1,844 research outputs found

    How occasional backstepping can speed up a processive motor protein

    Get PDF
    Fueled by the hydrolysis of ATP, the motor protein kinesin literally walks on two legs along the biopolymer microtubule. The number of accidental backsteps that kinesin takes appears to be much larger than what one would expect given the amount of free energy that ATP hydrolysis makes available. This is puzzling as more than a billion years of natural selection should have optimized the motor protein for its speed and efficiency. But more backstepping allows for the production of more entropy. Such entropy production will make free energy available. With this additional free energy, the catalytic cycle of the kinesin can be speeded up. We show how measured backstep percentages represent an optimum at which maximal net forward speed is achieved.Comment: LaTeX, 5 pages, 3 figure

    Liquid-liquid interfacial tension of electrolyte solutions

    Full text link
    It is theoretically shown that the excess liquid-liquid interfacial tension between two electrolyte solutions as a function of the ionic strength I behaves asymptotically as O(- I^0.5) for small I and as O(+- I) for large I. The former regime is dominated by the electrostatic potential due to an unequal partitioning of ions between the two liquids whereas the latter regime is related to a finite interfacial thickness. The crossover between the two asymptotic regimes depends sensitively on material parameters suggesting that, depending on the actual system under investigation, the experimentally accessible range of ionic strengths can correspond to either the small or the large ionic strength regime. In the limiting case of a liquid-gas surface where ion partitioning is absent, the image chage interaction can dominate the surface tension for small ionic strength I such that an Onsager-Samaras limiting law O(- I ln(I)) is expected. The proposed picture is consistent with more elaborate models and published measurements.Comment: Accepted for publication in Physical Review Letter

    Coordinating Humanitarian Entry in the United States and Mexico: A Bilateral Approach to U.S. Legal Migration

    Get PDF
    Mexico and the United States have stated a joint interest in reducing illegal immigration through Mexico to the U.S.-Mexican border. Both countries are signatories of the Los Angeles Declaration on Migration and Protection, which pledges a coordinated multilateral approach to addressing migration, and Mexico has worked with the United States on its enforcement efforts, accepting returns from the United States. One untapped area of potential coordination is in each nation's authorization for migrants to temporarily enter their countries for humanitarian reasons.Unfortunately, the lack of coordination has meant that many migrants travel through Mexico and congregate in northern Mexico near the U.S.-Mexican border to try to obtain humanitarian entry into the United States. A better approach would be for Mexico to issue cards for visitors for humanitarian reasons at the Guatemalan??Mexican border, allowing migrants to travel to Mexico City, where they could apply for U.S. parole and fly directly to the United States legally

    Stability of additive-free water-in-oil emulsions

    Full text link
    We calculate ion distributions near a planar oil-water interface within non-linear Poisson-Boltzmann theory, taking into account the Born self-energy of the ions in the two media. For unequal self-energies of cations and anions, a spontaneous charge separation is found such that the water and oil phase become oppositely charged, in slabs with a typical thickness of the Debye screening length in the two media. From the analytical solutions, the corresponding interfacial charge density and the contribution to the interfacial tension is derived, together with an estimate for the Yukawa-potential between two spherical water droplets in oil. The parameter regime is explored where the plasma coupling parameter exceeds the crystallization threshold, i.e. where the droplets are expected to form crystalline structures due to a strong Yukawa repulsion, as recently observed experimentally. Extensions of the theory that we discuss briefly include numerical calculations on spherical water droplets in oil, and analytical calculations of the linear PB-equation for a finite oil-water interfacial width.Comment: 9 pages, 4 figures, accepted by JPCM for proceedings of LMC

    Ion-channel-like behavior in lipid bilayer membranes at the melting transition

    Full text link
    It is well known that at the gel-liquid phase transition temperature a lipid bilayer membrane exhibits an increased ion permeability. We analyze the quantized currents in which the increased permeability presents itself. The open time histogram shows a "-3/2" power law which implies an open-closed transition rate that decreases like k(t)t1k(t) \propto t^{-1} as time evolves. We propose a "pore freezing" model to explain the observations. We discuss how this model also leads to the 1/fα1/f^{\alpha} noise that is commonly observed in currents across biological and artificial membranes.Comment: 5 pages, 4 figure

    Information and maximum power in a feedback controlled Brownian ratchet

    Full text link
    Closed-loop or feedback controlled ratchets are Brownian motors that operate using information about the state of the system. For these ratchets, we compute the power output and we investigate its relation with the information used in the feedback control. We get analytical expressions for one-particle and few-particle flashing ratchets, and we find that the maximum power output has an upper bound proportional to the information. In addition, we show that the increase of the power output that results from changing the optimal open-loop ratchet to a closed-loop ratchet also has an upper bound that is linear in the information.Comment: LaTeX, 6 pages, 4 figures, improved version to appear in Eur. Phys. J.

    Sellers of Cleveland Homes, 1988-1996 1998

    Get PDF

    Self diffusion of particles in complex fluids: temporary cages and permanent barriers

    Get PDF
    We study the self diffusion of individual particles in dense (non-)uniform complex fluids within dynamic density functional theory and explicitly account for their coupling to the temporally fluctuating background particles. Applying the formalism to rod-like particles in uniaxial nematic and smectic liquid crystals, we find correlated diffusion in different directions: The temporary cage formed by the neighboring particles competes with permanent barriers in periodic inhomogeneous systems such as the lamellar smectic state and delays self diffusion of particles even in uniform systems. We compare our theory with recent experimental data on the self diffusion of fluorescently labelled filamentous virus particles in aqueous dispersions in the smectic phase and find qualitative agreement. This demonstrates the importance of explicitly dealing with the time-dependent self-consistent molecular field that every particle experiences.Comment: submitte

    Spontaneous Charging and Crystallization of Water Droplets in Oil

    Full text link
    We study the spontaneous charging and the crystallization of spherical micron-sized water-droplets dispersed in oil by numerically solving, within a Poisson-Boltzmann theory in the geometry of a spherical cell, for the density profiles of the cations and anions in the system. We take into account screening, ionic Born self-energy differences between oil and water, and partitioning of ions over the two media. We find that the surface charge density of the droplet as induced by the ion partitioning is significantly affected by the droplet curvature and by the finite density of the droplets. We also find that the salt concentration and the dielectric constant regime in which crystallization of the water droplets is predicted is enhanced substantially compared to results based on the planar oil-water interface, thereby improving quantitative agreement with recent experiments.Comment: 10 pages, 7 figures, submitted for publicatio
    corecore