354 research outputs found

    Astronomically paced changes in overturning circulation in the Western North Atlantic during the middle Eocene

    Get PDF
    North Atlantic Deep Water (NADW) currently redistributes heat and salt between Earth’s ocean basins, and plays a vital role in the ocean-atmosphere CO2 exchange. Despite its crucial role in today’s climate system, vigorous debate remains as to when deep-water formation in the North Atlantic started. Here, we present datasets from carbonate-rich middle Eocene sediments from the Newfoundland Ridge, revealing a unique archive of paleoceanographic change from the progressively cooling climate of the middle Eocene. Well-defined lithologic alternations between calcareous ooze and clay-rich intervals occur at the ∼41-kyr beat of axial obliquity. Hence, we identify obliquity as the driver of middle Eocene (43.5–46 Ma) Northern Component Water (NCW, the predecessor of modern NADW) variability. High-resolution benthic foraminiferal δ18O and δ13C suggest that obliquity minima correspond to cold, nutrient-depleted, western North Atlantic deep waters. We thus link stronger NCW formation with obliquity minima. In contrast, during obliquity maxima, Deep Western Boundary Currents were weaker and warmer, while abyssal nutrients were more abundant. These aspects reflect a more sluggish NCW formation. This obliquity-paced paleoceanographic regime is in excellent agreement with results from an Earth system model, in which obliquity minima configurations enhance NCW formation

    Cenozoic climate changes: A review based on time series analysis of marine benthic δ18O records

    Get PDF
    The climate during the Cenozoic era changed in several steps from ice-free poles and warm conditions to ice-covered poles and cold conditions. Since the 1950s, a body of information on ice-volume and temperature changes has been built up predominantly on the basis of measurements of the oxygen isotopic composition of shells of benthic foraminifera collected from marine sediment cores. The statistical methodology of time series analysis has also evolved, allowing more information to be extracted from these records. Here we provide a comprehensive view of Cenozoic climate evolution by means of a coherent and systematic application of time-series analytical tools to each record from a compilation spanning the interval from 4 to 61 Myr ago. We quantitatively describe several prominent features of the oxygen isotope record, taking into account the various sources of uncertainty (including measurement, proxy noise, and dating errors). The estimated transition times and amplitudes allow us to assess causal climatological-tectonic influences on the following known features of the Cenozoic oxygen isotopic record: Paleocene-Eocene Thermal Maximum, Eocene-Oligocene Transition, Oligocene-Miocene Boundary, and the Middle Miocene Climate Optimum. We further describe and causally interpret the following features: Paleocene-Eocene warming trend; the two-step, long-term Eocene cooling; and the changes within the most recent interval (Miocene-Pliocene). We review the scope and methods of constructing Cenozoic stacks of benthic oxygen isotope records and present two new latitudinal stacks, which capture besides global ice volume also bottom-water temperatures at low (less than 30â—¦) and high latitudes. This review concludes with an identification of future directions for data collection, statistical method development, and climate modeling

    A large-scale transcontinental river system crossed West Antarctica during the Eocene

    Get PDF
    Extensive ice coverage largely prevents investigations of Antarctica’s unglaciated past. Knowledge about environmental and tectonic development before large-scale glaciation, however, is important for understanding the transition into the modern icehouse world. We report geochronological and sedimentological data from a drill core from the Amundsen Sea shelf, providing insights into tectonic and topographic conditions during the Eocene (~44 to 34 million years ago), shortly before major ice sheet buildup. Our findings reveal the Eocene as a transition period from &gt;40 million years of relative tectonic quiescence toward reactivation of the West Antarctic Rift System, coinciding with incipient volcanism, rise of the Transantarctic Mountains, and renewed sedimentation under temperate climate conditions. The recovered sediments were deposited in a coastal-estuarine swamp environment at the outlet of a &gt;1500-km-long transcontinental river system, draining from the rising Transantarctic Mountains into the Amundsen Sea. Much of West Antarctica hence lied above sea level, but low topographic relief combined with low elevation inhibited widespread ice sheet formation.</jats:p

    Synchronous and proportional deglacial changes in Atlantic meridional overturning and northeast Brazilian precipitation

    Get PDF
    Changes in heat transport associated with fluctuations in the strength of the Atlantic meridional overturning circulation (AMOC) are widely considered to affect the position of the Intertropical Convergence Zone (ITCZ), but the temporal immediacy of this teleconnection has to date not been resolved. Based on a high-resolution marine sediment sequence over the last deglaciation, we provide evidence for a synchronous and near-linear link between changes in the Atlantic interhemispheric sea surface temperature difference and continental precipitation over northeast Brazil. The tight coupling between AMOC strength, sea surface temperature difference, and precipitation changes over northeast Brazil unambiguously points to a rapid and proportional adjustment of the ITCZ location to past changes in the Atlantic meridional heat transport

    Sismoestratigrafia y evolución geomorfológica del talud continental adyacente al litoral del este bonaerense, Argentina

    Get PDF
    El Margen Continental Argentino es uno de los márgenes más extensos del mundo (2 x 106 km2) cuyo mayor desarrollo, entre 35 y 48ºS, corresponde a un típico margen pasivo volcánico. Allí se desarrollan los siguientes rasgos: plataforma, talud, emersión y el Cañón Submarino Mar del Plata. Este trabajo describe los aspectos morfosedimentarios, estratigráficos y evolutivos del talud adyacente al litoral del este bonaerense. El estudio se basó en información sísmica mono y multicanal de alta resolución complementada con el análisis de muestras del fondo marino, fundamentalmente testigos verticales. El talud se desarrolla entre 120 y 3500 m de profundidad. Está formado por tres sectores principales. El más cercano a la plataforma es el talud superior situado por encima de los 700/800 m, de fuerte pendiente. A partir de allí se desarrolla el talud medio, constituido por la Terraza Ewing, cuya superficie de baja pendiente llega hasta los 1300 m de profundidad. Finalmente, el talud inferior vuelve a ser de fuerte pendiente y llega hasta los 3500 m, desde donde grada hacia la emersión continental. El talud es atravesado por el Cañón Submarino Mar del Plata, que comienza alrededor de los 500 m de profundidad aunque adquiere una típica configuración de valle en V entre 1200 y 3700 metros. La cobertura sedimentaria del talud es silicoclástica, formada por fangos algo arenosos que muestran mayores porcentajes de arena e inclusive rodados en los alrededores del cañón, particularmente en sus cabeceras. La asociación mineralógica es volcánico-piroclástica de origen pampeano-patagónico. A través de la aplicación de métodos sismoestratigráficos se identificaron siete "Secuencias Depositacionales" que abarcan desde el Cretácico superior hasta el presente, las cuales están separadas por horizontes sísmicos mayores que representan discontinuidades resultantes de la ocurrencia de significativos eventos climáticos-oceanográficos de amplia extensión regional. La sucesión de secuencias señala que el talud comenzó a evolucionar a partir de la transición Eoceno-Oligoceno en respuesta a complejos procesos de agradación y progradación con depósitos turbidíticos y contorníticos, y formación de cañones submarinos. Se definen cuatro etapas evolutivas principales: 1) Agradacional, del Cretácico-Eoceno, con fuerte acreción vertical del talud asociada a subsidencia térmica de la Cuenca del Salado, con alta tasa de sedimentación. 2) Desarrollo del talud durante el Eoceno superior-Mioceno medio, cuando se estructura el margen pasivo y comienza a evidenciarse la influencia de las masas de agua de origen antártico, lo que se manifiesta en la formación de secuencias sedimentarias complejas con períodos alternantes de progradación-retrogradación aunque con predominio de los primeros (con alta dinámica turbidítica y formación de cañones submarinos) que hacen avanzar progresivamente el talud en dirección al mar. 3) Desarrollo de la Terraza Ewing en el Mioceno medio-superior, cuando la dinámica sedimentaria asociada a la circulación de las corrientes oceánicas de origen antártico favorece la migración hacia el norte de grandes depósitos contorníticos. 4) Configuración definitiva del talud en el Plioceno-Cuaternario, al desarrollarse la Terraza Ewing y el Cañón Submarino Mar del Plata con sus características presentes

    First deployment of a multi-barrel sea floor drill rig on the Antarctic continental shelf: experiences from the MARUM-MeBo70 on Polarstern-Expedition PS104

    Get PDF
    The MARUM-MeBo (abbreviation for Meeresboden-Bohrgerät, the German expression for seafloor drill rig) is a robotic drilling system that is developed since 2004 at the MARUM Center for Marine Environmental Sciences at the University of Bremen in close cooperation with Bauer Maschinen GmbH and other industry partners. The MARUM-MeBo drill rigs can be deployed from multipurpose research vessel like, RV MARIA S. MERIAN, RV METEOR, RV SONNE and RV POLARSTERN and are used for getting long cores both in soft sediments as well as hard rocks in the deep sea. The first generation drill rig, the MARUM-MeBo70 is dedicated for drilling depths of more than 70 m (Freudenthal and Wefer, 2013). Between 2005 and 2017 it was deployed on 18 research expeditions and drilled more than. 3 km into different types of lithologies including carbonate and crystalline rocks, gas hydrates, sands and gravel, glacial till and hemipelagic mud with an average recovery rate of 67 %. In February and March 2017 the MeBo70 was used on the West Antarctic continental shelf in the Amundsen Sea Embayment for the first time. The goal of the deployment on RV Polarstern expedition PS104 was to recover a series of sediment cores from different ages that will provide material for investigating the glaciation history of this area known as the most dynamic drainage area of the West Antarctic Ice Sheet. In this presentation we will focus on the operational experiences of this first deployment of a multi-barrel sea floor drill rig on the Antarctic continental shelf. References: Freudenthal, T and Wefer, G (2013) Drilling cores on the sea floor with the remote-controlled sea floor drilling rig MeBo. Geoscientific Instrumentation, Methods and Data Systems, 2(2). 329-337. doi:10.5194/gi-2-329-201

    Benthic stable carbon and oxygen isotopes of Cibicidoides wuellerstorfi from ODP Hole 130-806B 0-4 m.y.

    No full text
    ODP Leg 130 - Site 806B benthic stable carbon and oxygen isotopes have been measured using the epibenthic foraminifer species Cibicidoides wuellerstorfi in cores 1H to XH of Hole B, only. Stratigraphy is based on correlation to the benthic oxygen isotope stack of Lisiecki and Raymo 2005 (Paleoceanography vol 20, PA1003, doi:10.1029/2004PA001071)

    Effect of Vegetation on the Late Miocene Ocean Circulation

    Get PDF
    We examine the role of the vegetation cover and the associated hydrological cycle on the deep ocean circulation during the Late Miocene (~10 million years ago). In our simulations, an open Central American gateway and exchange with fresh Pacific waters leads to a weak and shallow thermohaline circulation in the North Atlantic Ocean which is consistent with most other modeling studies for this time period. Here, we estimate the effect of a changed vegetation cover on the ocean general circulation using atmospheric circulation model simulations for the late Miocene climate with 353 ppmv CO2 level. The Late Miocene land surface cover reduces the albedo, the net evaporation in the North Atlantic catchment is affected and the North Atlantic water becomes more saline leading to a more vigorous North Atlantic Deep Water circulation. These effects reveal potentially important feedbacks between the ocean circulation, the hydrological cycle and the land surface cover for Cenozoic climate evolution
    • …
    corecore