2,939 research outputs found

    Airspace Technology Demonstration 3 (ATD-3): Dynamic Routes for Arrivals in Weather (DRAW) Technology Transfer Document Summary Version 2.0

    Get PDF
    Airspace Technology Demonstration 3 (ATD-3) is part of NASAs Airspace Operations and Safety Program (AOSP) specifically, its Airspace Technology Demonstrations (ATD) Project. ATD-3 is a multi-year research and development effort which proposes to develop and demonstrate automation technologies and operating concepts that enable air navigation service providers and airspace users to continuously assess weather, winds, traffic, and other information to identify, evaluate, and implement workable opportunities for flight plan route corrections that can result in significant flight time and fuel savings in en route airspace. In order to ensure that the products of this tech-transfer are relevant and useful, NASA has created strong partnerships with the FAA and key industry stakeholders. This summary document and accompanying technology artifacts satisfy the third Research Transition Product (RTP) defined in the Applied Traffic Flow Management (ATFM) Research Transition Team (RTT) Plan, which is Dynamic Routes for Arrivals in Weather (DRAW). This technology transfer consists of artifacts for DRAW Arrival Metering (AM) Operations delivered in June 2018, DRAW AM updates, and DRAW Extended Metering (XM) Operations. Blue highlighting indicates the new or modified deliverables. Some of the artifacts in this technology transfer have distribution restrictions that need to be followed. Distribution information is noted in each section. DRAW is a trajectory-based system that combines the legacy Dynamic Weather Routes (DWR) weather avoidance technology with an arrival-specific rerouting algorithm and arrival scheduler to improve traffic flows on weather-impacted arrival routes into major airports. First, DRAW identifies flights that could be rerouted to more efficient Standard Terminal Arrival Routes (STARs) that may have previously been impacted by weather. Second, when weather is impacting the arrival routing, DRAW proposes simple arrival route corrections that enable aircraft to stay on their flight plan while avoiding weather. The DRAW system proposes reroutes early enough to allow Time Based Flow Management (TBFM) to make the necessary schedule adjustments. As a result, metering operations can be sustained longer and more consistently in the presence of weather because the arrival schedule accounts for the dynamic routing intent of arrival flights to deviate around weather. The first DRAW tech transfer in June 2018 focused on arrival metering operations with the DRAW algorithm implemented in the NASA Center TRACON Automation System (CTAS) automation software. This tech transfer delivery includes updates for DRAW implemented in FAAs TBFM 4.7 automation software and preliminary research into DRAW for XM operations

    Shuttle/TDRSS modelling and link simulation study

    Get PDF
    A Shuttle/TDRSS S-band and Ku-band link simulation package called LinCsim was developed for the evaluation of link performance for specific Shuttle signal designs. The link models were described in detail and the transmitter distortion parameters or user constraints were carefully defined. The overall link degradation (excluding hardware degradations) relative to an ideal BPSK channel were given for various sets of user constraint values. The performance sensitivity to each individual user constraint was then illustrated. The effect of excessive Spacelab clock jitter on the return link BER performance was also investigated as was the problem of subcarrier recovery for the K-band Shuttle return link signal

    Sexing day-old chicks: A case study and expert systems analysis of a difficult perceptual-learning task.

    Get PDF

    On the Time Variation of Dust Extinction and Gas Absorption for Type Ia Supernovae Observed through a Nonuniform Interstellar Medium

    Get PDF
    For Type Ia supernovae (SNe Ia) observed through a nonuniform interstellar medium (ISM) in its host galaxy, we investigate whether the nonuniformity can cause observable time variations in dust extinction and in gas absorption due to the expansion of the SN photosphere with time. We show that, owing to the steep spectral index of the ISM density power spectrum, sizable density fluctuation amplitudes at the length scale of typical ISM structures () will translate to much smaller fluctuations on the scales of an SN photosphere. Therefore, the typical amplitude of time variation due to a nonuniform ISM, of absorption equivalent widths, and of extinction, would be small. As a result, we conclude that nonuniform ISM density should not impact cosmology measurements based on SNe Ia. We apply our predictions based on the ISM density power-law power spectrum to the observations of two highly reddened SNe Ia, SN 2012cu and SN 2014J

    Efficacy of lisdexamfetamine dimesylate throughout the day in children and adolescents with attention-deficit/hyperactivity disorder:results from a randomized, controlled trial

    Get PDF
    Lisdexamfetamine dimesylate (LDX) is a long-acting, prodrug stimulant therapy for patients with attention-deficit/hyperactivity disorder (ADHD). This randomized placebo-controlled trial of an optimized daily dose of LDX (30, 50 or 70 mg) was conducted in children and adolescents (aged 6–17 years) with ADHD. To evaluate the efficacy of LDX throughout the day, symptoms and behaviors of ADHD were evaluated using an abbreviated version of the Conners’ Parent Rating Scale-Revised (CPRS-R) at 1000, 1400 and 1800 hours following early morning dosing (0700 hours). Osmotic-release oral system methylphenidate (OROS-MPH) was included as a reference treatment, but the study was not designed to support a statistical comparison between LDX and OROS-MPH. The full analysis set comprised 317 patients (LDX, n = 104; placebo, n = 106; OROS-MPH, n = 107). At baseline, CPRS-R total scores were similar across treatment groups. At endpoint, differences (active treatment − placebo) in least squares (LS) mean change from baseline CPRS-R total scores were statistically significant (P < 0.001) throughout the day for LDX (effect sizes: 1000 hours, 1.42; 1400 hours, 1.41; 1800 hours, 1.30) and OROS-MPH (effect sizes: 1000 hours, 1.04; 1400 hours, 0.98; 1800 hours, 0.92). Differences in LS mean change from baseline to endpoint were statistically significant (P < 0.001) for both active treatments in all four subscales of the CPRS-R (ADHD index, oppositional, hyperactivity and cognitive). In conclusion, improvements relative to placebo in ADHD-related symptoms and behaviors in children and adolescents receiving a single morning dose of LDX or OROS-MPH were maintained throughout the day and were ongoing at the last measurement in the evening (1800 hours)

    Genomic Analysis of Advanced Breast Cancer Using Two Types of Next Generation Sequencing

    Get PDF
    The aim of this study is to characterize the genomic alterations of advance stage breast cancer using next generation sequencing (NGS) to identify pathways that may be commonly altered in advance stage breast cancer

    Airspace Technology Demonstration 3 (ATD-3): Dynamic Routes for Arrivals in Weather (DRAW) Technology Transfer Document Summary Version 1.0

    Get PDF
    Airspace Technology Demonstration 3 (ATD-3) is part of NASAs Airspace Operations and Safety Program (AOSP) specifically, its Airspace Technology Demonstrations (ATD) Project. ATD-3 is a multi-year research and development effort which proposes to develop and demonstrate automation technologies and operating concepts that enable air navigation service providers and airspace users to continuously assess weather, winds, traffic, and other information to identify, evaluate, and implement workable opportunities for flight plan route corrections that can result in significant flight time and fuel savings in en route airspace. In order to ensure that the products of this tech-transfer are relevant and useful, NASA has created strong partnerships with the FAA and key industry stakeholders. This summary document and accompanying technology artifacts satisfy the third of three Research Transition Products (RTPs) defined in the Applied Traffic Flow Management (ATFM) Research Transition Team (RTT) Plan. This transfer consists of NASAs Dynamic Routes for Arrivals in Weather (DRAW) Arrival Metering Operations. This research enables continued use of arrival metering operations while efficiently rerouting traffic in weathe

    Deposition of Fluorocarbon Plasma Polymer Nanoparticles and their Basic Properties

    Get PDF
    Fluorocarbon plasma polymer nanoparticles have been fabricated using gas aggregation cluster source (GAS) equipped with a planar magnetron with PTFE target. A beam of nanoparticles 20 – 200 nm in diameter was generated. Fluorocarbon nanoparticle films have shown very good water repellent properties. Films immersed in ethanol for two hours exhibited excellent stability that was also good in case of water. Measurements using a deflection system showed the presence of both neutral and charged nanoparticles
    corecore