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We study self-diffusion in complex fluids within dynamic density functional theory and explicitly

account for the coupling to the fluctuating background. Applying the formalism to nematic and smectic

liquid crystals, we find the temporary cages formed by neighboring particles to compete with permanent

barriers in nonuniform systems, resulting in non-Gaussian diffusive motion that in different directions

becomes correlated. Qualitative agreement with recent experiments demonstrates the importance of

explicitly dealing with time-dependent self-consistent molecular fields.
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Phenomena such as multisite hopping in microstruc-
tures, void diffusion in colloidal crystals, dynamical het-
erogeneities of colloidal glasses, and the self-assembly of
micelles, supramolecular polymers, and viruses are strik-
ing examples of the intriguing dynamics of complex fluids,
whose understanding remains relatively rudimentary de-
spite intense research spanning many decades. The main
reason for this state of affairs presumably is an incomplete
understanding of temporal fluctuations of the fluid struc-
ture and how these couple to single-particle diffusive mo-
tion. To circumvent this problem, self-diffusion of particles
in locally or globally inhomogeneous fluids is therefore
often studied in a fixed background potential mimicking
the actual fluid structure but completely ignoring the in-
herently fluctuating nature of it [1].

It is the aim of this Letter to theoretically investigate the
influence of the local fluid structure and the temporally
fluctuating background on the self-diffusion in uniform and
nonuniform complex fluids. As a simple yet quite interest-
ing example, we apply our treatment, based on dynamical
density functional theory, to dispersions of elongated col-
loidal particles in uniaxial nematic and smectic liquid-
crystalline phases. In the former, the orientational degrees
of freedom are frozen out and in the latter also one posi-
tional degree of freedom. This allows us to compare our
theory with results of a very recent experimental study of
the unusual self-diffusion in aqueous dispersions of the
filamentous bacteriophage fd [2].

As we shall see, the local fluid structure forms a tempo-
rary cage around every test particle that initially hinders
its free self-diffusion but that decays at later times.
Remarkably, this temporal caging effect of the background
particles can produce a coupling between motion in differ-
ent directions, in particular, if the fluid is symmetry-
broken. Both these phenomena influence the self-diffusion
in structured fluids and cannot be accounted for by pre-
suming a fixed molecular background field. In fact, even if

a fluctuating molecular field is presumed, its effect can
only be predicted beyond the usual linear analysis of
density fluctuations; i.e., they are inherently nonlinear.
Focal point of our discussion are the van Hove correla-

tion functions that probe diffusive processes [3]. We gen-
eralize the formalism introduced for simple fluids in
Ref. [4]. The key idea is to define conditional densities
for which equations of motion can be prescribed [4] and
which are related to the well-known van Hove correlation
functions. The formalism, although applied here to
athermal systems, can be generalized readily to, say,
thermotropic liquid crystals within Landau–de Gennes
theory [5].
Consider an equilibrium fluid of N particles with arbi-

trary degrees of freedom x and define self (s) and distinct
(d) conditional densities as

Csðx; tjx0;0Þ :¼ 1

%ðx0Þ
�XN
n¼1

�ðx�XnðtÞÞ�ðx0�Xnð0ÞÞ
�
;

Cdðx;tjx0;0Þ :¼ 1

%ðx0Þ
�XN

n;n0¼1
n�n0

�ðx�XnðtÞÞ�ðx0 �Xn0 ð0ÞÞ
�
;

(1)

respectively, where h� � �i is the average taken over all
equilibrium trajectories, � the Dirac-� in configuration
space, XnðtÞ the configuration of particle n at time t, and
%ðx0Þ the one-particle equilibrium density at configuration
x0. The conditional densitiesCs;d and the van Hove self and

distinct correlation functions Gs;d [3] are related via

Gs;dð�x; tÞ ¼ 1

N

Z
dx0Cs;dðx0 þ�x; tjx0; 0Þ%ðx0Þ: (2)

According to Eq. (1), the conditional densities at zero time
t ¼ 0 read Csðx; 0jx0; 0Þ ¼ �ðx� x0Þ ¼: nlðx; 0Þ and
Cdðx; 0jx0; 0Þ ¼ %ðxÞgðx;x0Þ ¼: nuðx; 0Þ with g the pair
distribution function [3] and nl;u the one-particle equilib-
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rium densities of a fluid of one labeled (l) and N � 1
unlabeled (u) particles in which the labeled particle is fixed
in configuration x0. Upon releasing the fixed labeled test
particle at time t ¼ 0, the neighboring host fluid relaxes
towards a new equilibrium state, and it is assumed that
the time-dependent two-particle correlators Cs;dðx; tjx0; 0Þ
equal the one-particle densities nl;uðx; tÞ for all times

t � 0. This identification is reminiscent of Onsager’s re-
gression hypothesis and implies the fluctuation-dissipation
theorem to hold, which is strictly proven only within linear
response theory [6]. A free energy density functional
F½nl; nu� [7] describing the fluid automatically produces
the one-particle equilibrium density distribution % and the
pair distribution function g as well as expressions for the
local chemical potentials

�l;uðx; t; ½nl; nu�Þ :¼ �F

�nl;uðxÞ
��������nlð�;tÞ;nuð�;tÞ

(3)

that within a generalized Fickian approximation give rise
to the equations of motion [8]

@

@t
nl;uðx; tÞ ¼ rx � fnl;uðx; tÞ�ðx; t; ½nl; nu�Þ

� rx�l;uðx; t; ½nl; nu�Þg (4)

with � the mobility matrix. Note that Eq. (4) implies the
hypothesis of local equilibrium to hold and neglects hydro-
dynamic interactions, i.e., the free draining limit to effec-
tively hold. In dense systems, the latter presumption seems
reasonable due to screening of hydrodynamics. The mobi-
lities are then to be interpreted as renormalized ones.
Integrating this closed set of equations for nl;u subject to

the specified initial conditions and interpreting nl;u as

conditional densities Cs;d, one obtains the van Hove corre-

lation functions Gs;d from Eq. (2). For a uniform, simple

fluid, where the particles possess only translational de-
grees of freedom, x ¼ r, and the one-particle den-
sity % is spatially constant, the conditional densities
Cs;dðr; tjr0; 0Þ depend only on r� r0, so that Gs;dð�r; tÞ ¼
Cs;dð�r; tj0; 0Þ ¼ nl;uð�r; tÞ and Eqs. (3) and (4) can be

interpreted as equations of motion for the van Hove corre-
lation functions Gs;d and avoids having to explicitly deal

with kinetic equations for conditional densities that in
actual fact are two-point correlators. Note that the quanti-
ties called ‘‘van Hove functions’’ in Ref. [4] are actually
conditional densities, which, in general, differ from the
well-known van Hove correlation functions. The general
formalism described here is applicable to any nonuniform
or complex fluid and offers a route to analyze the relaxa-
tional dynamics of a wide range of interesting structured
fluids.

Motivated by the very recent measurements of the van
Hove self correlation function of aqueous solutions of the
bacteriophage fd [2], a filamentous virus particle of about
900 nm length and 7 nm width, we consider a free energy
functional F½nl; nu� describing a lyotropic liquid crystal of

(stiff) hard rods of length L and diameter D with L � D.
As the root-mean-squared angle between the axis of a rod
and the director scales as OðD=LÞ in this limit [9], the
orientational degrees of freedom can be ignored, so the
rods are assumed to be oriented parallel to the director,
which itself is assumed to be fixed. This means that the
model particles possess only translational and no orienta-
tional or internal conformational degrees of freedom such
as arising from a bending flexibility. For the free energy
density F½nl; nu�, we for reasons of simplicity invoke the
second virial approximation [10]. Although not accurate, it
is known to capture the main features of the structure of the
smectic phase near the nematic transition point, which
suffices for our purposes. Our model of perfectly parallel
hard rods is simple but not overly simple, as quantitative
precision is not required, and the neglect of features such as
particle flexibility, higher virial terms, or (screened) hydro-
dynamic interaction can in principle be accounted for by
renormalization of the model parameters. The bare trans-
lational mobilities �k and �? parallel and perpendicular to

the director give rise to the parallel translational diffusion

time � :¼ �L2=�k and the diffusion rate ratio � :¼ �?=D2

�k=L2 .

We calculated the van Hove correlation functions
Gs;dðz; r; tÞ as a function of the parallel displacement z,
the perpendicular displacement r, and the time t. Results
for the largely arbitrary but definitely representative choice
of parameters � ¼ 1 (representing fast radial diffusion)
and � ¼ 10�4 (slow radial diffusion) for the three cases
of a nematic state N at a chemical potential ��� ¼
�0:388 relative to that at the nematic-smectic transition,
a weakly smectic state S1 with ��� ¼ 0:612, i.e., at a
density just above the smectic transition, and a strongly
smectic state S2 with ��� ¼ 2:612 are shown in
Figs. 1–3. In passing, we note that parallel diffusion be-
comes independent of the parameter � if � � 1, because
perpendicular relaxation is then much faster than parallel
relaxation according to our numerical results. The inter-
layer distances of the smectic phases within the present
model are 1:4L for S1 and 1:3L for S2; these values would
be somewhat smaller had we included particle flexibility
[11] and higher virial terms [10].
The radially integrated van Hove self correlation func-

tions Gsðz; tÞ :¼ 2�
R1
0 drrGsðz; r; tÞ presented in Fig. 1

exhibit a spatial broadening due to self-diffusion, which is
slower the larger the background potential barrier height is.
Whereas Gsðz; tÞ is a concave function of z for the nematic
state N for all times t, shoulder peaks develop in the
smectic states S1 and S2 located at the centers of the
smectic layers in accord with the experimental findings
of Ref. [2]. These peaks are the manifestation of the
existence of the average self-consistent field due to the
equilibrium one-particle density. The curves of the nematic
state and the envelopes to the curves of the smectic states
are not Gaussians [see Fig. 3(b)] because of the influence
of the background fluid that cages the test particle. Upon
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approaching the nematic-smectic phase transition from the
high-density, smectic side, we found an increase of the
time that it takes for the first shoulder peak to appear [see
also the curves t ¼ 0:3� in Figs. 1(b) and 1(c)]. This we
attribute to influence of the critical slowing down of the
collective dynamics of the host fluid when nearing the
smectic spinodal. This may well explain the absence of
shoulder peaks in Fig. 2b of Ref. [2] presuming that this
time exceeds the time of measurement.

Figure 2 shows the time-evolution of the structure of the
fluid background for the nematic and the smectic phase in
terms of the van Hove distinct correlation function
Gdðz; r; tÞ. The initial van Hove distinct correlation func-
tion Gdðz; r; t ¼ 0Þ coincides with the pair distribution
function and the nearest-neighbor (solvation) shell in the
vicinity of the origin corresponds to a cage around the
labeled test particle. This cage initially slows down the
self-diffusion of the labeled test particle, but it dissolves
with time. Eventually, the labeled particle diffuses effec-
tively only in the permanent background of the unlabeled
particles. The presence of the temporary cage that adds to

the permanent equilibrium background barriers between
the particle layers is a direct consequence of the local fluid
structure, which cannot be accounted for by fixed back-
ground models as in Ref. [1]. For � ¼ 1, the relaxation of
Gdðz; r; tÞ, i.e., the decay of the temporary cage, takes place
on a time scale of the diffusion time �. If the perpendicular
diffusion is strongly suppressed, e.g., for � ¼ 10�4, this
relaxation takes place on a larger time scale, indicating that
the dissolution of the temporary cage is linked to the
perpendicular diffusion. Hence, the time-dependent fluid
background mediates a coupling between parallel and
perpendicular self-diffusion.
The influence of the fluid structure on the self-diffusion

of individual test particles can be inferred from Fig. 3 that
shows our results for their mean-squared displacement hz2i
along the director of the fluids and for the Binder cumulant
U :¼ hz4i=ð3hz2i2Þ � 1, which quantifies deviations from
Gaussian behavior [1], where hzki :¼ R

dzzkGsðz; tÞ. The

FIG. 2. Cuts of the van Hove distinct correlation function
Gdðz; r; tÞ as a function of the axial displacement z in units of
the rod length L, the radial displacement r in units of the rod
diameter D, and time t in units of the diffusion time � for
diffusion rate ratio � ¼ 1 for (a), (c) the nematic state N and
(b), (d) the weakly smectic state S1. The corresponding curves
for the strongly smectic state S2 are similar to those in (b), (d).
The thin vertical lines in (b) indicate the centers of the smectic
layers.

FIG. 1. Radially integrated van Hove self-correlation function
Gsðz; tÞ as a function of the axial displacement z in units of the
rod length L and time t in units of the diffusion time � for
diffusion rate ratio � ¼ 1 for (a) the nematic state N, (b) the
weakly smectic state S1, and (c) the strongly smectic state S2.
The thin vertical lines in (b) and (c) indicate the centers of the
smectic layers.
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significant difference between results obtained within fixed
background models [1] and our fluid background model
highlight the importance of the temporal nature of fluid
structure in general and of the sideways diffusion in the
intermediate-time regime of uniaxial fluids in particular.
For spatially homogeneous as well as spatially inhomoge-
neous states, caging causes diffusion initially to be slowed
down giving rise to a nonvanishing Binder cumulant. The
crossover from early- to late-stage diffusive motion of test
particles in a congested fluid causes this deviation from
Gaussian behavior and can be linked to potential barriers
that can be temporary or fixed. In either case, they are due
to correlations between particles in the fluid that cannot
reasonably be described by a fixed potential. Our calcula-
tions show that in the crossover region, subdiffusive be-
havior may be inferred over a limited time range, as done in
Ref. [2]. The slowing down of fd virus particle diffusion in
the smectic phase was rationalized in Ref. [2] by consid-
erations involving a fixed periodic molecular field only. In
our view, this does not do justice to the complexity of the
problem that involves a coupling of between-layer and in-

layer diffusive processes. This can be inferred from a
comparison of the cases � ¼ 1 and � ¼ 10�4 for the states
N and S1 where a reduction of the perpendicular diffusivity
gives rise to a slower parallel self-diffusion. On the other
hand, the mean-squared displacement for strongly smectic
states for which the permanent potential barriers are quite
large is virtually independent of �, as the initial delay of
the diffusion is due to the high, �-independent permanent
barriers and not due to the temporal cage.
In summary, we found a remarkable influence of the

fluctuating local structure on the self-diffusion of particles
in spatially (non-)uniform complex fluids. Diffusion delays
initially even in uniform fluids due to a temporary cage
formed by neighboring particles. This coupling of the
motion of a test particle to its surrounding particles causes
motion in different spatial directions to become coupled, in
particular, in anisotropic fluids. Fixed molecular back-
ground models cannot describe this and have to be replaced
by more sophisticated approaches such as the dynamic
density functional formalism presented here.
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FIG. 3. (a) Parallel mean-squared displacement hz2i in units of
the squared rod length L2 and (b) binder cumulant U (see main
text) of the labeled particle as a function of time t in units of the
diffusion time � for the diffusion rate ratios � ¼ 1 and � ¼ 10�4

for the nematic state N, the weakly smectic state S1 and the
strongly smectic state S2. The points represent the results ob-
tained within the present fluid model, whereas the lines describe
the one-dimensional self-diffusion in a temporally fixed back-
ground potential corresponding to the equilibrium one-particle
density.
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