36 research outputs found

    Characterisation of the SUMO-like domains of Schizosaccharomyces pombe Rad60

    Get PDF
    The S. pombe Rad60 protein is required for the repair of DNA double strand breaks, recovery from replication arrest, and is essential for cell viability. It has two SUMO-like domains (SLDs) at its C-terminus, an SXS motif and three sequences that have been proposed to be SUMO-binding motifs (SBMs). SMB1 is located in the middle of the protein, SBM2 is in SLD1 and SBM3 is at the C-terminus of SLD2. We have probed the functions of the two SUMO-like domains, SLD1 and SLD2, and the putative SBMs. SLD1 is essential for viability, while SLD2 is not. rad60-SLD2Δ cells are sensitive to DNA damaging agents and hydroxyurea. Neither ubiquitin nor SUMO can replace SLD1 or SLD2. Cells in which either SBM1 or SBM2 has been mutated are viable and are wild type for response to MMS and HU. In contrast mutation of SBM3 results in significant sensitivity to MMS and HU. These results indicate that the lethality resulting from deletion of SLD1 is not due to loss of SBM2, but that mutation of SBM3 produces a more severe phenotype than does deletion of SLD2. Using chemical denaturation studies, FPLC and dynamic light scattering we show this is likely due to the destabilisation of SLD2. Thus we propose that the region corresponding to the putative SBM3 forms part of the hydrophobic core of SLD2 and is not a SUMO-interacting motif. Over-expression of Hus5, which is the SUMO conjugating enzyme and known to interact with Rad60, does not rescue rad60-SLD2Δ, implying that as well as having a role in the sumoylation process as previously described [1], Rad60 has a Hus5-independent function

    SiDCoN: A Tool to Aid Scoring of DNA Copy Number Changes in SNP Chip Data

    Get PDF
    The recent application of genome-wide, single nucleotide polymorphism (SNP) microarrays to investigate DNA copy number aberrations in cancer has provided unparalleled sensitivity for identifying genomic changes. In some instances the complexity of these changes makes them difficult to interpret, particularly when tumour samples are contaminated with normal (stromal) tissue. Current automated scoring algorithms require considerable manual data checking and correction, especially when assessing uncultured tumour specimens. To address these limitations we have developed a visual tool to aid in the analysis of DNA copy number data. Simulated DNA Copy Number (SiDCoN) is a spreadsheet-based application designed to simulate the appearance of B-allele and logR plots for all known types of tumour DNA copy number changes, in the presence or absence of stromal contamination. The system allows the user to determine the level of stromal contamination, as well as specify up to 3 different DNA copy number aberrations for up to 5000 data points (representing individual SNPs). This allows users great flexibility to assess simple or complex DNA copy number combinations. We demonstrate how this utility can be used to estimate the level of stromal contamination within tumour samples and its application in deciphering the complex heterogeneous copy number changes we have observed in a series of tumours. We believe this tool will prove useful to others working in the area, both as a training tool, and to aid in the interpretation of complex copy number changes

    A Novel Assay to Trace Proliferation History In Vivo Reveals that Enhanced Divisional Kinetics Accompany Loss of Hematopoietic Stem Cell Self-Renewal

    Get PDF
    BACKGROUND: The maintenance of lifelong blood cell production ultimately rests on rare hematopoietic stem cells (HSCs) that reside in the bone marrow microenvironment. HSCs are traditionally viewed as mitotically quiescent relative to their committed progeny. However, traditional techniques for assessing proliferation activity in vivo, such as measurement of BrdU uptake, are incompatible with preservation of cellular viability. Previous studies of HSC proliferation kinetics in vivo have therefore precluded direct functional evaluation of multi-potency and self-renewal, the hallmark properties of HSCs. METHODOLOGY/PRINCIPAL FINDINGS: We developed a non-invasive labeling technique that allowed us to identify and isolate candidate HSCs and early hematopoietic progenitor cells based on their differential in vivo proliferation kinetics. Such cells were functionally evaluated for their abilities to multi-lineage reconstitute myeloablated hosts. CONCLUSIONS: Although at least a few HSC divisions per se did not influence HSC function, enhanced kinetics of divisional activity in steady state preceded the phenotypic changes that accompanied loss of HSC self-renewal. Therefore, mitotic quiescence of HSCs, relative to their committed progeny, is key to maintain the unique functional and molecular properties of HSCs

    Formation of Complex and Unstable Chromosomal Translocations in Yeast

    Get PDF
    Genome instability, associated with chromosome breakage syndromes and most human cancers, is still poorly understood. In the yeast Saccharomyces cerevisiae, numerous genes with roles in the preservation of genome integrity have been identified. DNA-damage-checkpoint-deficient yeast cells that lack Sgs1, a RecQ-like DNA helicase related to the human Bloom's-syndrome-associated helicase BLM, show an increased rate of genome instability, and we have previously shown that they accumulate recurring chromosomal translocations between three similar genes, CAN1, LYP1 and ALP1. Here, the chromosomal location, copy number and sequence similarity of the translocation targets ALP1 and LYP1 were altered to gain insight into the formation of complex translocations. Among 844 clones with chromosomal rearrangements, 93 with various types of simple and complex translocations involving CAN1, LYP1 and ALP1 were identified. Breakpoint sequencing and mapping showed that the formation of complex translocation types is strictly dependent on the location of the initiating DNA break and revealed that complex translocations arise via a combination of interchromosomal translocation and template-switching, as well as from unstable dicentric intermediates. Template-switching occurred between sequences on the same chromosome, but was inhibited if the genes were transferred to different chromosomes. Unstable dicentric translocations continuously gave rise to clones with multiple translocations in various combinations, reminiscent of intratumor heterogeneity in human cancers. Base substitutions and evidence of DNA slippage near rearrangement breakpoints revealed that translocation formation can be accompanied by point mutations, and their presence in different translocation types within the same clone provides evidence that some of the different translocation types are derived from each other rather than being formed de novo. These findings provide insight into eukaryotic genome instability, especially the formation of translocations and the sources of intraclonal heterogeneity, both of which are often associated with human cancers

    Reactions of Cre with Methylphosphonate DNA: Similarities and Contrasts with Flp and Vaccinia Topoisomerase

    Get PDF
    Chien-Hui Ma is with UT Austin, Aashiq H. Kachroo is with UT Austin, Anna Macieszak is with Polish Academy of Sciences, Tzu-Yang Chen is with UT Austin, Piotr Guga is with Polish Academy of Sciences, Makkuni Jayaram is with UT Austin.Background -- Reactions of vaccinia topoisomerase and the tyrosine site-specific recombinase Flp with methylphosphonate (MeP) substituted DNA substrates, have provided important insights into the electrostatic features of the strand cleavage and strand joining steps catalyzed by them. A conserved arginine residue in the catalytic pentad, Arg-223 in topoisomerase and Arg-308 in Flp, is not essential for stabilizing the MeP transition state. Topoisomerase or its R223A variant promotes cleavage of the MeP bond by the active site nucleophile Tyr-274, followed by the rapid hydrolysis of the MeP-tyrosyl intermediate. Flp(R308A), but not wild type Flp, mediates direct hydrolysis of the activated MeP bond. These findings are consistent with a potential role for phosphate electrostatics and active site electrostatics in protecting DNA relaxation and site-specific recombination, respectively, against abortive hydrolysis. Methodology/Principal Findings -- We have examined the effects of DNA containing MeP substitution in the Flp related Cre recombination system. Neutralizing the negative charge at the scissile position does not render the tyrosyl intermediate formed by Cre susceptible to rapid hydrolysis. Furthermore, combining the active site R292A mutation in Cre (equivalent to the R223A and R308A mutations in topoisomerase and Flp, respectively) with MeP substitution does not lead to direct hydrolysis of the scissile MeP bond in DNA. Whereas Cre follows the topoisomerase paradigm during the strand cleavage step, it follows the Flp paradigm during the strand joining step. Conclusions/Significance -- Collectively, the Cre, Flp and topoisomerase results highlight the contribution of conserved electrostatic complementarity between substrate and active site towards transition state stabilization during site-specific recombination and DNA relaxation. They have potential implications for how transesterification reactions in nucleic acids are protected against undesirable abortive side reactions. Such protective mechanisms are significant, given the very real threat of hydrolytic genome damage or disruption of RNA processing due to the cellular abundance and nucleophilicity of water.This work was supported by the NIH award GM035654 to M. J. Partial support was provided by the Robert F. Welch Foundation (F-1274) and a Faculty Research Award from the University of Texas at Austin. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Microbiolog

    Cell Cycle-Dependent Microtubule-Based Dynamic Transport of Cytoplasmic Dynein in Mammalian Cells

    Get PDF
    BACKGROUND:Cytoplasmic dynein complex is a large multi-subunit microtubule (MT)-associated molecular motor involved in various cellular functions including organelle positioning, vesicle transport and cell division. However, regulatory mechanism of the cell-cycle dependent distribution of dynein has not fully been understood. METHODOLOGY/PRINCIPAL FINDINGS:Here we report live-cell imaging of cytoplasmic dynein in HeLa cells, by expressing multifunctional green fluorescent protein (mfGFP)-tagged 74-kDa intermediate chain (IC74). IC74-mfGFP was successfully incorporated into functional dynein complex. In interphase, dynein moved bi-directionally along with MTs, which might carry cargos such as transport vesicles. A substantial fraction of dynein moved toward cell periphery together with EB1, a member of MT plus end-tracking proteins (+TIPs), suggesting +TIPs-mediated transport of dynein. In late-interphase and prophase, dynein was localized at the centrosomes and the radial MT array. In prometaphase and metaphase, dynein was localized at spindle MTs where it frequently moved from spindle poles toward chromosomes or cell cortex. +TIPs may be involved in the transport of spindle dyneins. Possible kinetochore and cortical dyneins were also observed. CONCLUSIONS AND SIGNIFICANCE:These findings suggest that cytoplasmic dynein is transported to the site of action in preparation for the following cellular events, primarily by the MT-based transport. The MT-based transport may have greater advantage than simple diffusion of soluble dynein in rapid and efficient transport of the limited concentration of the protein

    The Role of p300 Histone Acetyltransferase in UV-Induced Histone Modifications and MMP-1 Gene Transcription

    Get PDF
    Matrix metalloproteinase (MMP)-1 promotes ultraviolet (UV)-triggered long-term detrimental effects such as cancer formation and premature skin aging. Although histone modifications may play a crucial role in the transcriptional regulation of MMP-1, the relationship between UV-induced histone modification and MMP-1 expression is not completely understood. Here, we identify regulators of histone acetylation that may link UV-mediated DNA damage and MMP-1 induction by UV in cultured human dermal fibroblasts (HDFs) in vitro. UV irradiation of HDFs induced MMP-1 expression and increased the level of phosphorylation of H2AX (γ-H2AX), p53 and the acetylation of histone H3 (acetyl-H3). Total histone deacetylase (HDAC) enzymatic activity was decreased by UV irradiation, while histone acetyltransferase (HAT) activity was increased. Suppression of p300 histone acetyltransferase (p300HAT) activity by the p300HAT inhibitor anacardic acid (AA) or by down-regulation of p300 by siRNA prevented UV-induced MMP-1 expression and inhibited UV-enhanced γ-H2AX, p53 level, and acetyl-H3. Using chromatin immunoprecipitation assays, we observed that γ-H2AX, p53, acetyl-H3, p300 and c-Jun were consistently recruited by UV to a distinct region (−2067/−1768) adjacent to the p300 binding site (−1858/−1845) in the MMP-1 promoter. In addition, these recruitments of γ-H2AX, p53, acetyl-H3, p300 and c-Jun to the p300-2 site were significantly abrogated by post-treatment with AA. Furthermore, overexpression of p300 increased the basal and UV-induced MMP-1 promoter activity. Our results suggest that p300HAT plays a critical role in the transcriptional regulation of MMP-1 by UV

    Transcription Inhibition by DRB Potentiates Recombinational Repair of UV Lesions in Mammalian Cells

    Get PDF
    Homologous recombination (HR) is intricately associated with replication, transcription and DNA repair in all organisms studied. However, the interplay between all these processes occurring simultaneously on the same DNA molecule is still poorly understood. Here, we study the interplay between transcription and HR during ultraviolet light (UV)-induced DNA damage in mammalian cells. Our results show that inhibition of transcription with 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) increases the number of UV-induced DNA lesions (γH2AX, 53BP1 foci formation), which correlates with a decrease in the survival of wild type or nucleotide excision repair defective cells. Furthermore, we observe an increase in RAD51 foci formation, suggesting HR is triggered in response to an increase in UV-induced DSBs, while inhibiting transcription. Unexpectedly, we observe that DRB fails to sensitise HR defective cells to UV treatment. Thus, increased RAD51 foci formation correlates with increased cell death, suggesting the existence of a futile HR repair of UV-induced DSBs which is linked to transcription inhibition

    Ribonucleoprotein Particles Containing Non-Coding Y RNAs, Ro60, La and Nucleolin Are Not Required for Y RNA Function in DNA Replication

    Get PDF
    BACKGROUND: Ro ribonucleoprotein particles (Ro RNPs) consist of a non-coding Y RNA bound by Ro60, La and possibly other proteins. The physiological function of Ro RNPs is controversial as divergent functions have been reported for its different constituents. We have recently shown that Y RNAs are essential for the initiation of mammalian chromosomal DNA replication, whereas Ro RNPs are implicated in RNA stability and RNA quality control. Therefore, we investigate here the functional consequences of RNP formation between Ro60, La and nucleolin proteins with hY RNAs for human chromosomal DNA replication. METHODOLOGY/PRINCIPAL FINDINGS: We first immunoprecipitated Ro60, La and nucleolin together with associated hY RNAs from HeLa cytosolic cell extract, and analysed the protein and RNA compositions of these precipitated RNPs by Western blotting and quantitative RT-PCR. We found that Y RNAs exist in several RNP complexes. One RNP comprises Ro60, La and hY RNA, and a different RNP comprises nucleolin and hY RNA. In addition about 50% of the Y RNAs in the extract are present outside of these two RNPs. Next, we immunodepleted these RNP complexes from the cytosolic extract and tested the ability of the depleted extracts to reconstitute DNA replication in a human cell-free system. We found that depletion of these RNP complexes from the cytosolic extract does not inhibit DNA replication in vitro. Finally, we tested if an excess of recombinant pure Ro or La protein inhibits Y RNA-dependent DNA replication in this cell-free system. We found that Ro60 and La proteins do not inhibit DNA replication in vitro. CONCLUSIONS/SIGNIFICANCE: We conclude that RNPs containing hY RNAs and Ro60, La or nucleolin are not required for the function of hY RNAs in chromosomal DNA replication in a human cell-free system, which can be mediated by Y RNAs outside of these RNPs. These data suggest that Y RNAs can support different cellular functions depending on associated proteins

    Iron(III)-Salophene: An Organometallic Compound with Selective Cytotoxic and Anti-Proliferative Properties in Platinum-Resistant Ovarian Cancer Cells

    Get PDF
    Background: In this pioneer study to the biological activity of organometallic compound Iron(III)-salophene (Fe-SP) the specific effects of Fe-SP on viability, morphology, proliferation, and cell-cycle progression on platinum-resistant ovariancancer cell lines were investigated. Methodology/Principal Findings: Fe-SP displayed selective cytotoxicity against SKOV-3 and OVCAR-3 (ovarian epithelial adenocarcinoma) cell lines at concentrations between 100 nM and 1 μM, while the viability of HeLa cells (epithelial cervix adenocarcinoma) or primary lung or skin fibroblasts was not affected. SKOV-3 cells in contrast to fibroblasts after treatment with Fe-SP revealed apparent hallmarks of apoptosis including densely stained nuclear granular bodies within fragmented nuclei, highly condensed chromatin and chromatin fragmentation. Fe-SP treatment led to the activation of markers of the extrinsic (Caspase-8) and intrinsic (Caspase-9) pathway of apoptosis as well as of executioner Caspase-3 while PARP-1 was deactivated. Fe-SP exerted effects as an anti-proliferative agent with an IC50 value of 300 nM and caused delayed progression of cells through S-phase phase of the cell cycle resulting in a complete S-phase arrest. When intra-peritoneally applied to rats Fe-SP did not show any systemic toxicity at concentrations that in preliminary trials were determined to be chemotherapeutic relevant doses in a rat ovarian cancer cell model. Conclusion/Significance: The present report suggests that Fe-SP is a potent growth-suppressing agent in vitro for cell lines derived from ovarian cancer and a potential therapeutic drug to treat such tumors in viv
    corecore