2,138 research outputs found

    The appearance, motion, and disappearance of three-dimensional magnetic null points

    Get PDF
    N.A.M. acknowledges support from NASA grants NNX11AB61G, NNX12AB25G, and NNX15AF43G; NASA contract NNM07AB07C; and NSF SHINE grants AGS-1156076 and AGS-1358342 to SAO. C.E.P. acknowledges support from the St Andrews 2013 STFC Consolidated grant.While theoretical models and simulations of magnetic reconnection often assume symmetry such that the magnetic null point when present is co-located with a flow stagnation point, the introduction of asymmetry typically leads to non-ideal flows across the null point. To understand this behavior, we present exact expressions for the motion of three-dimensional linear null points. The most general expression shows that linear null points move in the direction along which the magnetic field and its time derivative are antiparallel. Null point motion in resistive magnetohydrodynamics results from advection by the bulk plasma flow and resistive diffusion of the magnetic field, which allows non-ideal flows across topological boundaries. Null point motion is described intrinsically by parameters evaluated locally; however, global dynamics help set the local conditions at the null point. During a bifurcation of a degenerate null point into a null-null pair or the reverse, the instantaneous velocity of separation or convergence of the null-null pair will typically be infinite along the null space of the Jacobian matrix of the magnetic field, but with finite components in the directions orthogonal to the null space. Not all bifurcating null-null pairs are connected by a separator. Furthermore, except under special circumstances, there will not exist a straight line separator connecting a bifurcating null-null pair. The motion of separators cannot be described using solely local parameters because the identification of a particular field line as a separator may change as a result of non-ideal behavior elsewhere along the field line.Publisher PDFPeer reviewe

    Orbital selective Mott transition in multi-band systems: slave-spin representation and dynamical mean-field theory

    Full text link
    We examine whether the Mott transition of a half-filled, two-orbital Hubbard model with unequal bandwidths occurs simultaneously for both bands or whether it is a two-stage process in which the orbital with narrower bandwith localizes first (giving rise to an intermediate `orbital-selective' Mott phase). This question is addressed using both dynamical mean-field theory, and a representation of fermion operators in terms of slave quantum spins, followed by a mean-field approximation (similar in spirit to a Gutzwiller approximation). In the latter approach, the Mott transition is found to be orbital-selective for all values of the Coulomb exchange (Hund) coupling J when the bandwidth ratio is small, and only beyond a critical value of J when the bandwidth ratio is larger. Dynamical mean-field theory partially confirms these findings, but the intermediate phase at J=0 is found to differ from a conventional Mott insulator, with spectral weight extending down to arbitrary low energy. Finally, the orbital-selective Mott phase is found, at zero-temperature, to be unstable with respect to an inter-orbital hybridization, and replaced by a state with a large effective mass (and a low quasiparticle coherence scale) for the narrower band.Comment: Discussion on the effect of hybridization on the OSMT has been extende

    Neutrino Fluxes from Active Galaxies: a Model-Independent Analysis

    Full text link
    There are tantalizing hints that jets, powered by supermassive black holes at the center of active galaxies, are true cosmic proton accelerators. They produce photons of TeV energy, possible higher, and may be the enigmatic source of the highest energy cosmic rays. Photoproduction of neutral pions by accelerated protons on UV light is the source of the highest energy photons, in which most of the bolometric luminosity of the galaxy may be emitted. The case that proton beams power active galaxies is, however, far from conclusive. Neutrinos from the decay of charged pions represent an uncontrovertible signature for the proton induced cascades. We show that their flux can be estimated by model-independent methods, based on dimensional analysis and textbook particle physics. Our calculations also demonstrate why different models for the proton blazar yield very similar results for the neutrino flux, consistent with the ones obtained here.Comment: Latex 2.09 with epsf.sty. 12 pages, 2 postscript figures. Compressed postscript version of paper with figures also available soon at http://phenom.physics.wisc.edu/pub/preprints/1997/madph-97-982.ps.Z or at ftp://phenom.physics.wisc.edu/pub/preprints/1997/madph-97-982.ps.

    The Origin of Galactic Cosmic Rays

    Get PDF
    Motivated by recent measurements of the major components of the cosmic radiation around 10 TeV/nucleon and above, we discuss the phenomenology of a model in which there are two distinct kinds of cosmic ray accelerators in the galaxy. Comparison of the spectra of hydrogen and helium up to 100 TeV per nucleon suggests that these two elements do not have the same spectrum of magnetic rigidity over this entire region and that these two dominant elements therefore receive contributions from different sources.Comment: To be published in Physical Review D, 13 pages, with 3 figures, uuencode

    Cluster magnetic fields from large-scale-structure and galaxy-cluster shocks

    Get PDF
    The origin of the micro-Gauss magnetic fields in galaxy clusters is one of the outstanding problem of modern cosmology. We have performed three-dimensional particle-in-cell simulations of the nonrelativistic Weibel instability in an electron-proton plasma, in conditions typical of cosmological shocks. These simulations indicate that cluster fields could have been produced by shocks propagating through the intergalactic medium during the formation of large-scale structure or by shocks within the cluster. The strengths of the shock-generated fields range from tens of nano-Gauss in the intercluster medium to a few micro-Gauss inside galaxy clusters.Comment: 4 pages, 2 color figure

    Renormalized spin coefficients in the accumulated orbital phase for unequal mass black hole binaries

    Get PDF
    We analyze galactic black hole mergers and their emitted gravitational waves. Such mergers have typically unequal masses with mass ratio of the order 1/10. The emitted gravitational waves carry the inprint of spins and mass quadrupoles of the binary components. Among these contributions, we consider here the quasi-precessional evolution of the spins. A method of taking into account these third post-Newtonian (3PN) effects by renormalizing (redefining) the 1.5 PN and 2PN accurate spin contributions to the accumulated orbital phase is developed.Comment: 10 pages, to appear in Class. Quantum Grav. GWDAW13 Proceedings Special Issue, v2: no typos conjectur

    A Physical Limit to the Magnetic Fields of T Tauri Stars

    Get PDF
    Recent estimates of magnetic field strengths in T Tauri stars yield values B=1B=1--4kG4\,{\rm kG}. In this paper, I present an upper limit to the photospheric values of BB by computing the equipartition values for different surface gravities and effective temperatures. The values of BB derived from the observations exceed this limit, and I examine the possible causes for this discrepancy
    corecore