38 research outputs found

    Structurally Triggered Metal-Insulator Transition in Rare-Earth Nickelates

    Full text link
    Rare-earth nickelates form an intriguing series of correlated perovskite oxides. Apart from LaNiO3, they exhibit on cooling a sharp metal-insulator electronic phase transition, a concurrent structural phase transition and a magnetic phase transition toward an unusual antiferromagnetic spin order. Appealing for various applications, full exploitation of these compounds is still hampered by the lack of global understanding of the interplay between their electronic, structural and magnetic properties. Here, we show from first-principles calculations that the metal-insulator transition of nickelates arises from the softening of an oxygen breathing distortion, structurally triggered by oxygen-octahedra rotation motions. The origin of such a rare triggered mechanism is traced back in their electronic and magnetic properties, providing a united picture. We further develop a Landau model accounting for the evolution of the metal-insulator transition in terms of the $R cations and rationalising how to tune this transition by acting on oxygen rotation motions.Comment: Submitted in Nature Communicatio

    Étude théorique de la transition de phase a<->g du cérium (prise en compte des fortes corrélations en DFT+DMFT)

    Get PDF
    La transition de phase isostructurale du cérium a été et reste l'objet de nombreuses études pour tester les méthodes permettant de décrire les matériaux fortement corrélés.La Théorie du Champ Moyen Dynamique (DMFT) jointe à la Théorie de la fonctionnelle de la densité à permis de décrire de tels systèmes.Pourtant, le calcul des propriétés de l'état fondamental nécessite une très bonne précision de calcul à la fois de la part de la DFT et de la DMFT.Nous utilisons un résolveur Monte Carlo Quantique en Temps Continu (CT-QMC), rapide et capable de simuler les basses températures, combiné à une implantation ondes planes augmentées par projection de la DMFT pour calculer les énergies internes et libres - et par conséquent l'entropie - au cours de la transition de phase du cérium.D'importants calculs, utilisant cette implantation, nous ont permis de reconsidérer les propriétés de l'état fondamental et une grande partie de la thermodynamique de la transition de phase ag du cérium à basses températures.En particulier, le bruit stochastique est suffisamment faible pour interpréter, sans ambiguïté, les courbes énergie en fonction du volume.Sur ces dernières, un double point d'inflexion est clairement visible pour l'énergie interne jusqu'à une température relativement basse.Les courbes d'énergie libre mettent, de plus, en évidence l'importance de l'entropie pour ce système.D'autre part, les spectres de photoemission tout au long de la transition de phase sont analysés.Le schéma DMFT est comparé avec des calculs DFT récents et des données expérimentales récentes.Enfin, nous mettons en avant les approximations utilisées et nous nous interrogeons sur leurs validité.The isostructural phase transition of cerium has been and remains the aim of many studies in order to test methods developed to describe strongly correlated materials.The Dynamical Mean Field Theory (DMFT) combined with density functional theory (DFT) has been successful to describe such systems.However, the computation of the ground state properties requires a very good accuracy from both DFT and DMFT sides.We use thus a strong coupling Continuous Time Quantum Monte Carlo (CT-QMC) solver, which is fast and able to reach low temperatures, in combination with a projector augmented wave (PAW) DMFT implementation to calculate internls and free energies - and thus the entropy - during the phase transition of cerium.Extensive calculations using this implementation allows us to carefully reassess the ground state properties and almost all thermodynamics of the ag phase transition in cerium at low temperatures.In particular, stochastic noise is small enough to avoid any ambiguity on the interpretation of energy versus volume curves.On those curves, a double inflexion point is clearly observable ont the internal energy curves untill a relatively low temperature.Moreover, free energy curves highlight the importance of including the entropy contribution.The DMFT picture is put in perspective with recent DFT calculations and recent experimental investigations.Furthermore, photoemission spectra are analysed while the phase transition.Finaly, we discuss the approximations used and raise curiosity about their consideration.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    ABINIT: Overview and focus on selected capabilities

    Get PDF
    Paper published as part of the special topic on Electronic Structure SoftwareABINIT is probably the first electronic-structure package to have been released under an open-source license about 20 years ago. It implements density functional theory, density-functional perturbation theory (DFPT), many-body perturbation theory (GW approximation and Bethe–Salpeter equation), and more specific or advanced formalisms, such as dynamical mean-field theory (DMFT) and the “temperaturedependent effective potential” approach for anharmonic effects. Relying on planewaves for the representation of wavefunctions, density, and other space-dependent quantities, with pseudopotentials or projector-augmented waves (PAWs), it is well suited for the study of periodic materials, although nanostructures and molecules can be treated with the supercell technique. The present article starts with a brief description of the project, a summary of the theories upon which ABINIT relies, and a list of the associated capabilities. It then focuses on selected capabilities that might not be present in the majority of electronic structure packages either among planewave codes or, in general, treatment of strongly correlated materials using DMFT; materials under finite electric fields; properties at nuclei (electric field gradient, Mössbauer shifts, and orbital magnetization); positron annihilation; Raman intensities and electro-optic effect; and DFPT calculations of response to strain perturbation (elastic constants and piezoelectricity), spatial dispersion (flexoelectricity), electronic mobility, temperature dependence of the gap, and spin-magnetic-field perturbation. The ABINIT DFPT implementation is very general, including systems with van der Waals interaction or with noncollinear magnetism. Community projects are also described: generation of pseudopotential and PAW datasets, high-throughput calculations (databases of phonon band structure, second-harmonic generation, and GW computations of bandgaps), and the library LIBPAW. ABINIT has strong links with many other software projects that are briefly mentioned.This work (A.H.R.) was supported by the DMREF-NSF Grant No. 1434897, National Science Foundation OAC-1740111, and U.S. Department of Energy DE-SC0016176 and DE-SC0019491 projects. N.A.P. and M.J.V. gratefully acknowledge funding from the Belgian Fonds National de la Recherche Scientifique (FNRS) under Grant No. PDR T.1077.15-1/7. M.J.V. also acknowledges a sabbatical “OUT” grant at ICN2 Barcelona as well as ULiège and the Communauté Française de Belgique (Grant No. ARC AIMED G.A. 15/19-09). X.G. and M.J.V. acknowledge funding from the FNRS under Grant No. T.0103.19-ALPS. X.G. and G.-M. R. acknowledge support from the Communauté française de Belgique through the SURFASCOPE Project (No. ARC 19/24-057). X.G. acknowledges the hospitality of the CEA DAM-DIF during the year 2017. G.H. acknowledges support from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Contract No. DE-AC02-05-CH11231 (Materials Project Program No. KC23MP). The Belgian authors acknowledge computational resources from supercomputing facilities of the University of Liège, the Consortium des Equipements de Calcul Intensif (Grant No. FRS-FNRS G.A. 2.5020.11), and Zenobe/CENAERO funded by the Walloon Region under Grant No. G.A. 1117545. M.C. and O.G. acknowledge support from the Fonds de Recherche du Québec Nature et Technologie (FRQ-NT), Canada, and the Natural Sciences and Engineering Research Council of Canada (NSERC) under Grant No. RGPIN-2016-06666. The implementation of the libpaw library (M.T., T.R., and D.C.) was supported by the ANR NEWCASTLE project (Grant No. ANR-2010-COSI-005-01) of the French National Research Agency. M.R. and M.S. acknowledge funding from Ministerio de Economia, Industria y Competitividad (MINECO-Spain) (Grants Nos. MAT2016-77100-C2-2-P and SEV-2015-0496) and Generalitat de Catalunya (Grant No. 2017 SGR1506). This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation program (Grant Agreement No. 724529). P.G. acknowledges support from FNRS Belgium through PDR (Grant No. HiT4FiT), ULiège and the Communauté française de Belgique through the ARC project AIMED, the EU and FNRS through M.ERA.NET project SIOX, and the European Funds for Regional Developments (FEDER) and the Walloon Region in the framework of the operational program “Wallonie-2020.EU” through the project Multifunctional thin films/LoCoTED. The Flatiron Institute is a division of the Simons Foundation. A large part of the data presented in this paper is available directly from the Abinit Web page www.abinit.org. Any other data not appearing in this web page can be provided by the corresponding author upon reasonable request.Peer reviewe

    Étude théorique de la transition de phase α<->γ du cérium : prise en compte des fortes corrélations en DFT+DMFT

    Get PDF
    The isostructural phase transition of cerium has been and remains the aim of many studies in order to test methods developed to describe strongly correlated materials.The Dynamical Mean Field Theory (DMFT) combined with density functional theory (DFT) has been successful to describe such systems.However, the computation of the ground state properties requires a very good accuracy from both DFT and DMFT sides.We use thus a strong coupling Continuous Time Quantum Monte Carlo (CT-QMC) solver, which is fast and able to reach low temperatures, in combination with a projector augmented wave (PAW) DMFT implementation to calculate internls and free energies -- and thus the entropy -- during the phase transition of cerium.Extensive calculations using this implementation allows us to carefully reassess the ground state properties and almost all thermodynamics of the αγ phase transition in cerium at low temperatures.In particular, stochastic noise is small enough to avoid any ambiguity on the interpretation of energy versus volume curves.On those curves, a double inflexion point is clearly observable ont the internal energy curves untill a relatively low temperature.Moreover, free energy curves highlight the importance of including the entropy contribution.The DMFT picture is put in perspective with recent DFT calculations and recent experimental investigations.Furthermore, photoemission spectra are analysed while the phase transition.Finaly, we discuss the approximations used and raise curiosity about their consideration.La transition de phase isostructurale du cérium a été et reste l'objet de nombreuses études pour tester les méthodes permettant de décrire les matériaux fortement corrélés.La Théorie du Champ Moyen Dynamique (DMFT) jointe à la Théorie de la fonctionnelle de la densité à permis de décrire de tels systèmes.Pourtant, le calcul des propriétés de l'état fondamental nécessite une très bonne précision de calcul à la fois de la part de la DFT et de la DMFT.Nous utilisons un résolveur Monte Carlo Quantique en Temps Continu (CT-QMC), rapide et capable de simuler les basses températures, combiné à une implantation ondes planes augmentées par projection de la DMFT pour calculer les énergies internes et libres -- et par conséquent l'entropie -- au cours de la transition de phase du cérium.D'importants calculs, utilisant cette implantation, nous ont permis de reconsidérer les propriétés de l'état fondamental et une grande partie de la thermodynamique de la transition de phase αγ du cérium à basses températures.En particulier, le bruit stochastique est suffisamment faible pour interpréter, sans ambiguïté, les courbes énergie en fonction du volume.Sur ces dernières, un double point d'inflexion est clairement visible pour l'énergie interne jusqu'à une température relativement basse.Les courbes d'énergie libre mettent, de plus, en évidence l'importance de l'entropie pour ce système.D'autre part, les spectres de photoemission tout au long de la transition de phase sont analysés.Le schéma DMFT est comparé avec des calculs DFT récents et des données expérimentales récentes.Enfin, nous mettons en avant les approximations utilisées et nous nous interrogeons sur leurs validité

    Theoretical study of the α<->γ cerium phase transition : including strong correlations in DFT+DMFT

    No full text
    La transition de phase isostructurale du cérium a été et reste l'objet de nombreuses études pour tester les méthodes permettant de décrire les matériaux fortement corrélés.La Théorie du Champ Moyen Dynamique (DMFT) jointe à la Théorie de la fonctionnelle de la densité à permis de décrire de tels systèmes.Pourtant, le calcul des propriétés de l'état fondamental nécessite une très bonne précision de calcul à la fois de la part de la DFT et de la DMFT.Nous utilisons un résolveur Monte Carlo Quantique en Temps Continu (CT-QMC), rapide et capable de simuler les basses températures, combiné à une implantation ondes planes augmentées par projection de la DMFT pour calculer les énergies internes et libres -- et par conséquent l'entropie -- au cours de la transition de phase du cérium.D'importants calculs, utilisant cette implantation, nous ont permis de reconsidérer les propriétés de l'état fondamental et une grande partie de la thermodynamique de la transition de phase αγ du cérium à basses températures.En particulier, le bruit stochastique est suffisamment faible pour interpréter, sans ambiguïté, les courbes énergie en fonction du volume.Sur ces dernières, un double point d'inflexion est clairement visible pour l'énergie interne jusqu'à une température relativement basse.Les courbes d'énergie libre mettent, de plus, en évidence l'importance de l'entropie pour ce système.D'autre part, les spectres de photoemission tout au long de la transition de phase sont analysés.Le schéma DMFT est comparé avec des calculs DFT récents et des données expérimentales récentes.Enfin, nous mettons en avant les approximations utilisées et nous nous interrogeons sur leurs validité.The isostructural phase transition of cerium has been and remains the aim of many studies in order to test methods developed to describe strongly correlated materials.The Dynamical Mean Field Theory (DMFT) combined with density functional theory (DFT) has been successful to describe such systems.However, the computation of the ground state properties requires a very good accuracy from both DFT and DMFT sides.We use thus a strong coupling Continuous Time Quantum Monte Carlo (CT-QMC) solver, which is fast and able to reach low temperatures, in combination with a projector augmented wave (PAW) DMFT implementation to calculate internls and free energies -- and thus the entropy -- during the phase transition of cerium.Extensive calculations using this implementation allows us to carefully reassess the ground state properties and almost all thermodynamics of the αγ phase transition in cerium at low temperatures.In particular, stochastic noise is small enough to avoid any ambiguity on the interpretation of energy versus volume curves.On those curves, a double inflexion point is clearly observable ont the internal energy curves untill a relatively low temperature.Moreover, free energy curves highlight the importance of including the entropy contribution.The DMFT picture is put in perspective with recent DFT calculations and recent experimental investigations.Furthermore, photoemission spectra are analysed while the phase transition.Finaly, we discuss the approximations used and raise curiosity about their consideration

    A-TDEP: temperature dependent effective potential for ABINIT – lattice dynamic properties including anharmonicity

    No full text
    International audienceIn this paper, we present the a-TDEP post-process code implemented in the Abinit package. This one is able to capture the explicit thermal effects in solid state physics and to produce a large number of temperature dependent thermodynamic quantities, including the so-called anharmonic effects. Its use is straightforward and require only a single ab initio molecular dynamic (AIMD) trajectory. A Graphical User Interface (GUI) is also available, making the use even easier.We detail our home made implementation of the original “Temperature Dependent Effective Potential” method proposed by Hellman et al. (2011). In particular, we present the various algorithms and schemes used in a-TDEP which enable to obtain the effective Interatomic Force Constants (IFC). The 2nd and 3rd order effective IFC are produced self-consistently using a least-square method, fitting the AIMD forces on a model Hamiltonian function of the displacements. In addition, we stress that we face to a constrained least-square problem since all the effective IFC have to fulfill the several symmetry rules imposed by the space group, by the translation or rotation invariances of the system and by others.Numerous thermodynamic quantities can be computed starting from the 2nd order effective IFC. The first one is the phonon spectrum, from which a large number of other quantities flow : internal energy, entropy, free energy, specific heat... The elastic constants and other usual elastic moduli (the bulk, shear and Young moduli) can also be produced at this level. Using the 3rd order effective IFC, we show how to extract the thermodynamic Grüneisen parameter, the thermal expansion, the sound velocities... and in particular, how to take into account the anisotropy of the system within. As representative applications of a-TDEP capabilities, we show the thermal evolution of the soft phonon mode of α\alpha-U, the thermal stabilization of the bcc phase of Zr and the thermal expansion of diamond Si. All these features highlight the strong anharmonicity included in these systems
    corecore