14 research outputs found

    Prolonged activation of nasal immune cell populations and development of tissue-resident SARS-CoV-2-specific CD8(+) T cell responses following COVID-19

    Get PDF
    Systemic immune cell dynamics during coronavirus disease 2019 (COVID-19) are extensively documented, but these are less well studied in the (upper) respiratory tract, where severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates(1-6). Here, we characterized nasal and systemic immune cells in individuals with COVID-19 who were hospitalized or convalescent and compared the immune cells to those seen in healthy donors. We observed increased nasal granulocytes, monocytes, CD11c(+) natural killer (NK) cells and CD4(+) T effector cells during acute COVID-19. The mucosal proinflammatory populations positively associated with peripheral blood human leukocyte antigen (HLA)-DRlow monocytes, CD38(+)PD1(+)CD4(+) T effector (T-eff) cells and plasmablasts. However, there was no general lymphopenia in nasal mucosa, unlike in peripheral blood. Moreover, nasal neutrophils negatively associated with oxygen saturation levels in blood. Following convalescence, nasal immune cells mostly normalized, except for CD127(+) granulocytes and CD38(+)CD8(+) tissue-resident memory T cells (T-RM). SARS-CoV-2-specific CD8(+) T cells persisted at least 2 months after viral clearance in the nasal mucosa, indicating that COVID-19 has both transient and long-term effects on upper respiratory tract immune responses.Perioperative Medicine: Efficacy, Safety and Outcome (Anesthesiology/Intensive Care

    Data from: Seedling growth of savanna tree species from three continents under grass competition and nutrient limitation in a greenhouse experiment

    No full text
    Changes in savanna tree species composition, both within landscapes and across climatic gradients, suggest that species differ in their ability to utilise resources and cope with grass competition. Linking trait variation among species to their relative performance under resource limitation and competition treatments could provide mechanistic understanding of species’ turnover across environmental gradients in savannas. We investigated how tree species differ in response to competition from grasses and nutrient supply, and whether these responses can be related to plant traits. As humid savannas are often associated with low fertility, species of humid savannas may grow more efficiently under nutrient suppression than species from semi-arid savannas. In heterogeneous grass swards, fast-growing, resource-wasteful species may be found in short-grass patches and slow-growing, resource-conservative species in tall-grass patches. 2. We compared seedlings of 40 tree species sampled from humid and semi-arid savannas of three continents (Africa, Australia, South America) with and without grass competition and with high and low nutrient supply. We measured traits related to soil resource capture, light capture and growth, and tested whether these traits were related to performance under the four treatments. 3. All tree species were suppressed by grass competition and most by nutrient limitation. Only species from humid savannas in Australia grew better under nutrient limitation than their semi-arid counterparts. Deciduous species from semi-arid climates were more negatively impacted by grass competition than deciduous species from humid climates whereas the reverse pattern was observed among evergreen species. Faster growing species were more severely suppressed by grass competition and low nutrients than slower growing species. Traits associated with soil resource capture and seed mass supported growth under grass competition and nutrient limitation, but the traits differed by continent and by leaf habit. 4. Synthesis: We found limited evidence that tree seedlings from humid savannas grow better under nutrient limitation than species of semi-arid savannas. We confirmed that fast-growing species may be advantaged in short-grass patches and conservative species may be advantaged in tall-grass patches. Traits that improved performance under grass competition differed by continent, which may relate to differences in leaf habit and constraints on seed size

    Leaf adaptations of evergreen and deciduous trees of semi-arid and humid savannas on three continents

    No full text
    1. Drought stress selects for a suite of plant traits at root, stem and leaf level. Two strategies are proposed for trees growing in seasonally water-stressed environments: drought tolerance and drought avoidance. These are respectively associated with evergreen phenology, where plants retain their leaves throughout the year, and deciduous phenology, where plants drop their leaves during dry seasons. Evergreen species are thought to have leaf traits supporting lower photosynthesis and transpiration rates, in order to conserve water during dry periods. 2. We evaluated 18 morphological, chemical and physiological leaf traits of 51 abundant savanna tree species that differed in leaf habit (deciduous and evergreen), selected from two climate types (semi-arid and humid) in three continents (Australia, Africa and South America) (annual rainfall range: 500–1550 mm), and grown in a common garden experiment. We hypothesised that evergreen species have more conservative water use and differ more across climate types than deciduous species because evergreen species are forced to endure extended water deficits during dry seasons. 3. Trait shifts between semi-arid and humid savannas did not differ between evergreen and deciduous species. 4. Evergreen species had similar assimilation rates but lower photosynthetic water-use efficiency (PWUE) than deciduous species, possibly to extend their leaf lifespans by protecting their photosynthetic machinery from overheating through evaporative cooling. 5. Species of humid and semi-arid environments did not differ with respect to assimilation rate or PWUE, but semi-arid species did have smaller leaf sizes and greater leaf potassium and phosphorus concentrations. These traits may enable semi-arid species to maximize growth during episodes of favourable moisture availability. 6. Species from the three continents differed in their leaf traits. These probably reflect the greater proportion of evergreen species in Australia as compared to the other continents and generally infertile soils in the South American sampling sites compared to the wider fertility range in the African sites. 7. Synthesis: Water stress in savannas does not select for more conservative water use, but may select for rapid adjustment to prevailing water conditions and for heat avoidance mechanisms

    Defence against vertebrate herbivores trades off into architectural and low nutrient strategies amongst savanna Fabaceae species

    No full text
    Herbivory contributes substantially to plant functional diversity and in ways that move far beyond direct defence trait patterns, as effective growth strategies under herbivory require modification of multiple functional traits that are indirectly related to defence. In order to understand how herbivory has shaped plant functional diversity, we need to consider the physiology and architecture of the herbivores and how this constrains effective defence strategies. Here we consider herbivory by mammals in savanna communities that range from semi-arid to humid conditions. We posited that the saplings of savanna trees can be grouped into two contrasting defence strategies against mammals, namely architectural defence versus low nutrient defence. We provide a mechanistic explanation for these different strategies based on the fact that plants are under competing selection pressures to limit herbivore damage and outcompete neighbouring plants. Plant competitiveness depends on growth rate, itself a function of leaf mass fraction (LMF) and leaf nitrogen per unit mass (Nm). Architectural defence against vertebrates (which includes spinescence) limits herbivore access to plant leaf materials, and partly depends on leaf-size reduction, thereby compromising LMF. Low nutrient defence requires that leaf material is of insufficient nutrient value to support vertebrate metabolic requirements, which depends on low Nm. Thus there is an enforced tradeoff between LMF and Nm, leading to distinct trait suites for each defence strategy. We demonstrate this tradeoff by showing that numerous traits can be distinguished between 28 spinescent (architectural defenders) and non-spinescent (low nutrient defenders) of Fabaceae tree species from savannas, where mammalian herbivory is an important constraint on plant growth. Distributions of the strategies along an LMF-Nm tradeoff further provides a predictive and parsimonious explanation for the uneven distribution of spinescent and non-spinescent species across water and nutrient gradients

    Deciduous and evergreen trees differ in juvenile biomass allometries because of differences in allocation to root storage

    No full text
    Background and Aims - Biomass partitioning for resource conservation might affect plant allometry, accounting for a substantial amount of unexplained variation in existing plant allometry models. One means of resource conservation is through direct allocation to storage in particular organs. In this study, storage allocation and biomass allometry of deciduous and evergreen tree species from seasonal environments were considered. It was expected that deciduous species would have greater allocation to storage in roots to support leaf regrowth in subsequent growing seasons, and consequently have lower scaling exponents for leaf to root and stem to root partitioning, than evergreen species. Itwas further expected that changes to root carbohydrate storage and biomass allometry under different soil nutrient supply conditions would be greater for deciduous species than for evergreen species. Methods - Root carbohydrate storage and organ biomass allometrieswere compared for juveniles of 20 savanna tree species of different leaf habit (nine evergreen, 11 deciduous) grown in two nutrient treatments for periods of 5 and 20 weeks (total dry mass of individual plants ranged from 0.003 to 258.724 g). Key Results - Deciduous species had greater root non-structural carbohydrate than evergreen species, and lower scaling exponents for leaf to root and stem to root partitioning than evergreen species. Across species, leaf to stem scaling was positively related, and stem to root scaling was negatively related to root carbohydrate concentration. Under lower nutrient supply, trees displayed increased partitioning to non-structural carbohydrate, and to roots and leaves over stems with increasing plant size, but this change did not differ between leaf habits. Conclusions - Substantial unexplained variation in biomass allometry of woody species may be related to selection for resource conservation against environmental stresses, such as resource seasonality. Further differences in plant allometry could arise due to selection for different types of biomass allocation in response to different environmental stressors (e.g. fire vs herbivory

    Defence against vertebrate herbivores trades off into architectural and low nutrient strategies amongst savanna Fabaceae species

    No full text
    Herbivory contributes substantially to plant functional diversity and in ways that move far beyond direct defence trait patterns, as effective growth strategies under herbivory require modification of multiple functional traits that are indirectly related to defence. In order to understand how herbivory has shaped plant functional diversity, we need to consider the physiology and architecture of the herbivores and how this constrains effective defence strategies. Here we consider herbivory by mammals in savanna communities that range from semi-arid to humid conditions. We posited that the saplings of savanna trees can be grouped into two contrasting defence strategies against mammals, namely architectural defence versus low nutrient defence. We provide a mechanistic explanation for these different strategies based on the fact that plants are under competing selection pressures to limit herbivore damage and outcompete neighbouring plants. Plant competitiveness depends on growth rate, itself a function of leaf mass fraction (LMF) and leaf nitrogen per unit mass (Nm). Architectural defence against vertebrates (which includes spinescence) limits herbivore access to plant leaf materials, and partly depends on leaf-size reduction, thereby compromising LMF. Low nutrient defence requires that leaf material is of insufficient nutrient value to support vertebrate metabolic requirements, which depends on low Nm. Thus there is an enforced tradeoff between LMF and Nm, leading to distinct trait suites for each defence strategy. We demonstrate this tradeoff by showing that numerous traits can be distinguished between 28 spinescent (architectural defenders) and non-spinescent (low nutrient defenders) of Fabaceae tree species from savannas, where mammalian herbivory is an important constraint on plant growth. Distributions of the strategies along an LMF-Nm tradeoff further provides a predictive and parsimonious explanation for the uneven distribution of spinescent and non-spinescent species across water and nutrient gradients

    Diagnostic performance of echocardiography to predict cardiac tamponade after cardiac surgery

    Get PDF
    OBJECTIVES: Cardiac tamponade is a life-threatening complication after cardiac surgery. Echocardiography, both transthoracic (TTE) and transesophageal (TEE), may help to identify cardiac tamponade after surgery, but its diagnostic value remains unverified after cardiac surgery. METHODS: This retrospective single-centre cohort study used the electronic medical record and echocardiography database of the Catharina Hospital Eindhoven, a tertiary referral cardiothoracic centre, to identify patients who received echocardiography because they were clinically suspected of having cardiac tamponade within the 4 weeks after cardiac surgery. Overall diagnostic accuracy of both TTE and TEE was calculated (sensitivity, specificity, positive predictive value, negative predictive value, and receiver operation characteristics curves). Subgroup analyses were performed based on the timing of the echocardiography after primary surgery (72 h). RESULTS: The query identified 427 echocardiographs, 373 TTEs and 54 TEEs, being performed in 414 patients (65% males, mean age 67 years). Of them, 116 patients underwent surgical re-exploration in which a cardiac tamponade was determined in 105 patients with a 30-day mortality of 8.6%. The area under the receiver operation characteristics curve for echocardiography in the 4 weeks after cardiac surgery was 0.78 [95% confidence interval (CI): 0.72-0.84, P < 0.001]. In the first 24 h after surgery was the positive predictive value of echocardiography 58.3% (95% CI: 28.6-83.5) with an area under the curve of 0.64 (95% CI: 0.49-0.80, P = 0.06). The diagnostic accuracy improved over time for both TTE and TEE. CONCLUSIONS: Diagnostic accuracy of echocardiography in the 4 weeks after cardiac surgery for cardiac tamponade is acceptable and improves over time. However, in the early postoperative phase (<24 h), the diagnostic accuracy of echocardiography is poor

    Biomass partitioning and root morphology of savanna trees across a water gradient

    No full text
    1. Plant organ biomass partitioning has been hypothesized to be driven by resources, such that species from drier environments allocate more biomass to roots than species from wetter environments to access water at greater soil depths. In savanna systems, fire may select for greater allocation to root biomass, especially in humid environments where fire is more frequent. Therefore, species from drier environments may have been under selection pressure to reach deeper soil water more effectively than species from humid environments, through faster root extension, more efficient depth penetration, and faster plant growth rates to respond rapidly to variable rainfall events. 2. We compared biomass partitioning, root morphology traits [root extension rate, RER; specific taproot length (STRL)] and relative growth rate (RGR) of seedlings of 51 savanna tree species, sampled from three continents (Africa, Australia and South America) in a greenhouse experiment. We used phylogenetically corrected and uncorrected analyses to compare the traits of the groups. We conducted a permanova on the combined traits to establish whether species could be distinguished on the basis of their combined traits. 3. On average, species from humid environments allocated more biomass to roots and less to stems than species from semi-arid environments, consistent with the expectation that fire pressure selects for greater allocation to roots in humid environments. However, some species from humid environments had fast growth rates instead of high allocation to roots. Both RER and STRL were greater among species of semi-arid environments than among species of humid environments, and also differed between continents. Differences between strategies under each climate type appear to be associated with leaf habit. 4. Synthesis. Plant biomass partitioning has been selected by defoliation pressure and the effects of this selection pressure can supersede any selection in response to local water constraints. Root morphological adaptations, but not plant growth rate, of tree seedlings, have been selected in response to water deficit

    Biomass partitioning and root morphology of savanna trees across a water gradient

    No full text
    1. Plant organ biomass partitioning has been hypothesized to be driven by resources, such that species from drier environments allocate more biomass to roots than species from wetter environments to access water at greater soil depths. In savanna systems, fire may select for greater allocation to root biomass, especially in humid environments where fire is more frequent. Therefore, species from drier environments may have been under selection pressure to reach deeper soil water more effectively than species from humid environments, through faster root extension, more efficient depth penetration, and faster plant growth rates to respond rapidly to variable rainfall events. 2. We compared biomass partitioning, root morphology traits [root extension rate, RER; specific taproot length (STRL)] and relative growth rate (RGR) of seedlings of 51 savanna tree species, sampled from three continents (Africa, Australia and South America) in a greenhouse experiment. We used phylogenetically corrected and uncorrected analyses to compare the traits of the groups. We conducted a permanova on the combined traits to establish whether species could be distinguished on the basis of their combined traits. 3. On average, species from humid environments allocated more biomass to roots and less to stems than species from semi-arid environments, consistent with the expectation that fire pressure selects for greater allocation to roots in humid environments. However, some species from humid environments had fast growth rates instead of high allocation to roots. Both RER and STRL were greater among species of semi-arid environments than among species of humid environments, and also differed between continents. Differences between strategies under each climate type appear to be associated with leaf habit. 4. Synthesis. Plant biomass partitioning has been selected by defoliation pressure and the effects of this selection pressure can supersede any selection in response to local water constraints. Root morphological adaptations, but not plant growth rate, of tree seedlings, have been selected in response to water deficit

    Development of a standardized and validated flow cytometry approach for monitoring of innate myeloid immune cells in human blood.

    Get PDF
    Innate myeloid cell (IMC) populations form an essential part of innate immunity. Flow cytometric (FCM) monitoring of IMCs in peripheral blood (PB) has great clinical potential for disease monitoring due to their role in maintenance of tissue homeostasis and ability to sense micro-environmental changes, such as inflammatory processes and tissue damage. However, the lack of standardized and validated approaches has hampered broad clinical implementation. For accurate identification and separation of IMC populations, 62 antibodies against 44 different proteins were evaluated. In multiple rounds of EuroFlow-based design-testing-evaluation-redesign, finally 16 antibodies were selected for their non-redundancy and separation power. Accordingly, two antibody combinations were designed for fast, sensitive, and reproducible FCM monitoring of IMC populations in PB in clinical settings (11-color; 13 antibodies) and translational research (14-color; 16 antibodies). Performance of pre-analytical and analytical variables among different instruments, together with optimized post-analytical data analysis and reference values were assessed. Overall, 265 blood samples were used for design and validation of the antibody combinations and in vitro functional assays, as well as for assessing the impact of sample preparation procedures and conditions. The two (11- and 14-color) antibody combinations allowed for robust and sensitive detection of 19 and 23 IMC populations, respectively. Highly reproducible identification and enumeration of IMC populations was achieved, independently of anticoagulant, type of FCM instrument and center, particularly when database/software-guided automated (vs. manual "expert-based") gating was used. Whereas no significant changes were observed in identification of IMC populations for up to 24h delayed sample processing, a significant impact was observed in their absolute counts after >12h delay. Therefore, accurate identification and quantitation of IMC populations requires sample processing on the same day. Significantly different counts were observed in PB for multiple IMC populations according to age and sex. Consequently, PB samples from 116 healthy donors (8-69 years) were used for collecting age and sex related reference values for all IMC populations. In summary, the two antibody combinations and FCM approach allow for rapid, standardized, automated and reproducible identification of 19 and 23 IMC populations in PB, suited for monitoring of innate immune responses in clinical and translational research settings
    corecore