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SURVEILLANCE SYSTEM AND METHOD 
HAVING AN OPERATING MODE 

PARTITIONED FAULT CLASSIFICATION 
MODEL 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

6,917,839 B2 

This application is a continuation in part patent applica- 
tion of U.S. patent application Ser. No. 09/591,140, filed 
Jun. 9, 2000, now U.S. Pat. No. 6,609,036. 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH OR DEVELOPMENT 

The invention described herein was made in the perfor- 
mance of work under NASA Small Business Innovation 
Research (SBIR) Contracts NAS4-99012 and NAS13- 
01001, and is subject to the provisions of Public Law 96-517 
(35 USC 202) and the Code of Federal Regulations 48 CFR 
52.227-11 as modified by 48 CFR 1852.227-11, in which the 
contractor has elected to retain title. 

FIELD OF THE INVENTION 

The instant invention relates generally to a system and 
method for fault classification using operating mode parti- 
tioning and, in particular, to a system and method for 
performing high sensitivity surveillance of an asset such as 
a process and/or apparatus preferably having at least two 
distinct modes of operation wherein surveillance is per- 
formed using an operating mode partitioned fault classifi- 
cation model of the asset. 

BACKGROUND OF THE INVENTION 

Conventional process surveillance schemes are sensitive 
only to gross changes in the mean value of a process signal 
or to large steps or spikes that exceed some threshold limit 
value. These conventional methods suffer from either a large 
number of false alarms (if thresholds are set too close to 
normal operating levels) or from a large number of missed 
(or delayed) alarms (if the thresholds are set too 
expansively). Moreover, most conventional methods cannot 
perceive the onset of a process disturbance or sensor signal 
error that gives rise to a signal below the threshold level or 
an alarm condition. Most conventional methods also do not 
account for the relationship between a measurement by one 
sensor relative to another sensor. Further, most conventional 
methods provide no means to assess the most likely cause of 
a process disturbance or sensor signal error. For example, a 
process disturbance could result from any combination of an 
instrumentation problem, an equipment problem, or the 
process operating in a new or unexpected way. 

Recently, improved methods for process surveillance 
have developed from the application of certain aspects of 
artificial intelligence technology. Specifically, parameter 
estimation methods have been developed using either 
statistical, mathematical or neural network techniques to 
learn a model of the normal patterns present in a system of 
process signals. After learning these patterns, the learned 
model is used as a parameter estimator to create one or more 
virtual signals given a new observation of the actual process 
signals. Further, high sensitivity surveillance methods have 
been developed for detecting process and signal faults by 
analysis of a mathematical comparison between the actual 
process signal and its virtual signal counterpart. Moreover, 
automated decision making methods have been developed 
for reasoning about the cause of events or problems on the 
basis of their symptoms as represented in data. 
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2 
Parameter estimation based surveillance schemes have 

been shown to provide improved surveillance relative to 
conventional schemes for a wide variety of assets including 
industrial, utility, business, medical, transportation, 
financial, and biological systems. However, parameter esti- 
mation based surveillance schemes have in general shown 
limited success when applied to complex processes. Appli- 
cant recognizes and believes that this is because the param- 
eter estimation model for a complex process must charac- 
terize the entire operating state space of the process to 
provide effective surveillance. Moreover, a review of the 
known prior-art discloses that virtually all such systems 
developed to date utilize a single model of the process to 
span the entire set of possible operating modes. Hence, a 
significant shortcoming of the known prior-art is that, inter 
alia, statistically derived models become extremely large 
and neural network models become difficult or impractical 
to train when the process operating state space is complex. 
The implication for statistically derived models is that the 
parameter estimation method and system becomes compu- 
tationally expensive to operate thereby limiting the utility of 
the method for on-line or real-time surveillance. An alter- 
native for statistically derived models is to constrain the size 
of the model; however this constraint limits the accuracy of 
the parameter estimation method and thereby limits the 
sensitivity of the surveillance method. The implication for 
mathematical and neural network models is simply that the 
parameter estimation method and system becomes less accu- 
rate thereby degrading the sensitivity of the surveillance 
method. These shortcomings in parameter estimation and 
the dependent capability for fault detection also reduce the 
utility, performance and benefit of automated decision mak- 
ing methods. Further, automated decision making itself 
becomes a much more complex and less reliable procedure 
when the process operating state space is complex. Auto- 
mated decision making when the process operating state 
space is complex often leads to conflicting and incompatible 
decision objectives and fault patterns when considering 
multiple operating modes of the process. In fact, automated 
decision making when the process operating state space is 
complex can become combinatorially infeasible to accom- 
plish with the reliability and confidence needed for practical 
use. 

Many attempts to apply parameter estimation, fault 
detection, and fault classification techniques to assets such 
as industrial, utility, business, medical, transportation, 
financial, and biological processes have met with poor 
results in part because the techniques used were expected to 
characterize the entire operating state space of the process. 
In one example, a multivariate state estimation technique 
(MSET) based surveillance system for the Space Shuttle 
Main Engine’s telemetry data was found to produce numer- 
ous false alarms when the learned MSET parameter estima- 
tion model was constrained to a size suitable for on-line, 
real-time surveillance. In this case, the surveillance system 
false alarm rate could be reduced by desensitizing the 
surveillance threshold parameters; however, the missed 
alarm rates then became too high for practical use in the 
telemetry data monitoring application. In another case, a 
Bayesian belief network fault classification system for the 
X-33 Single Stage to Orbit Demonstrator vehicle was found 
to classify fault indications incorrectly when multiple oper- 
ating modes of the system were represented in a single 
decision model. 

Moreover, current parameter estimation, fault detection, 
and fault classification techniques for surveillance of assets 
such as industrial, utility, business, medical, transportation, 
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financial, and biological processes fail to recognize the In one embodiment of the invention, the instant invention 
surveillance performance limitations that occur when it provides a surveillance system and method that creates and 
becomes necessary to trade-off decision processing speed uses, for the purpose of asset surveillance, a coordinated 
against decision accuracy, This may be attributed, in part, to collection of decision submodels wherein each decision 
the relative immaturity of the field of artificial intelligence 5 submodel in the coordinated collection is optimized for a 
and computer-assisted surveillance with regard to real-world single operating mode Or subset of operating modes of an 
process control applications. Additionally, a general failure asset. 
to recognize the specific limitations of trading off decision In another embodiment of the invention, an asset surveil- 

assisted surveillance is punctuated by an apparent lack of fault classification model of an asset comprised of a plurality 
known prior art teachings that address potential methods to of fault classification submodels each having an asset oper- 

ating mode associated thereto; a fault indication means for overcome this limitation. In general, the known prior-art determining one or more fault indications given a set of teaches computer-assisted surveillance solutions that are observed asset signals from the asset; for determining 

processing speed against decision accuracy for computer- lance system is comprised of an operating mode Partitioned 

either globally to Operating modes Of an asset Or 

Only to a sing1e predominant Operating mode, for 
at least one operating mode of the asset for the set of 
observed asset signals; a first selection means for selecting 
at least one of the fault classification submodels from the Only to steady state Operations 

neglecting all transient operating states of the asset. operating mode partitioned fault classification model as a 
For the foregoing reasons, there is a need for a surveil- function of at least the one determined operating mode for 

lance system and method that overcomes the significant providing a fault classification of determined fault indica- 
shortcoming of the known prior-art as delineated herein- 20 tions for performing asset surveillance. The fault indication 
above. means further includes an operating mode partitioned 

parameter estimation model comprised of a plurality of 
parameter estimation submodels each having an asset oper- 
ating mode associated thereto and a second selection means 

The instant invention is distinguished over the known 25 for selecting at least one of the parameter estimation sub- 
Prior art in a multiplicity of ways. For one thing, one models from the operating mode partitioned parameter esti- 
embodiment of the invention provides a surveillance system mation model as a function of at least the one determined 
and method that partitions decision models of an asset for operating mode, The fault indication means further includes 
overcoming a Performance limiting trade-off between deci- means for processing the observed asset signals as a function 
sion Processing speed and decision accuracy that has been 30 of at least the one selected parameter estimation submodel 
generally unrecognized by the known Prior art. Additionally, for defining parameter estimated data. Additionally, the fault 
one ~ ~ b o d i m e n t  of the invention can employ any one of a indication means includes an operating mode partitioned 
plurality of parameter estimation methods, fault detection fault detection model comprised of a plurality of fault 
methods, and fault classification methods and the decision detection submodels each having an asset operating mode 
models used therewith for improving s ~ ~ e i l l a n c e  Perfor- 35 associated thereto. Furthermore, the fault indication means 
mance. Furthermore, one d x d i m e n t  of the invention Pro- further includes a third selection means for selecting at least 
vides a s ~ ~ e i l l a n c e  system and method that Provides an one of the fault detection submodels from the operating 
operating mode Partitioned decision model that can be mode partitioned fault detection model as a function of at 
accomplished by observation and analysis of a time least the one determined operating mode. Moreover, the 
sequence of Process signal data and by a combination of a 40 fault indication means further includes means for processing 
plurality of techniques. the parameter estimated data as a function of at least the one 

Moreover, one embodiment of the invention provides a selected fault detection submodel for determining the one or 
surveillance system and method that provides an operating more fault indications used for providing the fault classifi- 
mode partitioning of the decision model which enables cation of determined fault indications by the first selection 
different parameter estimation methods, fault detection 45 means selecting at least one of the fault classification 
methods, and fault classification methods to be used for submodels from the operating mode partitioned fault clas- 
surveillance within each individual operating mode of an sification model as a function of at least the one determined 
asset. This ability enables surveillance to be performed by operating mode for providing the fault classification of 
the instant invention with lower false alarm rates and lower determined fault indications for performing asset surveil- 
missed alarm rates than can be achieved by the known 50 lance. 
prior-art methods. In another embodiment of the invention, a method for 

Hence, one embodiment of the invention provides a determining asset status includes the steps of creating an 
surveillance system and method that performs its intended operating mode partitioned fault classification model com- 
function much more effectively by enabling higher decision prised of a plurality of fault classification submodels each 
processing speed without a concomitant reduction in deci- 5s having an asset operating mode associated thereto; acquiring 
sion accuracy. Conversely, one embodiment of the invention a set of observed signal data values from an asset; deter- 
alternately enables improved decision accuracy without a mining at least one fault indication as a function of the 
concomitant reduction in decision processing speed. observed signal data values; determining at least one oper- 
Additionally, these competing criteria may be traded-off to ating mode of the asset for the set of observed asset signals; 
achieve the optimal performance solution for a specific 60 selecting at least one fault classification submodel from the 
surveillance application. Furthermore, and in contrast to the operating mode partitioned fault classification model as a 
known prior art, and in one embodiment of the invention, function of at least the one determined operating mode, and 
parameter estimation methods, fault detection methods, and using at least the one fault indication and at least the one 
fault classification methods may be individually tailored for selected fault classification submodel for classifying faults 
each operating mode of the asset thereby providing addi- 65 for Performing asset SUrveillance. 
tional capability to reduce decision error rates for the In another embodiment of the invention, a method for 
surveillance system. determining asset status includes the steps of partitioning a 

BRIEF SUMMARY OF THE INVENTION 
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decision model into a plurality of partitions, each partition 
having an operating mode associated thereto: employing a 
plurality of different methods from a plurality of parameter 
estimation methods, a plurality of fault detection methods, 
and a plurality of fault classification methods for different 
partitions; determining at least one operating mode of an 
asset; selecting at least one the plurality of partitions as a 
function of the determined operating mode for tailoring the 
plurality of parameter estimation methods, the plurality of 
fault detection methods, and the plurality of fault classifi- 
cation methods to perform asset surveillance as a function of 
the at least one determined operating mode. 

In another embodiment of the invention, a method for 
determining asset status includes the steps of acquiring a set 
of observed signal data values from an asset; producing a 
calculated set of estimated signal data values correlative to 
the set of observed signal data values acquired from the 
asset; comparing the set of observed signal data values to the 
calculated set of estimated signal data values; determining a 
presence of a disagreement between the set of observed 
signal data values and the calculated set of estimated signal 
data values on the basis of the comparison step, and deter- 
mining a cause of a determined presence of disagreement 
between the set of observed signal data values and the 
calculated set of estimated signal data values for performing 
asset surveillance. The method further including the step of 
performing asset control as a function of the determined 
cause of the determined presence of disagreement. 

In another embodiment of the invention, a method and 
system for determining asset status includes the steps of 
creating a fault detection model comprised of a plurality of 
fault detection submodels each having an operating mode 
associated thereto; creating a fault classification model com- 
prised of a plurality of fault classification submodels each 
having an operating mode associated thereto; acquiring a set 
of observed signal data values from an asset; determining at 
least one operating mode of the asset for the set of observed 
signal data values; selecting at least one fault detection 
submodel from the fault detection model as a function of at 
least the one determined operating mode; determining at 
least one fault indication as a function of the observed signal 
data values; selecting at least one fault classification sub- 
model from the fault classification model as a function of at 
least the one determined operating mode, and using at least 
the one fault indication and at least the one selected fault 
classification submodel for classifying faults for performing 
asset surveillance. The method and system of further includ- 
ing the step of creating a parameter estimation model 
comprised of a plurality of parameter estimation submodels 
each correlative to at least one training data subset parti- 
tioned from an unpartitioned training data set and each 
having an operating mode associated thereto and wherein 
the step of determining at least one fault indication as a 
function of the observed signal data values includes the step 
of determining at least one fault indication as a function of 
both the estimated signal values determined using the 
parameter estimation model and the observed signal data 
values. 

Moreover, having thus summarized the invention, it 
should be apparent that numerous modifications and adap- 
tations may be resorted to without departing from the scope 
and fair meaning of the present invention as set forth 
hereinbelow by the claims. 

BRIEF DESCRIPTION OF THE DRAWINGS 
FIG. 1 is a schematic functional flow diagram of an 

embodiment of the invention. 

6 
FIG. 2 is a schematic functional flow diagram of a method 

and system for training an operating mode partitioned deci- 
sion model using recorded observations of the actual process 
signals in an embodiment of the invention. 

FIG. 3 is a schematic functional flow diagram of a method 
and system for performing surveillance of an asset using an 
operating mode partitioned decision model in an embodi- 
ment of the invention. 

FIG. 4 is a functional schematic of an operating mode 
partitioned training data set. 

FIG. 5 is a functional schematic of an operating mode 
partitioned decision model having an operating mode par- 
titioned parameter estimation model, an operating mode 
partitioned fault detection model, and an operating mode 

FIG. 6 is a functional schematic of an operating mode 
partitioned decision model having an operating mode par- 
titioned fault detection model, and an operating mode par- 
titioned fault classification model. 

FIG. 7 is a functional schematic of an operating mode 
partitioned fault classification model. 

FIG. 8 is a schematic functional flow diagram of a 
preferred method and system for classifying faults based on 
observed signal values for performing asset surveillance. 

FIG. 9 is a schematic functional flow diagram of a 
surveillance system using an operating mode partitioned 
decision model in an embodiment of the invention. 

FIG. 10 is a schematic functional flow diagram of a 
method and system for an unpartitioned MSET training 

FIG. 11 is a schematic functional flow diagram of a 
method and system for an unpartitioned MSET surveillance 
procedure. 

FIG. 12 illustrates the relationship between the overall 
3s MSET parameter estimation error and the number of obser- 

vation vectors used in the process memory matrix when 
unpartitioned parameter estimation methods are used for 
MSET training and surveillance; 

FIG. 13 illustrates the relationship between the data 
40 processing time required for producing an MSET parameter 

estimate and the number of observation vectors used in the 
process memory matrix when unpartitioned parameter esti- 
mation methods are used for MSET training and surveil- 
lance. 

FIG. 14 is a schematic functional flow diagram of the 
training procedure for an embodiment using an operating 
mode partitioned collection of MSET parameter estimation 
submodels in an embodiment of the invention. 

FIG. 15 is a schematic functional flow diagram of the 
surveillance procedure for an embodiment using an operat- 
ing mode partitioned collection of MSET parameter estima- 
tion submodels in an embodiment of the invention. 

FIG. 16 is a schematic architecture diagram of a learning 
ss vector quantization neural network useful for determining 

the operating mode of an asset in an embodiment of the 
invention. 

FIG. 17 lists the learning vector quantization neural 
network operating mode determiner design characteristics 

60 used for feasibility testing of an embodiment of the inven- 
tion. 

FIG. 18 lists the Space Shuttle Main Engine parameters 
used for feasibility testing in an embodiment of the inven- 
tion. 

FIG. 19 lists the Space Shuttle Main Engine flight telem- 
etry data sets used for feasibility testing of an embodiment 
of the invention. 
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FIG. 20 lists the parameter estimation model and sub- ing high sensitivity surveillance of a wide variety of assets 
model configurations used for feasibility testing of an including industr ia l ,  uti l i ty,  business ,  medical ,  
embodiment of the invention. transportation, financial, and biological processes and appa- 

ratuses wherein such process and/or apparatus asset prefer- 
mode partitioning mles used for feasibility testing of an 5 ably has at least two distinct modes or domains of operation 

(e.g., transient and steady state modes or domains). The embodiment of the invention. system includes a training procedure 20 wherein a decision 
model 50 of an asset 12 (e,g,, a process and/or apparatus) is 

FIG, 21 lists the space Shuttle ~~i~ ~~~i~~ operating 

FIG. 22 lists the feasibility test results for nominal flight 
data derived from historical operating data using at least one of 
MSET estimation for the Space Main Engine a plurality of computer-assisted techniques. Historical oper- 

ating data includes a set of observations from normal in an embodiment of the invention. 
FIG. 23 lists the feasibility test results for signal drift operation of the asset 12 that is acquired and digitized by a 

failure detection simulations using an embodiment of an data acquisition means 40 using any combination of elec- 
operating mode partitioned MSET estimation model for the tronic data acquisition hardware and signal processing soft- 
Space Shuttle Main Engine in an embodiment of the inven- ware known to those having ordinary skill in the art, and 
tion. informed by the present disclosure. Additionally, and as 

FIG. 24 lists the comparative test results for nominal flight delineated infra, one hallmark of the instant invention is an 
data using an unpartitioned MSET estimation model for the operating mode partitioning method of a decision model 50 
Space Shuttle Main Engine containing one hundred fifty for the asset 12 that is performed during the training pro- 
observation vectors. 2o cedure 20. 

FIG. 25 lists the comparative test results for signal drift The system 10 further includes a surveillance procedure 
failure detection using a unpartitioned MSET estimation 60 wherein the operating mode partitioned decision model 
model for the Space Shuttle Main Engine containing one 50 is used for high sensitivity computer-assisted surveillance 
hundred fifty observation vectors. of the asset 12 for the purpose of determining whether a 

FIG. 26 lists the comparative test results for nominal flight 2s Process fault Or failure necessitates an alarm Or control 
data using a unpartitioned MSET estimation model for the action. Another hallmark of the instant invention, as delin- 
Space Shuttle Main Engine containing three hundred obser- eated hereinbelow, is the use of the operating mode Parti- 
vation vectors. tioned decision model 50 as an element of the surveillance 

FIG, 2, lists the comparative test results for signal drift procedure 60. The system 10 described herein is useful for 
failure detection using a unpartitioned MSET estimation 3o ultra-sensitive detection of the onset of sensor or data signal 

hundred observation vectors. 
FIG. 28 illustrates a mathematical parameter estimation 

model of a type used for Space Shuttle Main Engine 

FIG, 29 is a schematic functional flow diagram of a 
surveillance system having two X-33 Single Stage to Orbit 
Demonstrator vehicle hydrogen sensors. 

an embodiment Of an Operating mode partitioned 

15 . 

model for the Space Shuttle Main Engine containing three degradation, component performance degradation, and pro- 
cess operating anomalies. 

Description Of the Training Procedure: 
More specifically, and referring to FIG. 2, the training 

apparatus for training or preparing the decision model 50 
using historical operating data from the asset 12 that has 
been acquired by the data acquisition means 40 using any 
combination of conventional electronic data acquisition 

FIG. 30 is a functional schematic of a fault classification 4o hardware and signal processing software as is well known in 

ceeds to implement the unique method for the training Orbit Demonstrator vehicle hydrogen sensors. 
FIG. 31 illustrates faults and their probable causes for procedure 20 in accordance with instant invention, The 

hydrogen Sensor 1 using a Bayesian Belief Network in an historical operating data is acquired in digital format and 
embodiment of the invention. 45 stored using a data storage procedure 22. The unique method 

FIG. 32 illustrates faults and their probable causes for for the training procedure 20 uses an operating mode deter- 
hydrogen Sensor 2 using a Bayesian Belief Network in an mination procedure 26 to partition the historical operating 
embodiment of the invention. data into one or more training data subsets 28 that together 

FIG. 33 lists the feasibility test results for a partitioned comprise a training data set 24 wherein each training data 
model under operating conditions in an embodiment of the 50 subset 28 is representative of a single operating mode i (Mi) 
invention. wherein Mi is any mode between Mode 1 (MI) to Mode N 

FIG. 34 lists the feasibility test results for a partitioned (MN) where N is a positive integer or each training data 
model under venting conditions in an embodiment of the subset 28 is representative of a subset of operating modes of 
invention. the asset 12. The training data set 24 includes at least K 

FIG. 35 lists the comparative test results for an unparti- 5s discrete observations of the asset 12 wherein each single 
tioned model under operating conditions. observation, herein denoted Xobs, is comprised of a vector of 

FIG, 36 lists the comparative test data values for at least each signal parameter to be included 
tioned model under venting conditions. in the decision model 50. For the purposes of the training 

procedure 20, the number of observations, K, acquired is at 
60 least great enough to adequately bound the operating state 

space of the asset 12. Thus, the training data set 24 provides 
a representative sample of the signals produced by the asset 
12 during all normal modes of operation. 

Again referring to FIG. 2, the unique method for the 
65 training procedure 20 also includes at least one of a param- 

eter estimation submodel creation procedure 29, a fault 
detection submodel creation procedure 30, or a fault clas- 

telemetry data surveillance in an another embodiment. 35 procedure 2o Of the system lo a method and 

submode' for a system having x-33 Sing1e Stage to the art, Upon acquiring the data, the model designer pro- 

for an unparti- 

DETAILED DESCRIPTION OF THE 
INVENTION 

Considering the drawings, wherein like reference numer- 
als denote like parts throughout the various drawing figures, 
reference numeral 10 is directed to the system according to 
the instant invention. 

In its essence, and referring to FIG. 1, the system 10 is 
generally comprised of a method and apparatus for perform- 
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sification submodel creation procedure 31 for creating at values of one or more observed signals. Methods suitable for 
least one decision submodel for inclusion in the decision the fault detection submodel creation procedure 30 include, 
model 50 using at least one training data subset 28. In but are not limited to, a plurality of sequential probability 
practice, the designer first selects the operating modes that ratio test techniques, a plurality of hypothesis test 
will be included in the decision model 50 by means of an 5 techniques, a plurality of neural network techniques, a 
operating mode enable Procedure 32. The method thereafter plurality of mathematical model techniques, a plurality of 
is comprised of a training loop wherein each Possible comparison threshold techniques, a plurality of limit corn- 
operating mode of the asset 12 is assessed for inclusion in parison techniques, a plurality of determined similarity 

techniques, and a plurality of trend analysis techniques. the decision model 50. 

procedures. The mode enabled decision procedure 34 deter- model 50 may be created to implement any of a plurality of 

mode to be included in the decision model 50. If the nique implemented for an individual submodel is not con- 
operating mode is not to be included, no further Processing strained to be the same as the fault detection technique 

possible operating mode as controlled by the more modes sion model 50, 
decision procedure 36. If the operating mode is to be Continuing to refer to FIG. 2, the fault classification included, the training data subset 28 associated with the submodel creation procedure 31 may be, in general, per- currently selected operating mode is selected from the formed using any method suitable for defining a fault training data set 24. Depending on the preference of the 

20 classification model useful for determining the presence, designer implementing the training loop, the operating mode source or cause of an unacceptable asset status or condition determination and training data subset extraction procedures on the basis of one or more fault indications. Methods may be, in general, performed as needed or in advance of the suitable for the fault classification submodel creation pro- submodel creation loop. The submodel creation loop shown cedure 31 include, but are not limited to, a plurality of in FIG. 2 illustrates operating mode determination and 
25 Bayesian belief network techniques, a plurality of neural training data subset extraction in advance of implementing network techniques, a plurality of decision tree techniques, the submodel creation loop but is not intended to constrain a plurality of expert system techniques, a plurality of rule- the method to preclude determination and extraction on an based techniques, a plurality of determined similarity as needed basis. The result of each submodel creation loop techniques, a plurality of hypothesis test techniques, and a is the addition of one or more submodels to the decision 
30 plurality of procedural logic techniques. Each fault classi- 

fication submodel contained in the decision model 50 may model 50. 

The training loop is in general by decision 10 Each fault detection submodel contained in the decision 

mines whether the designer intends a specific Operating fault detection techniques. Further, the fault detection tech- 

is required and the training loop proceeds to the next 15 implemented for any other submodel contained in the deci- 

referring to 2, the Operating mode determination be created to implement any of a plurality of fault classifi- 
procedure 26 to each observation in cation techniques, Further, the fault classification technique 
the training data set 24 may be, in general, performed 
any method 

implemented for an individual submodel is not constrained 
for determining the Operating mode Of 35 to be the Same as the fault classification technique imple- 

the asset 12 given an observation or series of observations 
therefrom. Methods suitable for the operating mode deter- 
mination procedure 26 include, but are not limited to, a 
plurality of mathematical or logic sequence techniques, a 

logic techniques, a plurality of determined similarity 
techniques, a plurality of clustering techniques, and a plu- 
rality of neural network techniques. 

Continuing to refer to FIG. 2, the parameter estimation 
submodel creation procedure 29 may be, in general, per- 45 
formed using any method suitable for defining a parameter 
estimation model useful for estimating the values of one or Description Of the 
more observed signals. Methods suitable for the parameter More specifically, and referring to FIG. 3, the surveillance 
estimation submodel creation procedure 29 include, but are procedure 60 is comprised of acquiring successive vectors of 
not limited to, a plurality of multivariate state estimation 50 operating data and determining for each such observation 
techniques, a plurality of neural network techniques, a vector whether the operating data is indicative of an unac- 
plurality of mathematical model techniques, a plurality of ceptable status or condition of the asset 12. The surveillance 

mented for any other submodel contained in the decision 
model 50, 

The unique method for the training procedure 2o is 

operating modes of the asset 12 have been assessed. At this 
point, the decision model 50 includes parameter estimation, 
fault detection, and/or fault classification submodels for 
each operating mode enabled by the designer. The decision 
model 50 is thereafter useful for performing surveillance of 
the asset 12. 

plurality of expert system techniques, a plurality of fuzzy 4o at training point 37 when expected 

Procedure: 

autoregressive moving average techniques, a plurality of procedure 60 further includes implementing an alarm or 
principal component analysis techniques, a plurality of control action for the purpose of notifying an operator or 
independent component analysis techniques, a plurality of 55 taking a corrective action in response to a detected unac- 
determined similarity techniques, and a plurality of Kalman ceptable status or condition of the asset 12. The surveillance 
filter techniques. Each parameter estimation submodel con- procedure 60 is in general an open-ended data acquisition 
tained in the decision model 50 may be created to implement and analysis loop that continues until such time as the 
any of a plurality of parameter estimation techniques. operator chooses to terminate the surveillance. 
Further, the parameter estimation technique implemented 60 Again referring to FIG. 3, the surveillance procedure 
for an individual submodel is not constrained to be the same begins with an observation acquisition procedure 62 for 
as the parameter estimation technique implemented for any acquiring a vector of observed signal data values, herein 
other submodel contained in the decision model 50. denoted Xobs. Signal data values are acquired by the data 

Continuing to refer to FIG. 2, the fault detection submodel acquisition means 40 using any combination of conventional 
creation procedure 30 may be, in general, performed using 65 electronic data acquisition hardware and signal processing 
any method suitable for defining a fault detection model software as noted supra. Next the operating mode determi- 
useful for detecting fault indications on the basis of the nation procedure 26 is used to determine the operating mode 
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for the vector of observed signal data values, Xobs. It is 
essential only that the operating mode determination proce- 
dure 26 used during the surveillance procedure 60 is the 
same operating mode determination procedure 26 used 
during the training procedure 20. Upon determination of the 
operating mode associated with the observed signal data, the 
decision submodels for the current operating mode are 
selected from the collection of submodels contained in the 
decision model 50 using a decision submodel selection 
procedure 64. The selected decision submodels for the 
current operating mode may then be used with a parameter 
estimation procedure 66 to produce a current vector of 
estimated signal data values, herein denoted X,,,. It is 
essential only that the parameter estimation procedure 66 
used during the surveillance procedure 60 is the same 
parameter estimation procedure 66 for which the decision 
submodel was trained using the parameter estimation sub- 
model creation procedure 29 during the training procedure 
20. The current vector of estimated signal data values, X,,,, 
in general includes at least one estimated signal data value 
corresponding to at least one actual signal data value 
included in the current vector of observed signal data values, 
Xobs. A series of estimated signal data values produced by 
successive observation and parameter estimation cycles is 
termed herein a “virtual signal” for the signal parameter. 

Still referring to FIG. 3, the current vector of estimated 
signal data values, X,,,, may be in general compared to the 
current vector of observed signal data values, Xobs, using a 
fault detection procedure 68. The fault detection procedure 
68 serves the useful purpose of determining whether the 
current vector of observed signal data values indicates an 
unacceptable status or condition of the asset 12. The fault 
detection procedure 68 may be performed using any one of 
a plurality of comparative techniques. 

The results of the fault detection procedure 68 might 
detect faults based on the current vector of observed signal 
data values. In many cases, fault detection quality is 
improved by using a fault indication decision procedure 70 
that incorporates logic for considering one or more fault 
detection results in making the fault indication decision. The 
fault indication decision procedure 70 may be in general 
performed using any method suitable for ascertaining a fault 
indication given a fault detection result or series of fault 
detection results. Methods suitable for the fault indication 
decision procedure 70 include, but are not limited to, single 
observation techniques (e.g., alarm on every detected fault), 
multi-observation voting techniques (e.g., alarm when X out 
of Y observations contain a fault indication), and conditional 
probability techniques (e.g., compute the fault probability 
given a series of fault detection results). 

When faults are indicated by the fault indication decision 
procedure 70, the unique method for the surveillance pro- 
cedure 60 provides for a fault classification procedure 76. 
The fault classification procedure is useful for determining 
the presence, source or cause of an unacceptable asset status 
or condition on the basis of one or more fault indications. 
The classified fault is then provided to the alarm or control 
action procedure 74 for the useful purpose of enabling an 
automated or operator directed corrective action or warning. 

Upon completing the fault indication decision procedure 
70 or the alarm or control action procedure 74, the surveil- 
lance procedure then repeats for as long as a more data 
decision procedure 72 determines that additional surveil- 
lance data are available or terminates at surveillance com- 
plete step 75 when no more surveillance data are available. 

Continuing to refer to FIG. 3, the usefulness of the instant 
invention is, inter alia, the improvement achieved in the 

12 
accuracy of the fault decision made by the fault classifica- 
tion procedure 76. Improving the accuracy of the fault 
classification procedure 76 accomplishes a reduction in the 
number of false alarms sent to a process operator or control 

5 system that can in turn result in an erroneous alarm or 
control action by the alarm or control action procedure 74. 
Further, improving the accuracy of the fault classification 
procedure 76 accomplishes a reduction in the number of 
missed alarms thereby accomplishing more timely alarm or 
control action by the alarm or control action procedure 74. 
The instant invention thereby enables improved operating 
safety, improved efficiency and performance, and reduced 
maintenance costs for a wide variety of industrial, utility, 
business, medical, transportation, financial, and biological 
processes and apparatuses wherein such process and/or 
apparatus asset 12 preferably has at least two distinct modes 
or domains of operation. 

FIG. 4 shows the training data set 24 partitioned into a 
plurality of training data subsets 28 wherein the operating 
mode associated with each training data subset 28 is deter- 

2o mined using the operating mode determination procedure 
26. 

FIG. 5 shows an example of the decision model 50 that is 
comprised of the parameter estimation model 52, the fault 
detection model 54, and the fault classification model 56. 

2s FIG. 5 further shows that the parameter estimation model 52 
is comprised of at least one parameter estimation submodel 
53, that the fault detection model 54 is comprised of at least 
one fault detection submodel 55, and that the fault classifi- 
cation model 56 is comprised of at least one fault detection 

FIG. 6 shows an example of the decision model 50 that is 
comprised of the fault detection model 54 and the fault 
classification model 56. FIG. 6 is intended to illustrate that 
any of the parameter estimation model 52, the fault detection 
model 54, and/or the fault classification model 56 might not 
be used in some cases for accomplishing the asset surveil- 
lance function. 

FIG. 7 shows an example of the fault classification model 
4o 56. FIG. 7 is intended to illustrate that the each of the fault 

detection submodels 57 might be uniquely configured to 
more accurately accomplish the asset surveillance function 
for a particular operating mode. For example, in FIG. 7 each 
of the fault classification submodels shown are uniquely 

Referring to FIG. 7, Submodel 1 will typically operate as 
follows. If only Indication 1 is abnormal the condition will 
be classified as Fault 1. If only Indication 2 is abnormal the 
condition will be classified as Fault 2. If both Indication 1 

so and Indication 2 are abnormal the condition will be classi- 
fied as Fault 3. 

In contrast and still referring to FIG. 7, Submodel i will 
typically operate as follows. If only Indication 1 is abnormal 
the condition will be classified as Fault 1. If only Indication 

5s 2 is abnormal the condition will be classified as Fault 2. If 
both Indication 1 and Indication 2 are abnormal the condi- 
tion will be classified as both Fault 1 and Fault 2. 

In additional contrast and still referring to FIG. 7, Sub- 
model N will typically operate as follows. If only Indication 

60 1 is abnormal the condition will be classified as Fault 1. If 
only Indication 2 is abnormal the condition will be classified 
as either Fault 3 or as no fault depending on the importance 
of Indication 1 for confirming the presence of Fault 3. If both 
Indication 1 and Indication 2 are abnormal the condition will 

65 be classified as Fault 3. 
Thus, still referring to FIG. 7, the behavior of the fault 

classification procedure 76 using the fault classification 

10 

30 submodel 57. 

3s 

4s configured. 
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model 56 can be tailored to suit the decision model 50 The results of the fault classification are thereafter com- 
designer’s requirements for the asset surveillance function. municated by a conventional communications link 80 (as is 

FIG. 8 shows the steps used to determine the status or known to those having ordinary skill in the art, and informed 
condition of the asset 12 using the classification of faults by the present disclosure) to an operator console 82 or 
during asset surveillance. The first step is to acquire s automated process control system 84 for possible alarm 
observed signal values from the asset 12 using the obser- and/or control action. 
vation acquisition procedure 62. The second step is to The computer 44 along with its typically associated 
determine corresponding estimated signal values using the memory means can also be employed to perform the training parameter estimation procedure 66. The third step is to and surveillance procedures 20, 60 as delineated supra and determine the presence of any fault indications using the 

10 to store all the data associated with these procedures, for fault detection procedure 68. The fourth step is to classify example, the historical operating data, the training data and the presence, source and/or cause of the fault indications, if 
any, using the fault classification procedure 76. These steps 
repeat until terminated by the more data decision procedure 
72. 

FIG. 9 outlines a general surveillance procedure of the 
system 10 when employing the operating mode partitioned 
decision model 50. In a typical surveillance procedure, the 
asset 12 is the source of at least one signal source 42 that is 
acquired and digitized using conventional data acquisition 
means 40 for providing the data acquisition procedure for 
the purpose of computer-assisted surveillance. The digitized 
signal data is generally evaluated using a computer 44 
having computer software modules implementing the vari- 
ous procedures describe supra, such as the operating mode 
determination procedure 26, and further providing the 
memory means for the decision model 50. The operating 
mode determination procedure 26 is used to determine the 
current operating mode of the asset 12 given the acquired 
process signal data. The decision model 50 provides the 
operating mode partitioned parameter estimation model 52 
that in turn provides the parameter estimation submodel 53 
that is used to produce an estimated signal value for at least 
one signal source 42 emanating from the asset 12. The 
parameter estimation submodel 53 in general uses the 
parameter estimator procedure 66 to produce the estimated 
signal values. The parameter estimation submodel 53 
selected from the decision model 50 and used by the 
parameter estimation procedure 66 is dependent on the 
operating mode determined by the operating mode determi- 
nation procedure 26. 

The observed signal values and/or the estimated signal 
values are then generally evaluated to identify the presence 
of any unacceptable status or condition of the asset 12. The 
decision model 50 provides the operating mode partitioned 
fault detection model 54 that in turn provides the fault 
detection submodel 55 that is used to detect the indications 
of any unacceptable status or condition of the asset 12. The 
fault detection submodel 55 in general uses the fault detec- 
tion procedure 68 to detect the indications of faults. The fault 
detection submodel 55 selected from the decision model 50 
and used by the fault detection procedure 68 is dependent on 
the operating mode determined by the operating mode 
determination procedure 26. 

The fault indications, if any, are then generally evaluated 
to classify the presence, source and/or cause of any unac- 
ceptable status or condition of the asset 12. The decision 
model 50 provides the operating mode partitioned fault 
classification model 56 that in turn provides the fault clas- 
sification submodel 57 that is used to classify any unaccept- 
able status or condition of the asset 12. The fault classifi- 
cation submodel 57 in general uses the fault classification 
procedure 76 to classify the indications of faults. The 
specific fault classification submodel 57 selected from the 
decision model 50 and used by the fault classification 
procedure 76 is dependent on the operating mode deter- 
mined by the operating mode determination procedure 26. 

decision model. 
MSET Procedure: 
In an embodiment of the invention, the method used for 

parameter estimation is a multivariate state estimation tech- 
nique (MSET) procedure. The US Department of Energy’s 
Argonne National Laboratory developed the implementation 
of MSET described herein for surveillance of sensors and 

2o components in nuclear power plant applications. However, 
other implementations of a multivariable state modeling 
technique, for example multivariable linear regression, are 
possible and useful in conjunction with the instant invention. 
MSET is in general a statistically derived parameter esti- 
mation algorithm that uses advanced pattern recognition 
techniques to measure the similarity or overlap between 
signals within a defined operational domain wherein the 
domain is defined by a set of operating examples. MSET 
“learns” patterns among the signals by numerical analysis of 

3o historical process operating data. These learned patterns or 
relationships among the signals are then used to estimate the 
expected signal values that most closely corresponds with a 
new signal data observation. By quantifying the relationship 
between the current and learned states, MSET estimates the 

3s current expected response of the process signals. MSET 
parameter estimates are then used with a form of statistical 
hypothesis testing, such as the sequential probability ratio 
test (SPRT) or similar probability ratio test algorithm (as 
shown in U.S. Pat. No. 5,459,675 and which is hereby 

4o incorporated by reference in its entirety) to compare the 
current estimated value of a signal with its observed value. 
The statistical hypothesis comparison test provides a sensi- 
tive and widely applicable method to detect a fault or failure 
in an asset. However, other implementations of the com- 
parison test are possible and useful in conjunction with the 
instant invention. 

An MSET parameter estimation model is created for the 
asset 12 using the MSET training algorithms to learn the 
inherent data relationships within a set of historical process 

so operating data. A SPRT fault detection model is calibrated 
using the MSET parameter estimation model and the set of 
historical process operating data. The trained MSET model 
is then used with the MSET parameter estimation procedure 
and the SPRT fault detection procedure to perform the 

ss process surveillance function when presented with a new 
observation of signal data values. The following sections 
will first provide a mathematical overview of the MSET 
algorithms and procedures useful for training a parameter 
estimation model and for using this trained model for 

6o process surveillance. The description is followed by a 
detailed description of a preferred embodiment of the instant 
invention using a novel operating mode partitioned param- 
eter estimation model for asset surveillance. 

Description of the MSET Training and Surveillance Pro- 

The MSET methods are generally described in the fol- 
lowing two US Government documents produced and main- 

1s 

2s 

45 . 

65 cedures: 
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x,,,= D .w (3) 
tained by the US Department of Energy’s Argonne National 
Laboratory, Argonne, Ill., disclosure of which is incorpo- 
rated in its entirety herein by reference. The MSET methods of similarity 
were d x d i e d  in MSET software Provided by Argonne between the estimate of the current operating point and the 
National Laboratory under NASA Contracts NAS4-99012 5 elements of the process memory matrix, T~ obtain the 
and NAS13-01001 and were not modified or in themselves weight vector, we minimize the 
improved for the purposes of a-preferred embodiment. 

J. P. Herzog, S. W. Wegerich, R. M. Singer, and K. C. 
Gross, “Theoretical Basis of the Multivariate State Estima- 
tion Technique (MSET),” Argonne National Laboratory, 10 
ANL-NT-49, December 1997. 

Singer, “MSET Code Structure and Interface Development 
Guide,” ANL-NT-48, August 1997. 

torical operating data from an asset to generate one form of 
a parameter estimation model, If data are collected from a 

The weight vector represents a 

vector, R, where: - -  - 
R =  obs- est (4) 

The error is minimized for a given operating point when: 

(5) 

This equation represents a “least squares” minimization 
pattern recognition with his- 15 when the pattern recognition operator @ is the matrix dot 

product. The Argonne MSET ’Oftware a choice Of 

several pattern recognition operators that provide excellent 

J. P. Herzog, S. W. Wegerich, K. C. Gross, and R. M. 

The MSET algorithm 

G = ( 3 @  a)y(a.@ ZObJ 

process Over a range of operating points, these data can be 
arranged in matrix form, where each column vector (a total 

parameter estimation performance (for see u.s. 
Pat. No. 5,764,509 and u.s. Pat. No. 5,987,399 each hereby 

of m) in the matrix represents the measurements made at a 2o incorporated by reference in their entirety). 

columns equal to the number of operating points at which 
observations were made and the number of rows equal to the 
number of measurements (a total of n signal data values) that 

particular point, Thus, this matrix will have the number of Once the weight vector is found, the current 
estimate of the signal data values (i.e., the parameter esti- 
mate vector) is given by: 

were available at each observation. We begin by defining the 25 a,,,=a. (aQ a)p (a ‘@ ZObJ (6) 

The first application of the pattern recognition operator in 
equation (6) (DT @ D) involves a comparison between the 
row vectors in the DT matrix and each of the column vectors 

30 in the D matrix. If we define G=DT @ D, then G, the 
similarity matrix, is an m by m matrix. The element in the 
i-th row and j-th column of the matrix (gJ represents a 
measure of the similarity between the i-th and j-th column 
vectors (i.e., memorized operating points) in the process 

35 memory matrix. The second application of the pattern rec- 
ognition operator in equation (6) (DT@X,,,) involves a 
comparison between the row vectors in the DT matrix and 
each of the elements in the observation vector Xobs. If we 
define A=DT@ Xobs, then A, the similarity vector, is an m 

40 bv 1 vector. Each element in the similaritv vector is a 

- .  

set of measurements taken at a given time t, as an observa- 
tion vector X(t,), - 

X(t,)=[x,(t,),x2(t,), ’ ’ ’ > X n ( t , ) l T  (1) 

where xL(t,) is the measurement from signal i at time t,. We 
then define the data collection matrix as the process 
memory matrix D: 

Each of the column vectors (X(tj)) in the process memory measure of the similarity between the observation vector and 
matrix represents an operating point of the process. Any the i-th column vector (i.e., memorized operating points) in 
number of observation vectors can be assigned to the the process memory matrix. 
process memory matrix. Training an MSET model includes Note that the similarity matrix is a function of the process 
collecting enough unique observation vectors from histori- 45 memory matrix only. Thus, the similarity matrix and its 
cal operation of the process during normal conditions such inverse Ginv=(DT@D)-’ can be calculated as soon as the 
that the process memory matrix encompasses the full process memory matrix has been derived thereby making the 
dynamic operating range of the process. Computation of the application of MSET to an on-line surveillance system more 
D matrix is the first of three steps in the method for training computationally efficient. Computation of the Ginv matrix 
an MSET model based on historical operating data. SO initializes the parameter estimation model and completes the 

One of at least two algorithms is used by MSET to select second of three steps in the procedure for training an MSET 
the vectors in the D matrix. The MinMax algorithm extracts model based on historical operating data. 
vectors that bound the vector space defined by the training The third and final step in the training procedure includes 
data and returns the smallest process memory matrix that analyzing the historical training data using equation (6) to 
will produce an effective system model (see also U.S. Pat. ss characterize the expected statistical mean and variance of 
No. 5,764,509 and which is hereby incorporated by refer- the residual error vector, R, for each signal parameter in the 
ence in its entirety). The Vector Ordering algorithm selects observation vector. The resulting mean vector, M, is later 
and includes representative vectors from the inner regions of used in the surveillance procedure to normalize the residual 
the vector space producing a more accurate system model. error for each observation evaluated using the statistical 

Once the process memory matrix has been constructed, 60 hypothesis test fault detection procedure. The resulting 
MSET is used to model the dynamic behavior of the system. variance vector, V, is later used at the beginning of the 
For each current observation of the system (X,,,), MSET surveillance procedure to initialize the fault detection thresh- 
compares the observation vector to the stored operating old values used in the statistical hypothesis test fault detec- 
points to calculate an estimate of the process parameter tion procedure. 
values. The parameter estimate of the current process state 65 FIG. 10 illustrates the procedure for training an MSET 
(X,,) is an n-element vector that is given by the product of parameter estimation model. The procedure is used to pro- 
the process memory matrix and a weight vector, W duce an unpartitioned MSET model 102 that is not parti- 
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tioned by operating mode. The MSET training procedure X,,,, is produced by the parameter estimation procedure 66 
developed by Argonne National Laboratory (ANL) as using the unpartitioned MSET model 102 with the same 
described herein is embodied in one instance within the ANL pattern recognition operator that was used in the MSET 
software modules known as train.c and sYs-mod.c. As training procedure. The residual error vector, R, is computed 
described herein above, the MSET training procedure begins 5 and is then normalized using a residual value normalization 
with a MSET to POPu- procedure 108 that includes subtracting the mean (M) vector Procedure 90 
late a process memory matrix 92 (Dl from the training data 
set 24 

Of at least One Of a 

100 from the value of the residual error. The normalized 
residual vector is then evaluated using the Same fault detec- 
tion procedure 68 that was initialized at the start of the 

process Operating data). The MSET 
procedure 90 makes 

MSET surveillance procedure. If the fault detection proce- plurality of observation vector extraction methods embodied i o  
in one instance within the ANL train.c software module, dure 68 results in a fault determination by the fault indica- including but not limited to the MinMax method, and the tion decision procedure 70, the alarm or control action Vector Ordering method. A MSET model initiation proce- 
dure 94 is the second step of the method and is used to procedure 74 communicates the fault information by the 
initialize the MSET decision model by the computation of a conventional communications link 80 (not shown) to the 
inverse similarity matrix 96 ( ~ i ~ ~ ) ,  The MSET model operator console 82 (not shown) and/or automated process 
initiation procedure 94 makes use of at least one of a control system 84 (not shown) for corrective action. In the 
plurality of pattern recognition operator embodied fault indication decision procedure 70, a Bayesian condi- 
in one instance within the ANL sys_mod,c software tional probability test is in general used to reach a fault 
module, including but not limited to the SSA method, the 20 decision based on a series of fault detection results from the 
BART method, the VPR method, the VSET method, and the fault detection procedure 68. The surveillance procedure 
PSEM method. The third step of the MSET training proce- then repeats for as long as the more data decision procedure 
dure uses the process memory matrix 92 and the inverse 72 determines that additional surveillance data is available. 
similarity matrix 96 to perform a MSET training data Limitations of the MSET ~ ~ ~ i ~ i ~ ~  and surveillance 
analysis procedure 98 using the training data set 24. The 25 Method and System: 
training data analysis procedure 98 uses the MSET model to In the method and system described above, MSET is 
computes the residual error mean and variance vectors 100 trained by the constmction of a process memory matrix, D, 
(M and v, 

set 24 thus preparing an unpartitioned MSET 

Over the training data. The training based on historical operating data containing a co~~ection of 

lo2 for 30 process memory matrix by selecting representative process 

procedure is in genera’ performed Once for the training data normal operating points of the process, MSET creates the 

data observations (herein termed observation vectors) that use in the MSET surveillance procedure. 
procedure, new Operating data characterize the dynamic patterns inherent across all oper- 

observations are evaluated sequentially using the unparti- ating points of the process, However, if the process can 
tioned MSET lo2 for the purposes Of the operate in two or distinct modes of operation, then the 
data Or discerning an process OPer- 35 totality of operating points for all possible operating modes 
sting condition. For each new Observation vector, Xobs, must be represented in the process memory matrix to 
presented to the MSET parameter estimation method, the produce an effective MSET model, As the number of distinct 

In the MSET 

(not 

expected operating state having the greatest similarity to the 
current observed state is returned as a parameter estimate 
vector, X,,,. Diagnostic decisions are then made on the basis 40 
of the difference (residual error) between the observed and 
estimated values for at least one process signal parameter 

mined using at least one of a plurality of fault detection 

operating modes of process operation represented in the 
training data increases, one of two limitations occur: 

Limitation 1. If the total number of observation vectors in 
the process memory matrix is fixed, then the number Of data 

process decreases. This reduces the accuracy Of 
contained in the estimate vector, Fault indications are deter- patterns to represent any sing1e Operating mode Of a 

methods including, but not limited to, a threshold limit test 45 MSET’s parameter 
method, a Sequential Probability Ratio Test (spRT) method, alarms or reduce the ability of the fault detection procedure 
and a Bayesian Sequential Probability (Bsp) test method to to reliably detect subtle sensor failures or other process 
produce a fault indication based on the value of the residual 
error for at least one process parameter. The parameter estimation accuracy of the MSET algo- 

FIG, 11 illustrates the method and system for MSET- so rithm is in general an inverse power law function of the 
based surveillance, The MSET surveillance methods as number of vectors in the process memory matrix. Limitation 
described herein are embodied in one instance within the 1 is evident in the example of FIG. 12 that illustrates the 
ANL software modules known as sys~mod,c  and fault- overall parameter estimation error versus the number of 
detect.c. Prior to performing surveillance for new operating vectors in the Process memory matrix for an UnPartitioned 
data observations, a MSET fault detector initialization pro- ss MSET model of Six Space Shuttle Main Engine s e m ~ s .  
cedure 106 is performed. The MSET fault detector initial- Limitation 2. Allowing the number of observation vectors 
ization procedure 106 takes the variance (V) vector 100 and in the process memory matrix to increase ameliorates Limi- 
several other constants as its arguments. The initialization tation 1 above, but incurs a computational performance cost. 
procedure makes use of one of a plurality of fault detection The number of computer operations required for MSET to 
methods embodied in one instance within the ANL fault- 60 produce a parameter estimate scales with the square of the 
detect.c software module, including but not limited to the number of observation vectors stored in the process memory 
SPRT method, and the BSP method. The MSET surveillance matrix. This is because the MSET parameter estimation 
procedure then proceeds by sequentially acquiring and algorithm must perform pattern matching between the cur- 
evaluating each new data observation until such time as rent operating data vector and each element of the process 
surveillance is completed. Data observations are acquired 65 memory matrix. Pattern matching uses the Ginv matrix, the 
using the observation acquisition procedure 62. For each size of which increases as the square of the number of 
new observation vector, Xobs, a parameter estimate vector, observation vectors. Processing time for MSET parameter 

which may in 



US 6,917,839 B2 
19 20 

estimation has been empirically shown to follow a square 
law equation of the form: 

MSET decision model 50 in accordance with the instant 
invention. The training procedure includes and modifies the 
MSET training methods described in FIG. 10 and illustrated 
in FIG. 14 as MSET training procedure 118. With the instant 

(7) s invention, the model designer may now individually specify 
Limitation 2 is evident in the example of FIG. 13 that those operating modes for which MSET and SPRT training 

illustrates the overall MSET parameter estimation process- and surveillance is enabled. The training procedure loops 
ing time on a 300-MHz Pentium I1 desktop computer versus through each defined operating mode with the loop con- 
the number of vectors in the D matrix for an unpartitioned trolled by the mode enabled decision procedure 34 and the 
MSET model of six Space Shuttle Main Engine sensors. i o  more modes decision procedure 36. If the operating mode is 

Novel Improvements to the MSET Training and Surveil- enabled, a MSET decision submodel 114 is created (this is 
lance Procedures: a specific example of parameter estimation submodel cre- 

Having described the MSET training and surveillance ation procedure 29 and fault detection submodel creation 
methods herein above, this section describes the novel procedure 30 when employing MSET and SPRT) for the 
improvements made by the instant invention when used for is operating mode. In order to create the MSET decision 
MSET training and surveillance, the improvements being submodel 114, the operating mode specific training data 
applicable to any asset preferably having at least two distinct subset 28 is first extracted from the training data set 24 using 
modes of operation. It is explained herein above that it is the operating mode determination procedure 26. This oper- 
beneficial to minimize the number of vectors in the process ating mode specific training data subset 28 is then used to 
memory matrix in order to optimize the processing speed of 20 create the MSET decision submodel 114 using the same 
the MSET algorithm. It is further explained herein above procedures used in the MSET training procedure 118 to 
that the MSET methods require a trade-off to be made create an unpartitioned MSET model. Specifically, the 
between processing time and parameter estimation accuracy. MSET procedures used in sequence are the MSET model 
In the worst case, this trade-off results in unacceptable extraction procedure 90 to produce the process memory 
performance for a process surveillance application. The zs matrix 92, the MSET model initialization procedure 94 to 
novel solution to this problem made by the instant invention produce the inverse similarity matrix 96, and the MSET 
is to use multiple coordinated MSET parameter estimation training data analysis procedure 98 to produce the residual 
submodels, with each submodel trained over a limited mean and variance vectors 100 used by the SPRT fault 
operating mode state space. With the instant invention, each detection procedure. Note that this series of procedures is 
submodel may be defined to contain only the minimum 30 grouped in the general case as the parameter estimation 
number of observation vectors required to adequately char- submodel creation procedure 29 and fault detection sub- 
acterize a single specific operating mode or related subset of model creation procedure 30. The process is repeated with 
modes. Since only one submodel must be evaluated for each each loop including a MSET decision submodel storage 
data observation presented to MSET during the surveillance procedure 116 to add the MSET decision submodel 114 to 
procedure, both parameter estimation accuracy and process- 3s the MSET decision model 50 for each enabled operating 
ing speed are greatly improved. mode. At the conclusion of the training procedure 20, the 

The following example illustrates an unobvious benefit of operating mode partitioned MSET decision model 50 
the instant invention. Consider a process that requires includes an array of individual MSET decision submodels 
on-line surveillance across multiple modes of operation. 114, one for each enabled operating mode. 
Further consider that the safety or other critical nature of the 40 The MSET decision model 50 is a collection of the 
surveillance requires fault decision performance within a operating mode specific MSET decision submodels. The 
time interval that allows for on-line MSET processing with MSET decision model 50 includes the following at a mini- 
a process memory matrix containing at most 100 vectors. mum: 
However, further suppose that the desired fault detection A set of process memory matrices 92 (D), one for each 
accuracy requires on-line MSET parameter estimation with 4s enabled operating mode; 
a process memory matrix containing 300 vectors to A set of inverse similarity matrices 96 (Ginv), one for 
adequately characterize the operating mode state space. In each enabled operating mode; and 
the prior art, both criteria could not be simultaneously A set of residual mean and variance vectors 100 (M and 
satisfied. The instant invention solves this problem for many V), one for each enabled operating mode. 
types of processes and apparatuses by enabling the decision SO Working together these decision submodels provide 
model designer to partition the operating mode state space parameter estimation and fault detection over the entire 
and thus produce three 100 vector submodels providing the operating mode state space that the designer has selected for 
desired level of fault detection sensitivity (300 vectors) surveillance. An additional novel feature of the instant 
while having a processing speed comparable to the 100 invention is that each of the decision submodels in the 
vector model. This implementation requires only the addi- ss MSET decision model 50 may be of unique dimensions that 
tion of an operating mode determination procedure that is, each submodel may contain unique numbers of modeled 

Observation processing time (msec)=A+B*[Number of observation 
vectors in D]’ 

selects the appropriate submodel for each new observation 
presented to the system and does not require a change to the 
MSET method itself. 

Improved Training Procedure: 
The combination of an MSET parameter estimation 

model 52 with an associated SPRT fault detection model 54 
is herein termed an MSET decision model 50. An MSET 
decision model is one of a plurality of possible implemen- 
tation specific instances of the decision model 50. 

FIG. 14 illustrates the training procedure 20 useful for 

signal parameters and process memory matrix vectors. A 
decision submodel’s dimensions may be different than the 
dimensions selected for any other operating mode thereby 

60 permitting the unobvious benefit of further optimizing the 
MSET method and system for the surveillance requirements 
of each individual operating mode of the asset. This is 
important because certain modes of process operation are 
often more performance or safety critical than others. 

An additional novel feature of the instant invention is that 
in general each of the submodels in the decision model 50 

65 

producing one form of decision model 50 or specifically a may also be specified with unique parameter estimation and 
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fault detector settings for each operating mode. This pro- 
vides the unobvious benefit of optimizing surveillance sen- 
sitivity and performance by operating mode. Examples of 
optimization by operating mode include, but are not limited 
to, the following: 

Selection of the parameter estimation and training algo- 
rithm by operating mode; 

Selection of the fault detection algorithm by operating SPRT Fault Detection Procedure: 
mode; Parameter estimation techniques, such as delineated 

Selection of the fault detection procedure false alarm hereinabove, can provide an extremely accurate estimate of 
probability, missed alarm probability, system disturbance asset signals. The difference between the current estimates 
magnitude values, or other threshold constants by operating and the current signal observations provides a set of residual 
mode; values used as the indicator for sensor and equipment faults. 

Selection of the fault classification procedure algorithm Instead of using standard threshold limits to detect fault 
and associated thresholds and constants by operating mode. conditions (i.e., declaring a fault indication when a signal’s 

Novel Improvements to the Parameter Estimation Proce- residual value exceeds a preset threshold), we have demon- 
dure: strated excellent fault detection performance using a sequen- 

FIG. 15 illustrates a novel method and system for the tial probability ratio test (SPRT) fault detection procedure 68 
surveillance procedure 60 using the MSET decision model in conjunction with the present invention, 
50 as delineated hereinabove. The surveillance procedure 60 The SPRT algorithm is one instance of a family of 
includes and modifies the surveillance methods described in 20 likelihood ratio tests that improve the threshold detection 
FIG. 11 and illustrated in FIG. 15 as MSET surveillance process by providing definitive information about 
procedure 122, 126. With the instant invention, the model validity using statistical hypothesis testing. The SPRT tech- 
designer may now individually specify those operating nique is based on user-specified false alarm and missed 
modes for which MSET surveillance is enabled. alarm probabilities, allowing control over the likelihood of 

At the beginning of the surveillance procedure, the fault zs missed detection or false alarms, The SPRT technique 
detection procedures are initialized for each enabled deci- provides a superior surveillance tool because it is sensitive 
sion submodel. Initialization of each MSET decision sub- not only to disturbances in the signal mean, but also to very 
model 114 uses the same fault detector initialization proce- subtle changes in the statistical quality (variance, skewness, 
dure 106 used for initialization of the unpartitioned model bias) of the signals, F~~ sudden, gross failures of a or 
102. The surveillance procedure thereafter includes an open- 30 component, the SpRT will indicate the disturbance as fast as 
ended loop for data acquisition and surveillance processing a conventional threshold limit check, H ~ ~ ~ ~ ~ ~ ,  for slow 
that is terminated by the more data decision procedure 72. degradation, the SPRT can detect the incipience or onset of 

During surveillance, each new vector of observed signal the disturbance long before it would be apparent with 
data values, Xobs, is acquired using the data acquisition conventional threshold limit checks, 
procedure 40 and the observation acquisition procedure 62. 35 

Next, the operating mode determination Procedure 26 is observations of a process by analyzing the stochastic com- 
used to determine the operating mode for each new data ponents of the signal’s residuals given by equation (4), 
observation, Xobs, acquired from the asset 12. If the new data above, Let R, represent the residual signal at a given observation is determined by the mode enabled decision moment t, in time, Then the sequence of values {R,}={R,, 
procedure 34 to represent an operating mode that is not 40 R,, . . . R,} should be normally distributed with mean 0, 
enabled for surveillance, no further processing is required when the asset is operating normally, 
until the next data observation is acquired from the asset 12. The first test utilized by the SPRT is a test for a change in 
Conversely, if the new data observation is determined to the sequence mean, which declares that the signal is 
represent an enabled operating mode, the correct MSET degraded if the sequence {R,} exhibits a non-zero mean, 
decision submodel 114 is selected from the MSET decision 45 e,g,, a mean of either +M where M is the user-assigned 
model 50 using the decision submodel selection procedure system disturbance magnitude for the mean test, The SPRT 
64 and all required decision submodel data is loaded into the will decide between two hypotheses: H,, where the residual 
computer memory. From this Point, surveillance Processing signal forms a Gaussian probability density function with occurs using the same procedures previously described for mean and variance az; or H,, where the residual signal 
the MSET method until a fault indication is encountered. so forms a Gaussian probability density function with mean 0 
The method of the instant invention uniquely includes the and variance 3, ~f the SPRT accepts H,, we declare that the 
fault classification procedure 76 that was not previously residual signal is degraded (a fault is detected), 
used in conjunction with MSET. Once surveillance process- The SPRT fault detection procedure operates as fo~~ows,  
ing is completed, the procedure returns to acquire a new data At each time step, a test index is calculated and compared to 
observation from the asset 12. 55 two threshold limits A and B. The test index is related to the 

An unobvious benefit Of Only performing processing for likelihood ratio (L,), which is the ratio of the probability that 
selected operating modes is that the MSET decision model hypothesis H, is true to the probability that hypothesis H, is 
does not need to provide parameter estimation capabilities true: 
for those operating modes that do not require on-line sur- 
veillance. For example, it may be desirable to exclude 60 

MSET decision model even though such modes are included 
within the training data. The ability to explicitly exclude 
operating modes that do not require surveillance simplifies If the likelihood ratio is greater than or equal to the upper 
the training data acquisition procedures and minimizes the 65 threshold limit (i.e., L,ZB), then it can be concluded that 
on-line processing time required for a parameter estimation hypothesis H, is true. If the likelihood ratio is less than or 
based surveillance method. equal to the lower threshold limit (i.e., L,SA), then it can be 

While an MSET procedure is described herein above, any 
type of parameter estimation procedure can be used with the 
instant invention. The novelty described infra is not a 
modification or improvement to the MSET procedure, but is 
rather a new means of using any parameter estimation 
procedure so as to more effectively accomplish the asset 
surveillance objective. 

The SPRT fault detection procedure monitors 

Probability of sequence(R,)given H I  true (8) certain modes of operation (or non-operation) from the = Probability of sequence(R,)given Ho true 
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concluded that hypothesis H, is true. If the likelihood ratio The trade off between false alarm rate and missed detec- 
falls between the two limits (i.e., A<L,<B), then neither tion rate is aggravated when the asset is monitored over a 
hypothesis can be concluded to be true and sampling con- range of operating modes. In practice, transient modes and 
tinues. certain operating modes will commonly imbue greater levels 

The SPRT technique allows the user to specify the tar- s of uncertainty in the observed asset signals due to noise, 
geted likelihood of missed detection or false alarm. The bias, lead/lag, and other effects than will other operating 
following expressions relate the threshold limits to the modes, The practical result is increased uncertainty in both 

the current observed signal and in the parameter estimation misidentification probabilities: 
model developed from training data signals. This leads to 

(9) i o  larger residuals in some asset operating modes than in 

results in higher false alarm rates for noisy operating modes 
and higher missed alarm rates for less noisy operating 
modes. 

Novel Improvements to the Fault Detection Procedure 
Since fault detection tests commonly operate on a math- 

ematical function of the residuals or other evaluation of the 
observed signal, the alarm limits used for the fault detection 
tests are more accurate and consistent when a separate set of 

(10) 20 alarm limits are provided for each operating mode of the 
asset. The method and system of the instant invention 
uniquely provides this capability. 

While a SPRT procedure is described herein above, any 
type of fault detection procedure can be used with the instant 

zs invention. The novelty described infra is not a modification 
or improvement to the SPRT procedure, but is rather a new 

-1 M ”  M (11) means of using any existing fault detection procedure so as 
to more effectively accomplish the asset surveillance objec- 
tive . 

A = - a n d B = Z  P 
1-U U others. Using a single set of alarm limits for fault detection 

where a is the probability of accepting H, when H, is true 
(i.e., the false alarm probability) and fl is the probability of 
accepting H, when H, is true (i.e., the missed detection is 
probability). 

Assuming that the residual signal {R,} is normally 
distributed, the likelihood ratio L, is given by: 

I r, = exp -E M(M - 2 r k )  I-l 21T2 k=l 

Defining the SPRT index for the mean test to be the 
exponent in equation (lo), 

SPRT,, = sE M(M -2rk)  = -E(. - - 2 )  
k=l 

lT2  
k=l 

Then by taking the natural logarithms of equations (9) and 
(10) the sequential sampling and decision strategy can be 
concisely represented as: 

If SPRT,,,,Sln(fl/(l-a)), then accept hypothesis H, as 
true, 

If ln(fli(1-a))SSPRT,,,,Sln((l-@/a), then continue 
sampling, and 

If SPRT,,,,2ln((l-fl)/a), then accept hypothesis H, as 
true. 

Two indices are calculated for each of the seauential 

30 BBN Fault Classification Procedure 
Bayesian belief networks (BBNs) are applied in Decision 

Theory under various names, including Causal Probabilistic 
Networks, Causal Nets, and Probabilistic Influence Dia- 
grams. BBN methods provide accurate calculations of 

3s expected false alarm and missed alarm rates, are resilient to 
missing information (e.g., instrumentation failures), and 
gracefully handle multiple failures. BBNs are based on the 
calculus of probabilities and provide the mathematical for- 
malism whereby engineering judgment may be expressed as 

40 the denree of belief in an outcome niven a set of observa- v v 

hypothesis tests. For the mean test, an index is calculated for tions. They have been used in a wide variety of applications 
both positive and negative values of the system disturbance to represent probabilistic knowledge for automated reason- 
magnitude, M. The system disturbance magnitude for the ing. Using Bayesian probability theory, it is possible to 
mean test specifies the number of standard deviations the capture engineering knowledge about the dependencies 
residual signal must shift in the positive or negative direc- 45 between variables and to propagate consistently and quan- 
tion to trigger an alarm. 

The implementation of SPRT is originally described in 
Wald and Wolfowitz, “Optimum Character of the Sequential 
Probability Ratio Test,” Ann. Math. Stat., 19, 326 (1948), 
disclosure of which is incorporated herein by reference. 

Limitations of Prior Fault Detection Procedures 
Threshold limit tests, SPRTs and related techniques for 

fault detection are of great practical use in the field of asset 
surveillance and equipment condition monitoring. Many 
practitioners report their applications and value in a wide 
range of deployments. The majority of such deployments 

titatively the impact of evidence for diagnosing the current 
condition of an asset. Specifically, belief networks are 
graphical representations of a joint probability distribution 
in which the graph nodes represent discrete-valued random 

SO variables and the arcs between nodes represent influences 
between variables. 

The BBN is one example of a fault classification proce- 
dure 76 that might be used in conjunction with the instant 
invention. Other examples include, but are not limited to, 

ss procedural logic, rule-based expert systems, blackboard 
expert systems, decision trees, determined similarity 

usethreshold limit tests; however, more recently SPRTS and methods, various forms of probabilistic networks and neural 
related techniques have come into significant use. networks. We use a belief network to capture our knowledge 

A limitation of all prior fault detection techniques has about an asset and its operation. A key characteristic of a 
been the inevitable trade off between false alarm rate and 60 BBN is its ability to deal with the inherent uncertainty in our 
missed detection rate. When set too sensitively, the fault knowledge about a monitored asset. The process of building 
detector alarms as desired when actual fault conditions occur an application-specific belief network is as follows: 
but might also alarm when normal process variations exceed Define the nodes4ef ine  the model variables to be 
the detector’s alarm limits (false alarms). When set too observed or predicted; 
conservatively, the fault detector does not false alarm as 65 Define the network topology-define the user’s knowl- 
readily but the detection of an actual fault condition is most edge of the conditional dependence and independence 
often delayed or missed. between nodes; 
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Define the network’s probability tables-quantify statis- P(A “B)=P(A IB)P(B) 

tical knowledge, uncertainty, and the user’s engineering 
judgments. 

perform fault classification by calculating the probability 
states of the predicted nodes from the tables of conditional 

nodes. RBI 

similarly, 

Once this knowledge is expressed, the belief network can 

and marginal probabilities and the states of the observed 

P(A”B)=P(B~)P(A)  (13) 

Combining these two equations yields B ~ ~ ~ ~ ’  law: 

P(B I A ) W )  (14) P(AIB)=-  

Bayesian belief networks allow us to express our beliefs 

relationships are not absolute, instead we hold a certain 
degree of belief in these relationships. For example, if we 
say ‘‘Birds fly.” we accept that for the most Part birds do, in 
fact, fly. However, ostriches don’t fly, neither do Penguins, 
birds with broken wings, or dead or injured birds. These 
exceptions prevent US from saying with Hlo% certainty that 
“Birds fly.” It is much more accurate and more natural to say 
that we believe that “Birds fly most of the time.” It is this 
ability to quantify the degree of belief in a proposition, 2o ity of A occurring given that B has occurred, P(A1B). 
which makes the BBN useful for a fault classification 
procedure. 

Belief Networks Have Four Necessary Characteristics: shown that if is a set Of Bc then 
1. A belief network is built from nodes that represent 2s 

variables that can take on multiple values or states. These 
nodes may represent the state of the sensors or fault 
detectors in the model, the cause of any fault, or a decision 
to be made based on the evidence for a fault. 

2. Each of these nodes is connected to at least one other node 30 
by a directed link. The intuitive meaning of these links is 
that the parent has a direct influence on the child. For 
example, there is a greater probability that a bird will fly 

opposed to being deterministic and are the reason for a 35 
link between the “Birds fly” node and the “Injured” node. 
A lack of arcs indicates that the two variables are proba- where n x ,  is the parent set of x,. 
bilistically independent. That is, one has no effect on the The theory underlying the formulation and use of belief 
other. If birds fly regardless of the state of the stock networks and related techniques for probabilistic reasoning 
market, there will be no link between “Birds Fly” and 40 is detailed in Judea Pearl, “Probabilistic Reasoning in Intel- 
“Stock Market”. We can also say that two nodes, which ligent Systems: Networks of Plausible Inference,” Morgan 
have one or more common parents but no link between Kaufmann, 1988, the disclosure of which is incorporated 
them, are conditionally independent. Finally, a node is herein by reference. 
conditionally independent of its indirect predecessors Limitations of Prior Fault Classification Procedures 
given its immediate predecessors. Expert systems, belief networks and related techniques 

3. Each node has a conditional probability table that quan- for probabilistic reasoning have been of limited practical use 
tifies the effects of the parents on the children. For in the field of asset surveillance and equipment condition 
example, given that a bird is flying, what is the probability monitoring. While many authors and practitioners suggest 
that it is injured? Nodes with no parents have a prior their value, deployments are limited to cases where the asset 
probability table. SO behavior is steady and predictable. The majority of such 

4. There may be no directed cycles in the belief network. deployments use rule-based expert systems having simple 
A BBN model enables the probabilistic classification of backward chaining schemes to classify faults on the basis of 

asset fault events on the basis of the probabilities of other a limited number of observable data features. 
observable events. The belief network specifically enables Gross suggests the value of an AI (artificial intelligence) 
expert judgment to be formalized so that one can specify a 55 diagnosticiprognostic system in U.S. Pat. No. 5,764,509 and 
series of links of the form the ‘truth of statement Asupports again in U.S. Pat. No. 6,181,975. However, Gross does not 
my belief in statement B’, and can also specify how much report a reduction to practice or state claims for such an AI 
the truth of A strengthens this belief in B compared, for diagnosticiprognostic technique despite the apparent desir- 
example, to how much some other truth C would weaken ability of doing so. Moreover, Gross does not conceive of 
this belief in B. This information is described mathemati- 60 the novelty described infra for operating mode partitioning 
cally by giving the probabilities of the states ofAconditiona1 of an AI diagnosticiprognostic system. 
on those of B, or vice-versa, or via correlation coefficients Takeuchi describes a rule-based diagnosticiprognostic 
between the states of A and B. system in U.S. Pat. No. 5,009,833. While Takeuchi claims 

Bayesian belief networks are mathematically based on the operation of the rule-base on either observed or simulated 
science of Probability. Bayes’ law is based on the product 65 data, he does not conceive of the novelty of comparing the 
rule which states that the probability of A and B is equal to observed signals to estimated signals for the purpose of fault 
the probability of A given B times the probability of B: detection nor does he conceive of the novelty of using the 

with a degree Of uncertainty. In most cases, and effect In the equation above, A denotes a particular fault and B 
is a fault indication event or alarm that has occurred, p(B) 
is the probability of event B occurring, and P(BIA) is the 
probability of B occurring given that Ahas already occurred. 
For example, given that a sensor has failed (event A), P(B1A) 
is the probability that the signal’s fault detector will alarm 
(event B). P(B) is referred to as an a priori probability and 
P(B1A) is referred to as a conditional probability. If these 
probabilities are known, then we can calculate the probabil- 

In general, the indication that an event has occurred has 
multiple pieces of evidence. In that case, it can also be 

(15) 
P ( A  I B)  = W A ) n  RBI I A )  

where a is the normalizing constant. 

this Same formula recursively to the parents, as: 
When there are multiple levels to a belief net, we apply 

(16) 
if it is not injured. These relationships are probabilistic as P ( x l , X Z r  ... , X , ) = n P ( X ! l . . , )  

45 
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fault detection results as the observable inputs to his expert 
system. Moreover, Takeuchi does not conceive of the nov- 
elty described infra for operating mode partitioning of the 
rule-based diagnosticiprognostic system. results. 

G~~~~ describes a rule-based diagnostic system in u,s, 5 
pat, N ~ ~ ,  5,223,207, 5,459,675 and 5,761,090, G~~~~ 
describes a SPRT fault detection means that operates on the 

3. A fault classification method and system for determining 
the presence, cause and/or explanation of an unacceptable 
asset status or condition based on the fault indication 

Moreover, it is noteworthy that none of these practitioners 
conceives of any method or system that further includes the 
fourth as 

residuals formed from redundant physical Sensor signals, 
The SPRT fault detection means provides the observable 

4. An Operating mode partitioning method and system for 
providing more accurate and efficient performance Of any 
of the three elements enumerated above by partitioning inputs to his expert system. However, Gross does not i o  the characteristics of at least one of the three elements 

estimated signals for the purpose of fault detection. Neural Network Method and System for Determining 
Moreover, Gross does not conceive of the novelty described operating ~~d~ of h s e t :  
infra for operating mode partitioning of the fault detection ~ ~ ~ ~ h ~ d  to determine the operating mode of the asset 12 
means or of the rule-based diagnostic system is required for both the training procedure 20 and the 

In U S .  Pat. No. 5,274,572, O'Neill describes a black- surveillance procedure 60 using an operating mode parti- 
board expert system for asset surveillance but does not tioned decision model 50. For each new data observation, 
conceive of the novelty described infra for operating mode the operating mode determination procedure 26 must clas- 
partitioning of the blackboard expert system. In U.S. Pat. sify the observation as belonging to exactly one of a plurality 
No. 5,392,320, Chao describes a rule-based expert system 20 of defined operating modes thereby allowing the required 
for asset surveillance but does not conceive of the novelty decision submodel to be selected for training or surveillance. 
described infra for operating mode partitioning of the rule- The operating mode determination procedure 26 may use 
based expert system. In U.S. Pat. No. 5,402,521, Niida any form of algorithm that can determine the current oper- 
describes a neural network system for asset surveillance but ating mode of the asset 12 based on one or more data 
does not conceive of the novelty described infra for oper- zs observations from the asset. The specific implementation or 
ating mode partitioning of the neural network system. In type of the operating mode determination procedure 26 does 
U.S. Pat. No. 5,465,321, Smyth describes a hidden Markov not affect or modify the operation of the instant invention. 
model system for asset surveillance but does not conceive of In an embodiment of the invention, a Learning Vector 
the novelty described infra for operating mode partitioning Quantization (LVQ) neural network is used for the operating 
of the hidden Markov model. In U.S. Pat. No. 5,680,409, 30 mode determination procedure 26. The LVQ neural network 
Qin describes a principal component analysis system for procedure is generally applicable to a wide range of assets. 
asset surveillance but does not conceive of the novelty An LVQ neural network model is created for a specific asset 
described infra for operating mode partitioning of the prin- using conventional neural network training algorithms to 
cipal component analysis model. learn the inherent operating mode relationships within a set 

Heger describes a Bayesian belief network (BBN) system 35 of historical process operating data. The trained LVQ model 
for asset surveillance in U.S. Pat. No. 6,415,276 but does not is then used to perform the operating mode determination 
conceive of the novelty described infra for operating mode procedure when presented with each new data observation. 
partitioning. U.S. Pat. No. 6,415,276 provides a discussion Because the LVQ neural network is trained by pattern 
of the use of belief networks for fault classification and is matching a vector of observations from historical data, this 
incorporated in its entirety herein by reference. 40 type of neural network will always determine the most 

Novel Improvements to the BBN Fault Classification similar operating mode when presented with a new data 
Procedure observation. 

Each of the fault classification procedures described in the An LVQ neural network is a two-layer, pattern classifi- 
section above might be improved by the novelty described cation neural network in which each output node represents 
infra for operating mode partitioning. Fault classification is 45 a particular class or category. 
improved by operating mode partitioning because operating FIG. 16 illustrates the architecture of an LVQ neural 
mode partitioning allows a unique and possibly different set network. An LVQ network is one of a group of related 
of faults to be classified within each operating mode and pattern classification neural network models that can be used 
further allows the signature and probability of each fault to cluster a set of s-element input vectors {X}={x,, . . . , 
type to be set differently within each operating mode. For SO xi, . . . , xs} into t clusters. The input nodes of the neural 
example, faults having low probability of occurrence in one network draw data either directly from sensor signals or 
operating mode and a high probability of occurrence in from the output of a mathematical function applied to one or 
another operating mode are more effectively classified sepa- more sensor signals. An input vector is defined as the set of 
rately. Further, the fault indication patterns that are indica- data values, one value for each input node that is derived 
tive of an unacceptable asset condition might be set differ- ss from the sensor signals at a given moment in time. The 
ently in one operating mode than in another (see for output nodes of the network correspond to one of the classes 
example, FIG. 7). (herein, the operating modes) recognized by the neural 

It is noteworthy that none of the practitioners enumerated network. During operation of the neural network, an input 
above conceive of a method or system consisting of a unique vector is presented to the network, passes through the 
combination of the following three elements: 60 network, and activates one of the t output nodes (y,, . . . , 
1. Aparameter estimation method and system for producing yj, , yJ. Each of the output nodes corresponds to one of 

a current estimate of signal data values correlative to an the classes recognized by the neural network. The LVQ 
observation of signal data values acquired from an asset; neural network returns the class corresponding to the acti- 

2. A fault detection method and system for comparing one or vated output node, thereby determining the current operating 
more of the current estimates of signal data values to the 65 mode of the asset. 
corresponding observed signal data values acquired from The input nodes are connected to the output nodes by a set 
an asset to produce fault indications; and of connection weights. The subset of connection weights 

conceive Of the Of the Observed to according to the expected operating modes of the asset, 
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that connect all of the input nodes to one of the output nodes 
is called a weight vector. For example, output node y, is 
connected to the input nodes by weight vector 

and t output nodes would contain 5 
a total o f t  weight vectors, with each weight vector contain- 
ing s connection weights. 

An LVQ neural network is designed to recognize a 
Predefined set of classes. Each one of the classes corn- 
SPonds to a distinct operating mode of the asset under 
surveillance. During training of an LVQ neural network, the 

mode (i.e., t,=O), the connection weights for the output 
vector are negatively reinforced by 

, wsJ}. An LVQ neural network Gl=Gl-L(zi?l) (18) 

In the second (LVQ2.1) and third (LVQ3) learning 
methods, the two weight vectors that are closest to the 
current input vector are identified. These two weight vectors 
may be positively or negatively reinforced depending upon 
a number of conditions. The most important of these con- 
ditions is that the two weight vectors are modified only if 

designer decides how many Output nodes be used to 
by the net- 

they are roughly equidistant from the input vector. A user- 
defined control parameter (,=), called the window size, is 

network' 1s of comparable distances from the input vector, The window 

each Of the Operating modes 

a 'lass (Operating mode) recognized by the 
More than One Output 'Ode can be to represent 

By using more than one node to represent a class, the 
number of neural network connection weights dedicated to 
that class is increased, This improves the ability of the neural 

used to determine whether or not the two weight vectors are 

condition test that must be satisfied by the two closest weight 
vectors is that the ratio of distance between the closest 

network to recognize an operating mode of the asset, For 
each of the r classes, the designer specifies the number of 

weight vector and the hut vector (dcd to the distance 
between the second weight vector and the hut 

output nodes that will model that class. 
A supervised training scheme is used for training an LVQ 

neural network. In this scheme, training is accomplished by 
presenting a sequence of matched pairs of input vectors and 
target vectors to the neural network, causing some of the 
network's connection weights to be adjusted with each 2s 

of a training pair, The target vector 
, t,} is a set of binary values, one value 

for each output node in the network. An element of a target 
vector has a value of one if the corresponding output node 
represents the correct class for the input vector. Conversely, 

corresponding output node represents an incorrect class for 
the input vector. 

For each training pair presented to the LVQ network, the 

2o vector (dc2) must fall within the window. Namely, 

dc I 4 2  (19) ->l-s and -<l+s 
4 2  

The window size is a small user-defined constant with 

In the LVQ2.1 algorithm, a second condition that must be 
met is that one of the two closest weight vectors connects to 
an output node of the Same class as the input vector. While 

output node of a class that differs from the class of the input 
vector. If both the window and class conditions are met, then 
the weight vector whose output node belongs to the Same 

weight vectors is calculated. The Euclidean distances are 3s equation (17). Also, the weight vector whose output node 
then ordered, from smallest to largest. Only the weight belongs to a class that differs from that of the input vector 
vectors that produce the smallest two distances in the is negatively reinforced according to equation (18). 
ordered sequence are allowed to learn. This form of learning In the LVQ3 algorithm, the two weight vectors that are 
is called competition, because only those weight vectors that closest to the input vector are allowed to learn as 10% as the 

in the range 0.1cEc0.5. 

an element of a target vector has a value of zero if the 30 at the same time, the other weight vector must connect to an 

Euclidean distance between the input vector and each of the class as the input vector is positively reinforced according to 

produce the best Scores (i,e,, producing the minimum 40 same window and class conditions as in the LVQ2.1 algo- 
Euclidean distances) are modified during an iteration of the rithm are met. The LVQ3 algorithm contains an additional 
training algorithm, Three commonly used learning methods learning mode. If the two weight vectors that are closest to 
for training an LVQ neural network are herein designated the input vector meet the window condition (i.e., the con- 

In the first learning method (LvQl), only the weight 4s connect to output nodes that are of the same class as the 
LVQ1, LVQ2.1, and LVQ3. 

vector that is closest to the current input vector (i.e., the 
weight vector that produces the minimum Euclidean 
distance) is allowed to learn. For each matched pair of input 

training, the Euclidean distance between the input vector 
and each of the weight vectors is calculated and the output 
node connected to the weight vector that produces the 
minimum Euclidean distance is identified. If the output node 
that produces the minimum Euclidean distance corresponds 
to the correct operating mode, the connection weights for the 
output vector are positively reinforced as follows. Let the 
subscript j represent the output node whose weight vector 
produces the minimum Euclidean distance. If the target 
value for that output node is 1 (i.e., t,=l), then the weight 
vector for the output node (W,) is updated by 

ditions in equation (19) are met), and if both weight vectors 

input vector, then both weight vectors are Positively rein- 
forced. Both weight vectors are updated by 

and training vectors presented to an LVQ network during G=G+i%(Z-G) (20) 

where 6 is a user-defined parameter, called the LVQ3 
multiplier, that reduces the learning rate. The LVQ3 multi- 
plier is a small constant with typical values in the range 
0 . 1 ~ 6 ~ 0 . 5 .  

5s The concept behind the LVQ2.1 and LVQ3 learning 
methods is that as the input vectors used for training are 
presented to the neural network, learning occurs only when 
an input vector is close to two of the weight vectors. In this 
case, the input vector is near the boundary between two 

60 weight vectors. Learning occurs in the LVQ2. 1 algorithm 
only if one of the weight vectors belongs to the same output 
class as the input vector and the other weight vector belongs 

(I7) to a different class. The weight vector belonging to the 
where X is the current input vector and h is a scalar correct class is positively reinforced and the other vector is 
parameter called the learning rate that varies from 0 to 1. If 65 negatively reinforced. The LVQ3 algorithm contains the 
the output node whose weight vector produces the minimum same conditions as the LVQ2.1 algorithm. But an additional 
Euclidean distance corresponds to the incorrect operating condition in the LVQ3 algorithm allows the network to 

so 

Gl=i?l+L(z-i?l) 



US 6,917,839 B2 
31 32 

learn, at a slower rate, if both weight vectors belong to the cluster the input vectors that belong to the class into a 
same class as the input vector. Over the course of the number of clusters that equals the number of output nodes 
iterative training procedure, this technique works to sharply that belong to the class. For instance for class j, the K-means 
define the boundaries between the vector spaces recognized clustering algorithm is used to divide the input vectors into 
by each weight vector. s nout, clusters and to evaluate the centers of the clusters. The 

Aset of input vectors and corresponding target vectors are cluster centers for class j are used to initialize the weight 
used to train the LVQ neural network. The set of input and vectors whose output nodes belong to the class. The 
target vectors is presented to the network and the connection K-means clustering algorithm evaluates cluster centers for 
weights are adjusted depending upon the learning algorithm the class by minimizing the Euclidean distances between 
selected. Then, the learning rate parameter (A) is decreased i o  each of the input vectors in the class and the cluster center 
by a small amount and the set of input and target vectors is 
passed through the network again. The cycle is repeated 
until the learning rate decreases to zero or until the error rate 
for the neural network converges. Each training cycle of data 
presentation and learning rate reduction is called an epoch. 
The maximum number of epochs (n,J to be performed by 
the training algorithm is a user-defined control parameter. 
The learning rate decreases linearly with epoch number, 
with the learning rate decreasing to zero when the maximum 
number of eaochs is reached. The initial value of the 

nearest to each. Thus, each cluster center is the mean value 
of the group of input vectors in a cluster domain. The 
K-means clustering algorithm was found to improve the 
recall capabilities of the neural network over the random 

is initialization scheme, at a minimal increase in the compu- 
tational cost of the training calculations. 

A trained LVQ neural network operates as follows. At a 
point in time, a current data observation is acquired from the 
asset 12 and an input vector is constructed. The Euclidean 

20 distance between the inaut vector and each of the weight a 

learning rate (A,) is a user-defined control parameter that, vectors is calculated. The weight vector producing the 
along with the maximum the number of epochs, determines minimum Euclidean distance is found and its corresponding 
the rate at which the learning rate is decreased. Specifically, output node is activated. The neural network declares the 
the learning rate is decreased by a factor of n,,/A, at the end operating mode corresponding to the activated output node 
of each epoch. zs to be the current operating mode of the asset 12 under 

During each training epoch, the error rate for the neural surveillance. 
network is calculated. The error rate is defined to be the In Use and In Operation Using A MSET Parameter 
fraction of input vectors that are incorrectly classified by the Estimation Model and A Neural Network for Determining 
neural network. An input vector is correctly classified if the the Operating Mode of the Asset 
weight vector that is closest to it connects to an output node 30 Operating mode partitioned decision processing was first 
of the same class as the input vector. As each input vector in reduced to practice by applicant in the performance of 
the training set is passed through the LVQ neural network NASA Contract NAS4-99012. Testing performed under this 
during a training epoch, the program notes if the input vector contract conclusively demonstrated the reduction to practice 
was correctly or incorrectly classified. The error rate is then for and unobvious benefits of the instant invention. The 
given by the ratio of the number of incorrectly classified 3s contract final report and new technology disclosure docu- 
input vectors to the total number of input vectors in the ments by applicant, delivered to the United States Govern- 
training set. By keeping track of the error rate, the training ment under this contract and listed herein below, further 
algorithm can be halted as soon as the neural network stops describe one embodiment and its reduction to practice, the 
learning. disclosure of which is incorporated in its entirety herein by 

are fine-tuning procedures. Only slight modifications are NASA SBIR Phase I Final Report, “System State Deter- 
made to the network weight vectors during any training mination for Real-Time Sensor Validation,” NASA Contract 
epoch. Therefore to minimize the number of epochs needed NAS4-99012, 12 Jun. 1999. Publication or disclosure 
to train the neural network, the initial values of the weight restricted to US Government personnel for four years pur- 
vectors must be chosen wisely. The simplest method of 4s suant to Code of Federal Regulations 48 CFR 52.227-20. 
initializing the weight vectors is to randomly select t vectors New Technology Report for NASA Contract NAS4- 
from the set of input vectors used to train the neural network 99012, “Phase Partitioning the Multivariate State Estimation 
and use them as initial values for the weight vectors, where Technique (MSET) Process for Improved Parameter Esti- 
t is the number of output nodes in the network. Although this mation Performance and Processing Speed,” Expert 
initialization method works, a better method, which in SO Microsystems, Inc. Document Control Number 2000-4446, 
general reduces the number of epochs needed to adequately 24 Jan. 2000. Publication or disclosure restricted to US 
train the network is to use the K-means clustering algorithm Government personnel for four years pursuant to Code of 
to set the initial values of the weight vectors. The K-means Federal Regulations 48 CFR 52.227-20. 
clustering algorithm is a method that will divide a vector New Technology Report for NASA Contract NAS4- 
space into K clusters and identify the centers of each cluster. ss 99012, “System State Classification Using A Learning Vec- 
The K-means clustering algorithm can be used to divide the tor Quantization (LVQ) Neural Network,” Expert 
input vectors used to train the LVQ network into t clusters Microsystems, Inc. Document Control Number 2000-4447, 
and use the centers of the clusters as the initial values for the 24 Jan. 2000. Publication or disclosure restricted to US 
weight vectors. Government personnel for four years pursuant to Code of 

The K-mean clustering algorithm is used to initialize the 60 Federal Regulations 48 CFR 52.227-20. 
weight vectors as follows. For each of the r classes recog- In the performance of NASA Contract NAS4-99012, a 
nized by the network, the input vectors that belong to each sensor validation software module was designed to validate 
class are identified and collected into r arrays. Next the seventeen (17) mission critical telemetry signals for the 
output nodes that belong to each class are identified. By Space Shuttle Main Engine (SSME), as listed in FIG. 18. 
definition, the number of output nodes that belong to each 65 These signals were selected based on their importance for 
class is given by the nodes-per-class vector (N,,,,,). Then for real-time telemetry monitoring of the three Space Shuttle 
each class, the K-means clustering algorithm is used to Main Engines during vehicle ascent to orbit. The names 

The learning methods devised for the LVQ neural network 40 reference. 
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listed in FIG. 18 use standard SSME nomenclature. Data 
from ten nominal Space Shuttle flights, with flights and 
engine positions as listed in FIG. 19, were selected as the 
training data for the MSET submodels and LVQ neural 
network used in the performance of this work. 

A series of parametric studies were performed to deter- 
mine the LVQ neural network configuration and training 
constants that provide the best performance for SSME 
operating mode determination. The neural network configu- 
ration and training constants selected for applicant’s reduc- 
tion to practice are defined in FIG. 17. Ten SSME flight data 
sets, defined in FIG. 19, were used to train the neural 
network. The operating mode determination capability of 
the LVQ neural network was shown to be excellent with 
operating mode classification error rates of less than 2% 
observed in testing with additional SSME flight data sets 
that were not used for training the neural network. 
Specifically, FIG. 20 illustrates three versions of the sensor 
validation software module. The first sensor validation soft- 
ware module, herein denoted the PD module, was created by 
the methods of the instant invention with a process memory 
matrix (D) size of 150 vectors for each operating mode 
partitioned MSET submodel in the MSET decision model. 
The PD module’s MSET decision submodels were created 
using an LVQ neural network for the operating mode 
determination procedure. The second sensor validation soft- 
ware module, herein denoted the A150 module, was created 
by the unpartitioned MSET model creation procedure with 
a process memory matrix (D) size of 150 vectors used in the 
unpartitioned MSET model. This enabled a direct compari- 
son of surveillance performance between the operating 
mode partitioned (instant invention) and unpartitioned mod- 
els given a constant processing time. The third sensor 
validation software module, herein denoted the M O O  
module, was created by the unpartitioned MSET model 
creation procedure with a process memory matrix (D) size of 
300 vectors used in the unpartitioned MSET model. The 
M O O  module enabled improved surveillance performance 
for the unpartitioned MSET model case, albeit at the cost of 
greater processing time. 

FIG. 20 further lists the parameter estimation model and 
fault detector configurations used for feasibility testing. 

The operating mode partitioned sensor validation module 
(denoted PD) incorporated an MSET decision model parti- 
tioned into seven (7) modes representative of the primary 
operating modes of the SSME. The rules used for partition- 
ing the training data for the SSME operating modes are 
provided in FIG. 21. The two unpartitioned sensor validation 
modules (denoted A150 and M O O )  were prepared using 
exactly the same training data without the benefit of oper- 
ating mode partitioning. 

The Argonne National Laboratory System State Analyzer 
(SSA) type pattern recognition operator was used in all of 
the MSET models. The fault detection models were all based 
on the SPRT mean positive and mean negative test methods. 
SPRT is a statistically derived test statistic with an explicit, 
non-zero false alarm probability. For this reason, SPRT fault 
detectors are generally used in combination with a multi- 
cycle fault decision algorithm to filter out the possible 
one-cycle SPRT alarms. The fault decision procedure was 
configured using a four (4) out of seven (7) multi-cycle 
decision algorithm. This fault decision procedure will 
declare a sensor failure whenever any 4 of the last 7 
observation cycles produce any type of one-cycle SPRT 
fault detection alarm. 

Performance testing clearly demonstrated the feasibility 
and benefits of using the operating mode partitioned MSET 

34 
decision model for real-time sensor signal validation. Met- 
rics used to evaluate the test results included the following: 

Total One Cycle Alarm Count-This is a measure of the 
total number of SPRT fault detector generated alarms for a 

5 single simulation run. For nominal cases, this is expected to 
be a near zero number. For failure simulation cases, the 
number will be non-zero. This metric provides a measure of 
the overall performance of the fault detection procedure. 

Average Parameter Estimation Error Percentage-This is 
lo a measure of the globally averaged parameter estimation 

error. The global averaged error is the sum of the single 
cycle error for all sensors and data observations divided by 
the total number of sensors and data observations. This 
metric provides a measure of the overall performance of the 
parameter estimation procedure. 

Average One Cycle Processing Time-This is a measure 
of the globally averaged single cycle validation processing 
time. The one cycle processing time is the sum of the 
processing time for all validated data observations divided 

2o by the total number of validated data observations. The 
processing time is calculated as the elapsed time between the 
time of the test driver’s call to the sensor validation mod- 
ule’s surveillance procedure and the time that the surveil- 
lance procedure returns its results to the test driver. 

Time to Failure Detection (Failure Simulations Only)- 
This is a measure of the elapsed time between the first 
observation containing sensor failure data and the observa- 
tion for which the sensor validation module declares the 

3o sensor failed. Time to fault detection depends on the diag- 
nostic capability of the sensor validation module, the time of 
failure occurrence and the nature and magnitude of the 
sensor failure. The data herein report the elapsed mission 
time between the initiation of a slow drift in the signal and 

35 the time that the drift failure was detected. For consistency, 
all test cases herein used a drift magnitude of 0.2% of the 
nominal, full power level value of the sensor signal applied 
per second of engine operating time. 

Signal Error at Failure Detection (Failure Simulations 
4o Only)-This is a measure of the total accumulated drift error 

in a sensor signal at the time of failure detection. The data 
reported herein normalize the error at the time of detection 
in terms of a percentage of the nominal, full power level 
value of the sensor signal. 

The results tabulated in FIGS. 22 through 27 demonstrate 
the very significant improvement in sensor validation per- 
formance achieved using the operating mode partitioned 
MSET decision model in accordance with the instant inven- 
tion. The operating mode partitioned MSET decision model 

50 provided better fault detection sensitivity, lower parameter 
estimation error, and much faster processing time in com- 
parison to the unpartitioned MSET models. The operating 
mode partitioned MSET decision model exhibited zero (0) 
false alarms and zero (0) missed alarms during all testing 

55 performed. The results tabulated in FIGS. 22 and 23 were 
generated using an LVQ neural network for the operating 
mode determination procedure. 

Two test series were performed for comparison of the 
operating mode partitioned sensor validation module to the 

60 unpartitioned modules. In the first series, an unpartitioned 
model with a process memory matrix of 300 vectors was 
constructed (denotedM00). The operating mode partitioned 
model (denoted PD) used a process memory matrix of 150 
vectors for each individual operating mode. When compared 

65 to the 300 vector unpartitioned model, the operating mode 
partitioned MSET decision model in accordance with the 
instant invention demonstrated: 

25 

45 
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34% reduction in parameter estimation error; 
73% reduction in per cycle processing time; 
73% reduction in time to detect a sensor signal drift; 
73% reduction in the total signal error at drift failure 

In addition, the 300 vector unpartitioned model missed 

operating mode partitioned decision model in accordance 
with the instant invention. 

decision model was compared to an unpartitioned model of 
equivalent run-time speed. To accomplish this, an unparti- 
tioned model with a process memory matrix of 150 vectors 
was constructed (denotedA150). When compared to the 150 
vector unpartitioned model, the operating mode partitioned IS 
decision model in accordance with the instant invention 
demonstrated: 

FIG. 24 and FIG. 26, doubling the process memory matrix 
size increased the single cycle processing time by a factor of 
four (2’). Operating mode partitioning provides an effec- 
tively larger process memory matrix without the concomi- 

5 tant penalty in processing time. For example, the operating 
mode partitioned SSME validation module ( p ~ )  

matrices sized at 150 vectors per mode, This provides an 
effective process memory matrix size of 1050 vectors with 

containing 150 vectors, A single unpartitioned model of 
equivalent accuracy would be 49 ( 7 ~ )  t. imes slower than the 
operating mode partitioned decision model, 

monitoring capability of the operating mode partitioned 
decision model. Single observation processing times of 
5-msec (200 samplesisecond) were demonstrated with the 
seventeen (17) sensor SSME sensor validation module run- 

2o ning on a 300-MHz Pentium I1 processor. It is reasonable to 

validation processing in SSME real-time control applica- 
tions. The results of this testing show these goals are only 

in that were properly detected by the operating mode 25 model in accordance with the instant invention. The unob- 
partitioned decision model in accordance with the instant vious benefits of the instant invention are therefore demon- 

strated by this reduction to practice. invention. 
me operating mode partitioned decision model provides Alternate Embodiment and In Use and Operation Using A 

better fault detection sensitivity because the operating mode MSET Decision Model for Parameter Estimation and A 
specific MSET decision submodels are better able to esti- 30 Rule-Based Logic Sequence for Determining the Operating 
mate the current value of each observed parameter. This Mode of the Asset: 
capability of the operating mode partitioned decision model In another embodiment, the same MSET decision model 
is demonstrated by the reduction achieved in the parameter methods and procedures described hereinabove were used 
estimation error. Reduced parameter estimation error allows with a rule-based logic sequence for the operating mode 
the SPRT thresholds for the fault detection model to be set 35 determination procedure 26. A rule-based mode determina- 
to lower values thereby making the fault detection model tion procedure is generally specific to a single type of asset 
more sensitive to the early indications of sensor failure and may be implemented in a plurality of forms. A rule- 
(fewer missed alarms). This phenomenon proportionally based mode determination procedure may use expert system 
reduces the time to drift failure detection as illustrated by or procedural logic depending on the nature and complexity 
comparison of the results reported in FIG. 23 to the results 40 of the operating modes of the asset. In one embodiment 
reported in FIG. 25 and FIG. 27. herein, procedural logic representing the rules specified in 

Parameter estimation error may be traded off against FIG. 2 1  for determining the operating mode of the SSME 
processing time by increasing the number of vectors in the was reduced to practice using C language procedural soft- 
process memory matrix. As is evident by comparison of ware as follows. 

detection. 

noise that were properly detected by the includes Seven active operating modes with process memory 

In the second series, the Operating mode partitioned lo processing speed equivalent to a process memory matrix 

Processing ’peed demonstrated the 

42% reduction in parameter estimation error; 
Equivalent per cycle processing time; 
77% reduction in time to detect a signal drift; 
76% reduction in the total signal error at drift failure between and 50-msec per data cyc1e for 

detection. 
In addition, the 150 vector unpartitioned model produced 

two failure false alarms and missed one noise failure with Operating mode partitioning Of the MSET 

. . .. . .. . .. . Begin Source Code Listing----------- 
I* SSME operating mode determiner function *I 
I* Copyright 1999 by Expert Microsystems, Inc. *I 
I* All Rights Reserved *I 
#define START-COMMAND 33024.0 
#define SHUTDOWN-COMMAND 35328.0 
#define COMMAND-ISSUED(COMVAL,DATUM) ((DATUM>(COMVAL - 1 .O)) 

&& (DATUM <(COMVAL + 1.0))) 
enum SSMELmodes SSME-modedeterminer (double *data, enum Boolean initialize) 

float pc; I* Combustion chamber pressure *I 
float vehcom; I* Vehicle command code *I 
float compc; I* Commanded chamber pressure *I 
static float last-PL=O.O; 
static int cycles-in-start=O; 
static float last-compc=O.O; 
static enum SSMELmodes lastLstate=PREFIRE 
if(initia1ize) { 

{ 

last-PL = 0.0; 
cycles-in-start = 0; 
last-compc = 0.0; 
last-state = PREFIRE; 
return PREFIRE: 
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-continued 
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I; 
pc = data[PID63]; /* Chamber pressure is PID63 */ 
vehcom = data[PID280]; /* Vehicle command is PID280 */ 
compc = data[PlD287]; /* Commanded chamber pressure is PID287 */ 
I* Take care of special cases first...*/ 
if (last-state == PREFIRE) { 

if (COMMAND-ISSUED (START-COMMAND, vehcom)) { 
/* If we’re waiting for START and receive START, then we’re 
in TRANSIENT. */ 
last-state = STARTO1; 
return STARTO1; 

/* Keep waiting. */ 
last-state = PREFIRE; 
return PREFIRE 

} else { 

I 
} else if (last-state == SHUTDOWN 1 1  COMMAND-ISSUED 
(SHUTDOWN-COMMAND, vehcom)) { 

/* Once SHUTDOWN is detected, stay in SHUTDOWN until re-initialized. */ 
last-state = SHUTDOWN, 
return SHUTDOWN, 

I 
if(lastLstate==STARTOl) { 

if(++cycles-in-start<ZS) { /* 0 to 1.0 sec */ 
last-compc = compc; 
last-state = STARTO1; 
return STARTO1; 

last-state = START12; 
return START12; 

} else { 

I 
1; 
if(lastLstate==STARTlZ) { 

if(++cycles-in-start<SO) { /* 1.0 to 2.0 sec*/ 
last-compc = compc; 
last-state = START12; 
return START12; 

last-state = START24; 
return START24; 

} else { 

1; 
I; 
if(lastLstate==START24) { 

if(++cycles~in-~tart<25*4) { /* 2.0 to 4.00 sec minimum */ 
last-compc = compc; 
last-state = START24; 
return START24; 

/* ELSE ... mainstage operation. */ 
if((lastLstate==STEADY-LOW 1 1  lastLstate==STEADY-FULL) 
&&fabs(compc-last~compc)<3.35) { 

last-PL = pc; 
last-compc = compc; 
if(compc <2500.0) { 

last-state = STEADY-LOW, 
return STEADY-LOW 

last-state = STEADY-FULL; 
return STEADY-FULL 

} else { 

I 
} else {/* In transient */ 

if(fabs (compc - pc) <= (5 * 3.35)) { 
/* Transition to steady-state. */ 
last-PL = pc; 
last-compc = compc; 
if(compc <2500.0) { 

last-state STEADY-LOW, 
return STEADY-LOW, 

last-state = STEADY-FULL; 
return STEADY-FULL 

} else if(lastLstate==START24) { 

} else { 

I 
last-PL = pc; 
last-compc = compc; 
return last-state 

last-PL = pc; 
} else if(compo1ast-compc 1 1  pc<compc) { 
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last-compc = compc; 
last-state = UPTHRUST; 
return UPTHRUST, 

last-PL = pc; 
last-compc = compc; 
last-state = DOWNTHRUST; 
return DOWNTHRUST, 

} else { 

I; 
I; 

End Source Code Listing----------- 
I 
........... 

15 
Reduction to practice and performance testing was element (designated T), and one heater control element. The 

accomplished using the MSET parameter estimation tech- test system computer 44 used the data acquisition means 40 
niques and rule-based operating mode determination proce- to monitor the signal sources 42 consisting of the three 
dure described hereinabove. Substantially identical test sensor elements on each of the two sensors as shown in FIG. 
results were achieved using the rule-based method and the 29 and actuated the alarm 83 if hydrogen levels exceeded 
LVQ neural network method for the operating mode deter- 2o safety limits. The decision model 50 was comprised of an 
mination procedure 12. This was expected because both MSET parameter estimation model 52, a SPRT fault detec- 
methods implemented the same operating mode determina- tion model 54, and a BBN fault classification model 56. The 
tion criteria, as defined in FIG. 21, albeit using very different MSET parameter estimation model and SPRT fault detection 
means. Reduction to practice using both neural network and models were used to provide alarm indications for signals 
rule-based methods illustrates that the instant invention may 25 that were behaving abnormally. As each observation was 
employ any one of a plurality of operating mode determi- analyzed, the SPRT returned an array of ones and zeros 
nation procedures 26 to achieve the benefits described indicating whether each signal’s reading was normal or 
herein. These techniques were also demonstrated using abnormal. The Bayesian belief network (BBN) used the 
mathematical models, as shown in FIG. 28. SPRT output as positive findings to determine the state for 

In Use and In Operation Using A Bayesian Belief Net- 30 each of its alarm indication leaf nodes. The BBN used this 
work for Classifying the Condition of an Asset and A state information to determine the probability of any of the 
Rule-Based Logic Sequence for Determining the Operating specified possible causes of the fault, thereby classifying the 
Mode of the Asset fault. 

In one application, the novel surveillance method and 
system of the instant invention that combines methods for 35 
parameter estimation, fault detection, and fault classification 
was used for determining the status of instrument and 
system assets in smart, autonomous sensors and control 

BBN Configuration 
The BBN the Output from each detector 

associated with one of its alarm indication leaf nodes as a 
positive finding for the leaf node. The BBN combines this 
information from all of its leaf nodes to determine the 
probability of any of the specified possible causes of the components for the x-33 Sing1e Stage to Orbit fault, The BBN fault classification submodel 57 configura- 

Demonstrator Hydrogen Detection System. The instant 40 tion and probability tables can be different in each operating 
invention was demonstrated by applicant in the performance mode, H ~ ~ ~ ~ ~ ~ ,  in this a similar BBN fault classifica- 

performed under this contract conclusively demonstrated the system operating modes, The configuration was as fo~~ows,  
reduction to practice for and unobvious benefits of the six fault nodes were created to determine the specific 

nology disclosure documents by applicant, delivered to the element, LR1 element, T1  element, HR2 element, LR2 
United States Government under this contract and listed element, and T2 element. Each sensor element node had two 
herein below, further describe one preferred embodiment possible states, good (not faulty) and bad (faulty). Two 
and its reduction to practice, the disclosure of which is additional fault nodes were created to determine whether the 
incorporated in its entirety herein by reference. SO entire sensor had failed. These were named Sensorl and 

NASA SBIR Phase I Final Report, “Autonomous Control Sensor2. They also took on the states good and bad. If a node 
System Components,” NASA Contract NAS13-01001, is in a good state, the implication is that the associated asset 
November 2001. Publication or disclosure restricted to US item is operating acceptably. For each of the fault nodes, we 
Government personnel for four years pursuant to Code of assign a prior probability. This is the probability that the 
Federal Regulations 48 CFR 52.227-20. ss proposition is true. For example, we believe that Sensorl 

New Technology Report for NASA Contract NAS13- and Sensor2 are reliable under the test conditions, so we 
01001, “A Surveillance System and Method having Proba- believe they will behave correctly 95% of the time. This 
bilistic Fault Detection and Classification,” Expert implies that they will behave incorrectly 5% of the time. 
Microsystems, Inc. Document Control Number 2001-4473, This may be due to any number of reasons, e.g., not 
November 2001. Publication or disclosure restricted to US 60 supplying power to the sensor, damage to the sensor’s 
Government personnel for four years pursuant to Code of cables, etc. The reasons for this failure are not of interest, 
Federal Regulations 48 CFR 52.227-20. only that each sensor can be expected to operate correctly 

In the performance of NASA Contract NAS13-01001, a 95% of the time. We believe the probability of a bad element 
test setup was configured for exposing two redundant hydro- to be greater that the probability of a bad sensor, so we 
gen sensor assemblies to varying concentrations of H, gas. 65 assigned a 10% prior probability to each of the elements 
Each of these sensor assemblies contains two H, sensor failing. Conversely, there is 90% prior probability that each 
elements (designated LR and HR), one temperature sensor element has not failed. 

Of this work under NASA Contract NAS13-01001. Testing tion submodel configuration was used in each of the two 

instant invention. The contract final report and new tech- 45 Sensor element that had failed, These were designated HR1 
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Each of the alarm indication nodes is a leaf node. Each 
leaf node is a child of at least one parent, and a conditional 
probability is required for each of the combinations of parent 
states. That is, given the state of each of the parents, there is 
a probability that the alarm leaf node will be in either the 
“normal” or “abnormal” state. Each fault node indicating a 
bad element has an associated alarm leaf node as a child. 
Each “bad sensor” node has three of the leaf nodes as 
children. Therefore, each leaf node has two parents. The 
conditional probability tables require one entry for each state 

were calibrated for each included sensor on the basis of their 
corresponding MSET submodel estimates taken over the 
training data for their respective operating modes. Each fault 
detector returned an array of ones and zeros indicating 

s whether each sensor element’s reading was normal or abnor- 
mal. 

Test results demonstrated that the BBN is effective for 
diagnosing faults detected by the parameter estimation and 
fault detection procedures. Nominal (OPERATING) test 

i o  data consisted of data obtained during exposure to 3.57% 
of the node for each combination of the node’s parent’s H,, and during exposure to 0% H, using the sensors that had 
states. This yields a conditional probability table for each been previously used to acquire the training data. As 
node that requires 8 separate entries. expected, the system accurately predicted the data and 

es for the leaf nodes were divided generated no alarms. 
into three conditions. If all of the parent states were “good”, is In order to further test the operating mode partitioned 
the probability that each of the child nodes were in a normal BBN fault classification model, we overlaid drift errors on 
state was very high (95%). If either the associated sensor or selected signal data, forcing the MSETiSPRT algorithms to 
the element were “bad”, the probability that the sensor was generate fault indications. These 
behaving abnormally was also high (95%). If both the sensor resulting fault classification prob 
and the element were “bad” the probability that the sensor 20 FIGS. 33 through 34.  Beliefs (fault classification 
was behaving abnormally was higher than if only one or the probabilities) are listed with the most probable causes at the 
other were “bad”, so a 99% probability of failure was top of the list. In each case, the operating mode partitioned 
assigned. BBN fault classification model correctly diagnosed the 

The MSETiSPRT submodel combination provides one cause of the fault indications. The OPERATING mode test 
example of a means to perform parameter estimation and zs data in FIG. 33 illustrates that when faults occur on three of 
fault detection in order to determine the state of the alarm the sensor’s elements, the most likely cause of failure is the 
indication leaf nodes. The fault detectors each return a failure of the entire sensor. When one or two of the sensor’s 
normal or abnormal value for their associated alarm indica- elements are abnormal, the most likely cause is element 
tion nodes every time an observation is processed. Each of failure. As expected, when more than one element fails on a 
these values is treated as a positive finding on the associated 30 sensor, the probability of the sensor having failed is 
alarm node. Apositive finding is a value that may be applied increased, but a much larger increase occurs with the third 
with 100% certainty, or a probability of 1. That is, we are element failing. The VENTING mode test data in FIG. 34 
positive that this alarm node is reporting a “normal” or illustrates the same results. 
“abnormal” condition. For comparison, a hydrogen detection system model was 

The BBN fault classification submodel is diagrammed in 3s configured and run over the same OPERATING and VENT- 
FIG. 30. The complete set of prior probability and threshold ING test data, but without the benefit of the operating mode 
values for the BBN nodes are listed in FIG. 31 for Sensor1 determination procedure 26. That is, the decision model was 
and FIG. 32 for Sensor2. The threshold values simply define trained and operated as a single mode unpartitioned model. 
the posterior probability value above which the node will be In this case, performance was satisfactory for the OPERAT- 
considered to be in an unacceptable condition. When the 40 ING test data, which yielded the same decision results as the 
posterior probability value for the node exceeds the partitioned model as shown in FIG. 35. However, the 
threshold, the BBN will classify the node and thereby the unpartitioned model failed to correctly classify all of the 
associated asset item as faulty. simulated faults when processing the VENTING test data as 

Test Procedure and Results shown in FIG. 36. In the VENTING test cases, the drift error 
The system was exposed to H, at 0%, 0.1%, 0.5%, 1.0%, 4s in signal L1 is not detected. This leads to a missed alarm for 

5.0%, 10.0% and 100.0% concentrations during normal L1 when the only fault occurs on L1 and to an incorrect 
operation. Training data was collected during these expo- diagnosis of the failure of sensor 1 when H1, L1, and T1 
sures from each of these elements at one-second intervals. simultaneously drift high. 
Test data was taken several months later at 3.57% H, and 0% These comparative tests demonstrate the improvement in 
H, using the same sensors and test configuration. Next, these SO decision accuracy that results from the unique methods of 
data were adjusted to create additional sets of training and the subject invention. 
test data wherein the effect of hydrogen tank venting in the While an MSET parameter estimation procedure is 
vicinity of the sensors was simulated. Tank venting has the described herein above, any type of parameter estimation 
effect of increasing the background hydrogen concentration procedure can be used with the instant invention. The 
in the vicinity of the sensors and can cause the hydrogen ss novelty described infra is not a modification or improvement 
detection system to produce undesirable false alarms or to the MSET procedure, but is rather a new means of using 
missed alarms. 

An operating mode determination procedure 26 was used 
to classify each observation on the basis of the tank vent 
valve state. The procedure classified the operating mode as 
OPERATING whenever the tank valve indication was less 
than 50% open and the operating mode as VENTING 
whenever the tank valve indication was more than 50% 
open. 

Two MSET parameter estimation submodels 53 were 
trained on the training data, one for OPERATING and one 
for VENTING. Two SPRT fault detection submodels 55 

any existing parameter estimation procedure so as to more 
effectively accomplish the fault classification objective. 

While a SPRT fault detection procedure is described 
60 herein above, any type of fault detection procedure can be 

used with the instant invention. The novelty described infra 
is not a modification or improvement to the SPRT procedure, 
but is rather a new means of using any existing fault 
detection procedure so as to more effectively accomplish the 

While a BBN fault classification procedure is described 
herein above, any type of fault classification procedure can 

65 fault classification objective. 
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be used with the instant invention. The novelty described 
infra is not a modification or improvement to the BBN 
procedure, but is rather a new means of using any existing 
fault classification Procedure SO as to more effectively 
accomplish the fault classification objective. 

Accordingly, in one aspect the Present invention Provides 
a surveillance system and method having fault classification 
and operating mode partitioning. 

In another aspect the present invention provides a system 
and method for performing high sensitivity surveillance of a 
wide variety of assets including industrial, utility, business, 

In another aspect the present invention provides a system 
and method as characterized above which provides an 
improved system and method for ultra-sensitive analysis and 
modification of asset processes and apparatuses using at 

s least one fault detection technique for comparing at least one 
virtual signal parameter to at least one observed signal 
parameter, 

In another aspect the present invention provides a system 
and method as characterized above which provides an 

i o  improved system and method for ultra-sensitive analysis and 

medical, transportation, financial, and biological processes modification Of asset processes and apparatuses at 

and apparatuses wherein such process and/or apparatus asset 

In another aspect the present invention provides a system 

least One detection technique for assessing at least One 

In another aspect the present invention provides a system 
preferably has at least two distinct modes of operation. observed signal parameter. 

and method for determining the status of an asset. is and method as characterized above which provides an 
another aspect the present invention provides a system improved system and method for ultra-sensitive analysis and 

and method for performing control of an asset. modification of asset processes and apparatuses using at 
In another aspect the present invention provides a system least one diagnostic decision making technique for assessing 

and method which partitions a parameter estimation model the status of the asset using at least one observed signal 
for a process surveillance scheme into two or more coordi- 20 parameter. 
nated submodels each providing improved parameter esti- In another aspect the present invention provides a system 
mation for a single operating mode or related subset of and method as characterized above which provides an 
operating modes of the process. improved system and method for ultra-sensitive analysis and 

In another aspect the present invention provides a system modification of asset processes and apparatuses using at 
and method which partitions a fault detection model for a zs least one diagnostic decision making technique for assessing 
process surveillance scheme into two or more coordinated the status of the asset using at least one virtual signal 
submodels each providing improved fault detection for a parameter. 
single operating mode or related subset of operating modes In another aspect the present invention provides a system 
of the process. and method as characterized above which provides an 

In another aspect the present invention provides a system 30 improved system and method for ultra-sensitive analysis and 
and method which partitions a fault classification model for modification of asset processes and apparatuses wherein the 
a process surveillance scheme into two or more coordinated diagnostic decision technique used for assessing the status of 
submodels each providing improved fault classification for the asset is a Bayesian network. 
a single operating mode or related subset of operating modes In another aspect the present invention provides a system 
of the process. 3s and method as characterized above which provides an 

In another aspect the present invention provides a system improved system and method for ultra-sensitive analysis and 
and method which partitions a parameter estimation model, modification of asset processes and apparatuses wherein the 
a fault detection model, and a fault classification model for diagnostic decision technique used for assessing the status of 
a process surveillance scheme into two or more coordinated the asset is an expert system or other rule based system. 
submodels together providing improved diagnostic decision 40 In another aspect the present invention provides a system 
making for a single operating mode or related subset of and method as characterized above which provides an 
operating modes of the process. improved system and method for ultra-sensitive analysis and 

In another aspect the present invention provides a system modification of asset processes and apparatuses wherein the 
and method which creates an improved parameter estimation diagnostic decision technique used for assessing the status of 
model for a process surveillance scheme using recorded 4s the asset is a neural network. 
operating data for an asset to train a parameter estimation In another aspect the present invention provides a system 
model. and method to classify the operating mode of an asset 

In another aspect the present invention provides a system wherein the classification is performed using an expert 
and method as characterized above which provides an system having any one of a plurality of structures, training 
improved system and method for surveillance of signal SO procedures, and operating procedures. 
sources, detecting a fault or error state of the signal sources, In another aspect, the present invention provides a system 
and determining the cause of the fault or error state of the and method to classify the operating mode of an asset 
signal sources enabling responsive action thereto. wherein the classification is performed using a neural net- 

In another aspect the present invention provides the work having any one of a plurality of structures, training 
system and method which provides an improved system and ss procedures, and operating procedures. 
method for surveillance of on-line, real-time signals, or In another embodiment of the invention, an asset surveil- 
off-line accumulated signal data. lance system is comprised of  an operating mode partitioned 

In another aspect the present invention provides a system fault classification model 56 of an asset 12 comprised of a 
and method for generating an improved virtual signal esti- plurality of fault classification submodels 57 each having an 
mate for at least one process parameter given an observation 60 asset operating mode Mi associated thereto; a fault indica- 
of at least one actual signal from the asset. tion means 70 for determining one or more fault indications 

In another aspect the present invention provides a system given a set of observed asset signals from the asset 12; 
and method as characterized above which provides an means for determining at least one operating mode Mi of the 
improved system and method for ultra-sensitive analysis and asset 12 for the set of observed asset signals; a first selection 
modification of asset processes and apparatuses using at 65 means for selecting at least one of the fault classification 
least one parameter estimation technique for the generation submodels 57 from the operating mode partitioned fault 
of at least one virtual signal parameter. classification model 56 as a function of at least the one 
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determined operating mode Mi for providing a fault classi- calculated set of estimated signal data values correlative to 
fication of determined fault indications for performing asset the set of observed signal data values acquired from the 
surveillance. The fault indication means further includes an asset; comparing the set of observed signal data values to the 
operating mode parameter estimation model 52 comprised calculated set of estimated signal data values; determining a 
of a plurality of parameter estimation submodels 53 each s presence of a disagreement between the set of observed 
having an asset operating mode Mi associated thereto and a signal data values and the calculated set of estimated signal 
second selection means for selecting at least one of the data values on the basis of the comparison step, and deter- 
parameter estimation submodels 53 from the operating mode mining a cause of a determined presence of disagreement 
partitioned parameter estimation model 52 as a function of between the set of observed signal data values and the 
at least the one determined operating mode Mi. The fault i o  calculated set of estimated signal data values for performing 
indication means further includes means for processing the asset surveillance. The method further including the step of 
observed asset signals as a function of at least the one using a Bayesian Belief Network (BBN) fault classification 
selected parameter estimation submodel for defining param- method for determining a presence of an unacceptable asset 
eter estimated data. Additionally, the fault indication means status or fault condition on the basis of a disagreement 
includes an operating mode partitioned fault detection model is between the set of observed signal data values and the 
54 comprised of a plurality of fault detection submodels 55 calculated set of estimated signal data values derived from 
each having an asset operating mode Mi associated thereto. the comparison step. The method further including the step 
Furthermore, the fault indication means further includes a of performing asset control as a function of the classified 
third selection means for selecting at least one of the fault asset status or fault condition. 
detection submodels 55 from the operating mode partitioned 20 In another embodiment of the invention, a method for 
fault detection model 54 as a function of at least the one determining asset status includes the steps creating 30 a fault 
determined operating mode Mi. Moreover, the fault indica- detection model 54 comprised of a plurality of fault detec- 
tion means further includes means for processing the tion submodels 55 each having an operating mode Mi 
observed asset signals as a function of at least the one associated thereto; creating 31 a fault classification 56 model 
selected fault detection submodel 55 for determining the one zs comprised of a plurality of fault classification submodels 57 
or more fault indications used for providing the fault clas- each having an operating mode Mi associated thereto; 
sification of determined fault indications by the first selec- acquiring a set of observed signal data values from an asset 
tion means selecting at least one of the fault classification 12; determining at least one operating mode of the asset 12 
submodels 57 from the operating mode partitioned fault for the set of observed signal data values; selecting 64 at 
classification model 56 as a function of at least the one 30 least one fault detection submodel from the fault classifica- 
determined operating mode Mi for providing the fault clas- tion model as a function of at least the one determined 
sification of determined fault indications for performing operating mode Mi; determining 70 at least one fault indi- 
asset surveillance. cation as a function of the observed signal data values; 

In another embodiment of the invention, a method for selecting 64 at least one fault classification submodel 57 
determining asset status includes the stem of creating 31 an 3s from the fault classification model 56 as a function of at least v v 

operating mode partitioned fault classification model 56 
comprised of a plurality of fault classification submodels 57 
each having an asset operating mode Mi associated thereto; 
acquiring 62 a set of observed signal data values from an 
asset; determining 70 at least one fault indication as a 
function of the observed signal data values; determining 26 
at least one operating mode Mi of the asset 12 for the set of 
observed asset signals; selecting 76 at least one fault clas- 
sification submodel 57 from the operating mode partitioned 
fault classification model 56 as a function of at least the one 

the one determined operating mode Mi, and using at least the 
one fault indication and at least the one selected fault 
classification submodel 57 for classifying faults 76 for 
performing asset surveillance. The method further including 

40 the step of creating 29 a parameter estimation model 52 
comprised of a plurality of parameter estimation submodels 
53 each correlative to at least one training data subset 
partitioned from an unpartitioned training data set 24 and 
each having an operating mode Mi associated thereto and 

4s wherein the stea of determining 70 at least one fault indi- v 

determined operating mode Mi, and using at least the one 
fault indication and at least the one selected fault classifi- 
cation submodel 57 for classifying faults 76 for performing 
asset surveillance. 

In another embodiment of the invention. a method for SO 

cation as a function of the observed signal data values 
includes the step of determining at least one fault indication 
as a function of both the estimated signal values and the 
observed signal data values. 

In another embodiment of the invention. a svstem for 
determining asset status includes the steps of partitioning a 
decision model 50 into a plurality of partitions e.g., 52, 54, 
56, each partition having an operating mode Mi associated 
thereto: employing a plurality of different methods 53, 55, 
57 from a plurality of parameter estimation methods 52, a 
plurality of fault detection methods 54, and a plurality of 
fault classification methods 56 for different partitions; deter- 
mining at least one operating mode Mi of an asset 12; 
selecting at least one of the plurality of partitions as a 
function of the determined operating mode for tailoring the 
plurality of parameter estimation methods 52, the plurality 

I ,  

determining asset status is comprised of  a parameter esti- 
mation model 52 comprised of a plurality of parameter 
estimation submodels 53 each correlative to at least one 
training data subset partitioned from an unpartitioned train- 

ss ing data set 24 and each having an operating mode Mi 
associated thereto; a fault detection model 54 comprised of 
a plurality of fault detection submodels 55 each having an 
operating mode Mi associated thereto; a fault classification 
56 model comprised of a plurality of fault classification 

60 submodels 57 each having an operating mode Mi associated 
thereto; means for acquiring a set of observed signal data 

of fault detection methods 54, and the plurality of fault 
classification methods 56 to asset surveillance as a function 
of the at least one determined operating mode Mi. 

determining asset status includes the steps of acquiring a set 
of observed signal data values from an asset; producing a 

values from an asset 12; means for determining at least one 
operating mode of the asset 12 for the set of observed signal 
data values; means for selecting 64 at least one parameter 

In another embodiment of the invention, a method for 65 estimation submodel 53 from the parameter estimation 
model 52 as a function of at least the one determined 
operating mode Mi; means for calculating a set of estimated 
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signal values from at least one selected parameter estimation 
submodel 53; means for selecting 64 at least one fault 
detection submodel from the fault classification model as a 
function of at least the one determined operating mode Mi; 
means for determining 70 at least one fault indication as a 
function of both the estimated signal values and observed 
signal data values; means for selecting 64 at least one fault 
classification submodel 57 from the fault classification 
model 56 as a function of at least the one determined 
operating mode Mi, and means for using at least the one fault 
indication and at least the one selected fault classification 
submodel 57 for classifying faults 76 for performing asset 
surveillance. 

Moreover, having thus described the invention, it should 
be apparent that numerous structural modifications and 
adaptations may be resorted to without departing from the 
scope and fair meaning of the instant invention as set forth 
hereinabove and as described hereinbelow by the claims. 

I claim: 
1. An asset surveillance system, comprising in combina- 

an operating mode partitioned fault classification model 
of an asset comprised of a plurality of fault classifica- 
tion submodels each having an asset operating mode 
associated thereto; 

a fault indication means for determining one or more fault 
indications given a set of observed asset signals from 
the asset; 

means for determining at least one operating mode of the 
asset for the set of observed asset signals; 

a first selection means for selecting at least one of the fault 
classification submodels from the operating mode par- 
titioned fault classification model as a function of at 
least the one determined operating mode for providing 
a fault classification of determined fault indications for 
performing asset surveillance. 

2. The system of claim 1 wherein said fault indication 
means further includes an operating mode partitioned 
parameter estimation model comprised of a plurality of 
parameter estimation submodels each having an asset oper- 
ating mode associated thereto and a second selection means 
for selecting at least one of the parameter estimation sub- 
models from the operating mode partitioned parameter esti- 
mation model as a function of at least the one determined 
operating mode. 

3. The system of claim 2 wherein said fault indication 
means further includes means for processing the observed 
asset signals as a function of at least the one selected 
parameter estimation submodel for defining parameter esti- 
mated data. 

4. The system of claim 3 wherein said fault indication 
means includes an operating mode partitioned fault detec- 
tion model comprised of a plurality of fault detection 
submodels each having an asset operating mode associated 
thereto. 

5. The system of claim 4 wherein said fault indication 
means further includes a third selection means for selecting 
at least one of the fault detection submodels from the 
operating mode partitioned fault detection model as a func- 
tion of at least the one determined operating mode. 

6. The system of claim 5 wherein said fault indication 
means further includes means for processing the parameter 
estimated data as a function of at least the one selected fault 
detection submodel for determining the one or more fault 
indications used for providing the fault classification of 
determined fault indications by said first selection means 
selecting at least one of the fault classification submodels 

tion: 

48 
from the operating mode partitioned fault classification 
model as a function of at least the one determined operating 
mode for providing the fault classification of determined 
fault indications for performing asset surveillance. 

7. The system of claim 1 wherein the fault classification 
of determined fault indications predicts asset failures. 

8. The system of claim 7 wherein the fault classification 
of determined fault indications predicts specific asset fail- 
ures including one or more sensor failures. 

9. The system of claim 7 wherein the fault classification 
of determined fault indications predicts specific asset fail- 
ures including one or more equipment failures. 

10. The system of claim 7 wherein the fault classification 
of determined fault indications predicts specific asset fail- 

is ures including an undesirable process operating condition. 
11. The system of claim 1 further including means for 

performing asset control as a function of the fault classifi- 
cation of determined fault indications. 

12. An asset surveillance method, the steps including: 
creating an operating mode partitioned fault classification 

model comprised of a plurality of fault classification 
submodels each having an asset operating mode asso- 
ciated thereto 

acquiring a set of observed signal data values from an 

determining at least one fault indication as a function of 
the observed signal data values; 

determining at least one operating mode of the asset for 
the set of observed asset signals; 

selecting at least one fault classification submodel from 
the operating mode partitioned fault classification 
model as a function of at least the one determined 
operating mode, and 

using at least the one fault indication and at least the one 
selected fault classification submodel for classifying 
faults for performing asset surveillance. 

13. The method of claim 12 further including the step of 
performing asset control as a function of the classified faults. 

14. The method of claim 12 further including the step of 
predicting asset failures as a function of the classified faults. 

15. The method of claim 12 further including the step of 
predicting asset failures including one or more sensor fail- 
ures. 

16. The method of claim 12 further including the step of 
predicting asset failures including one or more equipment 
failures. 

17. The method of claim 12 further including the step of 
predicting asset failures including an undesirable process 
operating condition. 

18. An asset surveillance method, the steps including: 
partitioning a decision model into a plurality of partitions, 

each partition having an operating mode associated 
thereto: 

employing a plurality of different methods from a plural- 
ity of parameter estimation methods, a plurality of fault 
detection methods, and a plurality of fault classification 
methods for different partitions; 

s 

i o  

20 

25 asset; 

30 
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determining at least one operating mode of an asset; 
selecting at least one the plurality of partitions as a 

function of the determined operating mode for tailoring 
the plurality of parameter estimation methods, the 
plurality of fault detection methods, and the plurality of 
fault classification methods for asset surveillance as a 
function of the at least one determined operating mode. 

19. The method of claim 18 further including the step of 
performing asset control as a function of the classified faults. 
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20. The method of claim 18 further including the step of 
predicting asset failures as a function of the classified faults. 

21. The method of claim 18 further including the step of 
predicting asset failures including one or more sensor fail- 
ures. 

22. The method of claim 18 further including the step of 
predicting asset failures including one or more equipment 
failures. 

23. The method of claim 18 further including the step of 
predicting asset failures including an undesirable process 
operating condition. 

24. An asset surveillance method, the steps including: 
acquiring a set of observed signal data values from an 

asset; 
producing a calculated set of estimated signal data values 

correlative to the set of observed signal data values 
acquired from the asset; 

comparing the set of observed signal data values to the 
calculated set of estimated signal data values; 

determining a presence of a disagreement between the set 
of observed signal data values and the calculated set of 
estimated signal data values on the basis of the com- 
parison step, and 

determining a cause of a determined presence of disagree- 
ment between the set of observed signal data values and 
the calculated set of estimated signal data values for 
performing asset surveillance. 

25. The method of claim 24 further including the step of 
using a Bayesian Belief Network (BBN) fault classification 
method for determining a cause of a disagreement between 
the set of observed signal data values and the calculated set 
of estimated signal data values on the basis of the compari- 
son step. 

26. The method of claim 24 further including the step of 
performing asset control as a function of the classified faults. 

27. An asset surveillance method, the steps including: a 
method for determining asset status includes the steps of  

creating a fault detection model comprised of a plurality 
of fault detection submodels each having an operating 
mode associated thereto; 

creating a fault classification model comprised of a plu- 
rality of fault classification submodels each having an 
operating mode associated thereto; 

acquiring a set of observed signal data values from an 
asset; 

determining at least one operating mode of the asset for 
the set of observed signal data values; 

selecting at least one fault detection submodel from the 
fault detection model as a function of at least the one 
determined operating mode; 

determining at least one fault indication as a function of 
the observed signal data values; 

selecting at least one fault classification submodel from 
the fault classification model as a function of at least the 
one determined operating mode, and 
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using at least the one fault indication and at least the one 

selected fault classification submodel for classifying 
faults for performing asset surveillance. 

28. The method of claim 27 further including the step of 
creating a parameter estimation model comprised of a plu- 
rality of parameter estimation submodels each having an 
operating mode associated thereto. 

29. The method of claim 28 further including the step of 
selecting at least one parameter estimation submodel from 
the parameter estimation model as a function of at least the 
one determined operating mode. 

30. The method of claim 29 further including the step of 
calculating a set of estimated signal values from at least one 
selected parameter estimation submodel. 

31. The method of claim 30 wherein the step of deter- 
mining at least one fault indication as a function of the 
observed signal data values includes the step of determining 
at least one fault indication as a function of both the 
estimated signal values and the observed signal data values. 

32. An asset surveillance system, comprising in combi- 
nation: 

a parameter estimation model comprised of a plurality of 
parameter estimation submodels each having an oper- 
ating mode associated thereto; 

a fault detection model comprised of a plurality of fault 
detection submodels each having an operating mode 
associated thereto; 

a fault classification model comprised of a plurality of 
fault classification submodels each having an operating 
mode associated thereto; 

means for acquiring a set of observed signal data values 
from an asset; 

means for determining at least one operating mode of the 
asset for the set of observed signal data values; 

means for selecting at least one parameter estimation 
submodel from the parameter estimation model as a 
function of at least the one determined operating mode; 

means for calculating a set of estimated signal values 
from at least one selected parameter estimation sub- 
model; 

means for selecting at least one fault detection submodel 
from the fault classification model as a function of at 
least the one determined operating mode; 

means for determining at least one fault indication as a 
function of the estimated signal values and observed 
signal data values; 

means for selecting at least one fault classification sub- 
model from the fault classification model as a function 
of at least the one determined operating mode, and 

means for using at least the one fault indication and at 
least the one selected fault classification submodel for 
classifying faults for performing asset surveillance. 

* * * * *  


