulum (ER). It also attenuated Ca2+ entry through the capacitative Ca2+ entry (CCE) pathway, yet, the mechanism is not fully understood. Using a human neuroblast cell line SH-SY5Y and Ca2+ imaging technique, we observed CCE deficits in FAD-linked PS1-M146L retroviral infected cell. The attenuation of CCE in PS1 mutant cells was not mediated by the down-regulation of STIM1 and Orai1 expression, the known essential molecular players in the CCE pathway. Instead, we identified a molecular interaction between PS and STIM1 proteins by immunoprecipitation. On the other hand, immunofluorescence staining showed a significant reduction in puncta formation after ER Ca2+ depleted by thapsigargin in cells infected with PS1-M146L as compared to the wild type PS1 infected cells. Taken together, our results suggest a molecular mechanism for the CCE deficits in FAD associated with PS1 mutations. The interaction of mutant PS1 with STIM1 exerts a negative impact on its oligomerization and/or its interaction with Orai1. Our results may suggest molecular targets for the development of therapeutic agents that help to treat the disease.published_or_final_versio

    Polygenic risk scores for major depressive disorder and neuroticism as predictors of antidepressant response:Meta-analysis of three treatment cohorts

    Get PDF
    There are currently no reliable approaches for correctly identifying which patients with major depressive disorder (MDD) will respond well to antidepressant therapy. However, recent genetic advances suggest that Polygenic Risk Scores (PRS) could allow MDD patients to be stratified for antidepressant response. We used PRS for MDD and PRS for neuroticism as putative predictors of antidepressant response within three treatment cohorts: The Genome-based Therapeutic Drugs for Depression (GENDEP) cohort, and 2 sub-cohorts from the Pharmacogenomics Research Network Antidepressant Medication Pharmacogenomics Study PRGN-AMPS (total patient number = 760). Results across cohorts were combined via meta-analysis within a random effects model. Overall, PRS for MDD and neuroticism did not significantly predict antidepressant response but there was a consistent direction of effect, whereby greater genetic loading for both MDD (best MDD result, p < 5*10–5 MDD-PRS at 4 weeks, β = -0.019, S.E = 0.008, p = 0.01) and neuroticism (best neuroticism result, p < 0.1 neuroticism-PRS at 8 weeks, β = -0.017, S.E = 0.008, p = 0.03) were associated with less favourable response. We conclude that the PRS approach may offer some promise for treatment stratification in MDD and should now be assessed within larger clinical cohorts
    • …
    corecore