293 research outputs found

    Understanding the transgression of global and regional freshwater planetary boundaries

    Get PDF
    Freshwater ecosystems have been degraded due to intensive freshwater abstraction. Therefore, environmental flow requirements (EFRs) methods have been proposed to maintain healthy rivers and/or restore river flows. In this study, we used the Variable Monthly Flow (VMF) method to calculate the transgression of freshwater planetary boundaries: (1) natural deficits in which flow does not meet EFRs due to climate variability, and (2) anthropogenic deficits caused by water abstractions. The novelty is that we calculated spatially and cumulative monthly water deficits by river types including the frequency, magnitude and causes of environmental flow (EF) deficits (climatic and/or anthropogenic). Water deficit was found to be a regional rather than a global concern (less than 5% of total discharge). The results show that, from 1960 to 2000, perennial rivers with low flow alteration, such as the Amazon, had an EF deficit of 2–12% of the total discharge, and that the climate deficit was responsible for up to 75% of the total deficit. In rivers with high seasonality and high water abstractions such as the Indus, the total deficit represents up to 130% of its total discharge, 85% of which is due to withdrawals. We highlight the need to allocate water to humans and ecosystems sustainably. This article is part of the Royal Society Science+ meeting issue ‘Drought risk in the Anthropocene’

    Ультразвуковое исследование при дегенеративно-дистрофических и воспалительных заболеваниях коленного сустава

    Get PDF
    Рассмотрены актуальные вопросы диагностики заболеваний коленного сустава − деформирующего остеоартроза, ревматоидного и псориатического артритов. Предложены критерии дифференциальной диагностики этих заболеваний.Urgent issues of diagnosis of knee joint diseases (osteoarthrosis deformans, rheumatoid and psoriatic arthritis) are discussed. The criteria of differential diagnosis are suggested

    Modelling transmission and control of Mycobacterium avium subspecies paratuberculosis within Irish dairy herds with compact spring calving

    Get PDF
    Paratuberculosis is a chronic bacterial infection of the intestine in cattle caused by Mycobacterium avium subspecies paratuberculosis (Map). To better understand Map transmission in Irish dairy herds, we adapted the French stochastic individual-based epidemiological simulation model to account for seasonal herd demographics. We investigated the probability of Map persistence over time, the within-herd prevalence over time, and the relative importance of transmission pathways, and assessed the relative effectiveness of test-and-cull control strategies. We investigated the impact on model outputs of calf separation from cows (calves grazed on pasture adjacent to cows vs. were completely separated from cows) and test-and-cull. Test-and-cull scenarios consisted of highly test-positive cows culled within 13 or 4 weeks after detection, and calf born to highly test-positive cows kept vs removed. We simulated a typical Irish dairy herd with on average 82 lactating cows, 112 animals in total. Each scenario was iterated 1000 times to adjust variation caused by stochasticity. Map was introduced in the fully naive herd through the purchase of a moderately infectious primiparous cow. Infection was considered to persist when at least one infected animal remained in the herd or when Map was present in the environment. The probability of Map persistence 15 years after introduction ranged between 32.2-42.7 % when calves and cows had contact on pasture, and between 18.9-29.4 % when calves and cows were separated on pasture. The most effective control strategy was to cull highly test-positive cows within four weeks of detection (absolute 10 % lower persistence compared to scenarios without control). Removing the offspring of highly test-positive dams did not affect either Map persistence or within-herd prevalence of Map. Mean prevalence 15 years after Map introduction was highest (63.5 %) when calves and cows had contact on pasture. Mean prevalence was 15 % lower (absolute decrease) when cows were culled within 13 weeks of a high test-positive result, and 28 % lower when culled within 4 weeks. Around calving, the infection rate was high, with calves being infected in utero or via the general indoor environment (most important transmission routes). For the remainder of the year, the incidence rate was relatively low with most calves being infected on pasture when in contact with cows. Testing and culling was an effective control strategy when it was used prior to the calving period to minimize the number of highly infectious cows present when calves were born

    Environmental flow deficit at global scale – implication on irrigated agriculture

    Get PDF
    Freshwater species belong to the most degraded ecosystem on earth. At the beginning of the 21st century, scientists have developed the concept of environmental flow requirements (Brisbane declaration 2003) with the aim of protecting freshwater species in the long term. However, the ecological state of rivers is different across the world depending on their fragmentation, on the presence of dams and reservoirs and on the degree of pollution. To implement new regulations on river flow, it is necessary to evaluate the degree of alteration of rivers which we called “environmental flow deficit”. The European water framework directive is still working on evaluating the ecological states of river across Europe. In this study, we calculated monthly environmental flow deficit with the global vegetation dynamic and hydrological model LPJml. Environmental flow requirements were first calculated with the Variable Monthly Flow method (Pastor et al., 2014). Then, we checked in each river basin where and when the actual flow (flow minus abstraction for irrigation) does not satisfy environmental flow requirements.We finally show examples of different river basins such as the Nile and the Amazon to show how climate and irrigation can impact river flow and harm freshwater ecosystems

    Accounting for environmental flow requirements in global water assessments

    Get PDF
    As the water requirement for food production and other human needs grows, quantification of environmental flow requirements (EFRs) is necessary to assess the amount of water needed to sustain freshwater ecosystems. EFRs are the result of the quantification of water necessary to sustain the riverine ecosystem, which is calculated from the mean of an environmental flow (EF) method. In this study, five EF methods for calculating EFRs were compared with 11 case studies of locally assessed EFRs. We used three existing methods (Smakhtin, Tennant, and Tessmann) and two newly developed methods (the variable monthly flow method (VMF) and the Q90_Q50 method). All methods were compared globally and validated at local scales while mimicking the natural flow regime. The VMF and the Tessmann methods use algorithms to classify the flow regime into high, intermediate, and low-flow months and they take into account intra-annual variability by allocating EFRs with a percentage of mean monthly flow (MMF). The Q90_Q50 method allocates annual flow quantiles (Q90 and Q50) depending on the flow season. The results showed that, on average, 37% of annual discharge was required to sustain environmental flow requirement. More water is needed for environmental flows during low-flow periods (46–71% of average low-flows) compared to high-flow periods (17–45% of average high-flows). Environmental flow requirements estimates from the Tennant, Q90_Q50, and Smakhtin methods were higher than the locally calculated EFRs for river systems with relatively stable flows and were lower than the locally calculated EFRs for rivers with variable flows. The VMF and Tessmann methods showed the highest correlation with the locally calculated EFRs (R2=0.91). The main difference between the Tessmann and VMF methods is that the Tessmann method allocates all water to EFRs in low-flow periods while the VMF method allocates 60% of the flow in low-flow periods. Thus, other water sectors such as irrigation can withdraw up to 40% of the flow during the low-flow season and freshwater ecosystems can still be kept in reasonable ecological condition. The global applicability of the five methods was tested using the global vegetation and the Lund-Potsdam-Jena managed land (LPJmL) hydrological model. The calculated global annual EFRs for fair ecological conditions represent between 25 and 46% of mean annual flow (MAF). Variable flow regimes, such as the Nile, have lower EFRs (ranging from 12 to 48% of MAF) than stable tropical regimes such as the Amazon (which has EFRs ranging from 30 to 67% of MAF)

    Successful new product development by optimizing development process effectiveness in highly regulated sectors: the case of the Spanish medical devices sector

    Get PDF
    Rapid development and commercialization of new products is of vital importance for small and medium sized enterprises (SME) in regulated sectors. Due to strict regulations, competitive advantage can hardly be achieved through the effectiveness of product concepts only. If an SME in a highly regulated sector wants to excell in new product development (NPD) performance, the company should focus on the flexibility, speed, and productivity of its NPD function: i.e. the development process effectiveness. Our main research goals are first to explore if SMEs should focus on their their development process effectiveness rather than on their product concept effectiveness to achieve high NPD performance; and second, to explore whether a shared pattern in the organization of the NPD function can be recognized to affect NPD performance positively. The medical devices sector in Spain is used as an example of a\ud highly regulated sector. A structured survey among 11 SMEs, of which 2 were studied also as in in-depth case studies, led to the following results. First of all, indeed the companies in the dataset which focused on the effectiveness of their development process, stood out in NPD performance. Further, the higher performing companies did have a number of commonalities in the organisation of their NPD function: 1) The majority of the higher performing firms had an NPD strategy characterized by a predominantly incremental project portfolio.\ud 2) a) Successful firms with an incremental project portfolio combined this with a functional team structure b) Successful firms with a radical project portfolio combined this with a heavyweight or autonomous team structure.\ud 3) A negative reciprocal relationship exists between formalization of the NPD processes and the climate of the NPD function, in that a formalized NPD process and an innovative climate do not seem to reinforce each other. Innovative climate combined with an informal NPD process does however contribute positively to NPD performance. This effect was stronger in combination with a radical project portfolio. The highest NPD performance was measured for companies focusing mainly on incremental innovation. It is argued that in highly regulated sectors, companies with an incremental product portfolio would benefit from employing a functional structure. Those companies who choose for a more radical project portfolio in highly regulated sectors should be aware\ud that they are likely to excell only in the longer term by focusing on strategic flexibility. In their NPD organization, they might be well advised to combine informal innovation processes with an innovative climate

    Reproducibility via coordinated standardization:A multi-center study in a Shank2 genetic rat model for Autism Spectrum Disorders

    Get PDF
    Inconsistent findings between laboratories are hampering scientific progress and are of increasing public concern. Differences in laboratory environment is a known factor contributing to poor reproducibility of findings between research sites, and well-controlled multisite efforts are an important next step to identify the relevant factors needed to reduce variation in study outcome between laboratories. Through harmonization of apparatus, test protocol, and aligned and non-aligned environmental variables, the present study shows that behavioral pharmacological responses in Shank2 knockout (KO) rats, a model of synaptic dysfunction relevant to autism spectrum disorders, were highly replicable across three research centers. All three sites reliably observed a hyperactive and repetitive behavioral phenotype in KO rats compared to their wild-type littermates as well as a dose-dependent phenotype attenuation following acute injections of a selective mGluR1 antagonist. These results show that reproducibility in preclinical studies can be obtained and emphasizes the need for high quality and rigorous methodologies in scientific research. Considering the observed external validity, the present study also suggests mGluR1 as potential target for the treatment of autism spectrum disorders
    corecore