911 research outputs found

    Surveillance system and method having parameter estimation and operating mode partitioning

    Get PDF
    A system and method for monitoring an apparatus or process asset including partitioning an unpartitioned training data set into a plurality of training data subsets each having an operating mode associated thereto; creating a process model comprised of a plurality of process submodels each trained as a function of at least one of the training data subsets; acquiring a current set of observed signal data values from the asset; determining an operating mode of the asset for the current set of observed signal data values; selecting a process submodel from the process model as a function of the determined operating mode of the asset; calculating a current set of estimated signal data values from the selected process submodel for the determined operating mode; and outputting the calculated current set of estimated signal data values for providing asset surveillance and/or control

    Asset surveillance system: apparatus and method

    Get PDF
    System and method for providing surveillance of an asset comprised of numerically fitting at least one mathematical model to obtained residual data correlative to asset operation; storing at least one mathematical model in a memory; obtaining a current set of signal data from the asset; retrieving at least one mathematical model from the memory, using the retrieved mathematical model in a sequential hypothesis test for determining if the current set of signal data is indicative of a fault condition; determining an asset fault cause correlative to a determined indication of a fault condition; providing an indication correlative to a determined fault cause, and an action when warranted. The residual data can be mode partitioned, a current mode of operation can be determined from the asset, and at least one mathematical model can be retrieved from the memory as a function of the determined mode of operation

    Surveillance system and method having an operating mode partitioned fault classification model

    Get PDF
    A system and method which partitions a parameter estimation model, a fault detection model, and a fault classification model for a process surveillance scheme into two or more coordinated submodels together providing improved diagnostic decision making for at least one determined operating mode of an asset

    Surveillance system and method having an adaptive sequential probability fault detection test

    Get PDF
    System and method providing surveillance of an asset such as a process and/or apparatus by providing training and surveillance procedures that numerically fit a probability density function to an observed residual error signal distribution that is correlative to normal asset operation and then utilizes the fitted probability density function in a dynamic statistical hypothesis test for providing improved asset surveillance

    Orbit transfer rocket engine integrated control and health monitoring system technology readiness assessment

    Get PDF
    The objectives of this task were to: (1) estimate the technology readiness of an integrated control and health monitoring (ICHM) system for the Aerojet 7500 lbF Orbit Transfer Vehicle engine preliminary design assuming space based operations; and (2) estimate the remaining cost to advance this technology to a NASA defined 'readiness level 6' by 1996 wherein the technology has been demonstrated with a system validation model in a simulated environment. The work was accomplished through the conduct of four subtasks. In subtask 1 the minimally required functions for the control and monitoring system was specified. The elements required to perform these functions were specified in Subtask 2. In Subtask 3, the technology readiness level of each element was assessed. Finally, in Subtask 4, the development cost and schedule requirements were estimated for bringing each element to 'readiness level 6'

    Automated Monitoring with a BSP Fault-Detection Test

    Get PDF
    The figure schematically illustrates a method and procedure for automated monitoring of an asset, as well as a hardware- and-software system that implements the method and procedure. As used here, asset could signify an industrial process, power plant, medical instrument, aircraft, or any of a variety of other systems that generate electronic signals (e.g., sensor outputs). In automated monitoring, the signals are digitized and then processed in order to detect faults and otherwise monitor operational status and integrity of the monitored asset. The major distinguishing feature of the present method is that the fault-detection function is implemented by use of a Bayesian sequential probability (BSP) technique. This technique is superior to other techniques for automated monitoring because it affords sensitivity, not only to disturbances in the mean values, but also to very subtle changes in the statistical characteristics (variance, skewness, and bias) of the monitored signals

    Automated Monitoring with a BCP Fault-Decision Test

    Get PDF
    The Bayesian conditional probability (BCP) technique is a statistical fault-decision technique that is suitable as the mathematical basis of the fault-manager module in the automated-monitoring system and method described in the immediately preceding article. Within the automated-monitoring system, the fault-manager module operates in conjunction with the fault-detector module, which can be based on any one of several fault-detection techniques; examples include a threshold-limit-comparison technique or the BSP or SPRT technique mentioned in the preceding article. The present BCP technique is used to evaluate a series of one or more fault-detection events for the purpose of filtering out occasional false alarms produced by many types of statistical fault-detection procedures. The BCP technique increases the probability that an automated monitoring system produces a correct decision regarding the presence or absence of a fault. Because occasional false alarms are an inevitable consequence of the SPRT, BSP, or any other statistically based fault-detection test, there is a need for a logical procedure to distinguish between true and false alarms. Heretofore, it has been common practice to make a fault decision on an ad hoc basis for example by following a multiple-observation voting strategy in which a signal is declared to be indicative of a fault if m of the last n observations produced a fault-detection alarm. The BCP technique was developed to obtain results more reliable than those afforded by a voting strategy. The BCP technique involves a test in which one applies Bayesian inference techniques to a series of one or more single-observation alarms produced by a fault-detection test. One considers the last n decisions generated by a fault-detection test in order to evaluate the conditional probability that a failure is indicated (see figure). Each new decision reached by a fault-detection test is treated as a new piece of evidence about the state of the monitored asset, and the conditional probability of failure for the system is updated on the basis of this new evidence. The conditional probability of failure is compared with a predefined limit. For a probability below the limit, the asset is declared to be healthy. For a probability above the limit, the asset is declared to be faulty

    Space Communications: Theory and Applications. Volume 3: Information Processing and Advanced Techniques. A Bibliography, 1958 - 1963

    Get PDF
    Annotated bibliography on information processing and advanced communication techniques - theory and applications of space communication

    Open Bar - a Brouwerian Intuitionistic Logic with a Pinch of Excluded Middle

    Get PDF
    One of the differences between Brouwerian intuitionistic logic and classical logic is their treatment of time. In classical logic truth is atemporal, whereas in intuitionistic logic it is time-relative. Thus, in intuitionistic logic it is possible to acquire new knowledge as time progresses, whereas the classical Law of Excluded Middle (LEM) is essentially flattening the notion of time stating that it is possible to decide whether or not some knowledge will ever be acquired. This paper demonstrates that, nonetheless, the two approaches are not necessarily incompatible by introducing an intuitionistic type theory along with a Beth-like model for it that provide some middle ground. On one hand they incorporate a notion of progressing time and include evolving mathematical entities in the form of choice sequences, and on the other hand they are consistent with a variant of the classical LEM. Accordingly, this new type theory provides the basis for a more classically inclined Brouwerian intuitionistic type theory

    Performance Evaluation of a Data Validation System

    Get PDF
    Online data validation is a performance-enhancing component of modern control and health management systems. It is essential that performance of the data validation system be verified prior to its use in a control and health management system. A new Data Qualification and Validation (DQV) Test-bed application was developed to provide a systematic test environment for this performance verification. The DQV Test-bed was used to evaluate a model-based data validation package known as the Data Quality Validation Studio (DQVS). DQVS was employed as the primary data validation component of a rocket engine health management (EHM) system developed under NASA's NGLT (Next Generation Launch Technology) program. In this paper, the DQVS and DQV Test-bed software applications are described, and the DQV Test-bed verification procedure for this EHM system application is presented. Test-bed results are summarized and implications for EHM system performance improvements are discussed
    • …
    corecore