106 research outputs found

    Characterization of a genetic mouse model of lung cancer: a promise to identify Non-Small Cell Lung Cancer therapeutic targets and biomarkers.

    Get PDF
    Background: Non-small cell lung cancer (NSCLC) accounts for 81% of all cases of lung cancer and they are often fatal because 60% of the patients are diagnosed at an advanced stage. Besides the need for earlier diagnosis, there is a high need for additional effective therapies. In this work, we investigated the feasibility of a lung cancer progression mouse model, mimicking features of human aggressive NSCLC, as biological reservoir for potential therapeutic targets and biomarkers. Results: We performed RNA-seq profiling on total RNA extracted from lungs of a 30 week-old K-rasLA1/p53R172H\u394g and wild type (WT) mice to detect fusion genes and gene/exon-level differential expression associated to the increase of tumor mass. Fusion events were not detected in K-rasLA1/p53R172H\u394g tumors. Differential expression at exon-level detected 33 genes with differential exon usage. Among them nine, i.e. those secreted or expressed on the plasma membrane, were used for a meta-analysis of more than 500 NSCLC RNA-seq transcriptomes. None of the genes showed a significant correlation between exon-level expression and disease prognosis. Differential expression at gene-level allowed the identification of 1513 genes with a significant increase in expression associated to tumor mass increase. 74 genes, i.e. those secreted or expressed on the plasma membrane, were used for a meta-analysis of two transcriptomics datasets of human NSCLC samples, encompassing more than 900 samples. SPP1 was the only molecule whose over-expression resulted statistically related to poor outcome regarding both survival and metastasis formation. Two other molecules showed over-expression associated to poor outcome due to metastasis formation: GM-CSF and ADORA3. GM-CSF is a secreted protein, and we confirmed its expression in the supernatant of a cell line derived by a K-rasLA1/p53R172H\u394g mouse tumor. ADORA3 is instead involved in the induction of p53-mediated apoptosis in lung cancer cell lines. Since in our model p53 is inactivated, ADORA3 does not negatively affect tumor growth but remains expressed on tumor cells. Thus, it could represent an interesting target for the development of antibody-targeted therapy on a subset of NSCLC, which are p53 null and ADORA3 positive. Conclusions: Our study provided a complete transcription overview of the K-rasLA1/p53R172H\u394g mouse NSCLC model. This approach allowed the detection of ADORA3 as a potential target for antibody-based therapy in p53 mutated tumors

    Mutant p53 improves cancer cells\u2019 resistance to endoplasmic reticulum stress by sustaining activation of the UPR regulator ATF6

    Get PDF
    Missense mutations in the TP53 gene are frequent in human cancers, giving rise to mutant p53 proteins that can acquire oncogenic properties. Gain of function mutant p53 proteins can enhance tumour aggressiveness by promoting cell invasion, metastasis and chemoresistance. Accumulating evidences indicate that mutant p53 proteins can also modulate cell homeostatic processes, suggesting that missense p53 mutation may increase resistance of tumour cells to intrinsic and extrinsic cancer-related stress conditions, thus offering a selective advantage. Here we provide evidence that mutant p53 proteins can modulate the Unfolded Protein Response (UPR) to increase cell survival upon Endoplasmic Reticulum (ER) stress, a condition to which cancer cells are exposed during tumour formation and progression, as well as during therapy. Mechanistically, this action of mutant p53 is due to enhanced activation of the pro-survival UPR effector ATF6, coordinated with inhibition of the pro-apoptotic UPR effectors JNK and CHOP. In a triple-negative breast cancer cell model with missense TP53 mutation, we found that ATF6 activity is necessary for viability and invasion phenotypes. Together, these findings suggest that ATF6 inhibitors might be combined with mutant p53-targeting drugs to specifically sensitise cancer cells to endogenous or chemotherapy-induced ER stress

    Allele specific CRISPR/Cas9 editing of dominant Epidermolysis Bullosa Simplex in human epidermal stem cells

    Get PDF
    : Epidermolysis Bullosa Simplex (EBS) is a rare skin disease inherited mostly in an autosomal dominant manner. Patients display a skin fragility that leads to blisters and erosions caused by minor mechanical trauma. EBS phenotypic and genotypic variants are caused by genetic defects in intracellular proteins whose function is to provide the attachment of basal keratinocytes to the basement membrane zone and most of EBS cases display mutations in keratin 5 (KRT5) and keratin 14 (KRT14) genes. Besides palliative treatments, there is still no long-lasting effective cure to correct the mutant gene and abolish dominant negative effect of the pathogenic protein over its wild-type counterpart. Here, we propose a molecular strategy for EBS01 patient's keratinocytes carrying a monoallelic c.475/495del21 mutation in KRT14 exon1. Through the CRISPR/Cas9 system we performed a specific cleavage only on the mutant allele and restore a normal cellular phenotype and a correct intermediate filament network, without affecting the epidermal stem cell, referred to as holoclones, which play a crucial role in epidermal regeneration

    Aberrant transcriptional and post-transcriptional regulation of SPAG5, a YAP-TAZ-TEAD downstream effector, fuels breast cancer cell proliferation

    Get PDF
    Sperm-associated antigen 5 (SPAG5) is an important driver of the cell mitotic spindle required for chromosome segregation and progression into anaphase. SPAG5 has been identified as an important proliferation marker and chemotherapy-sensitivity predictor, especially in estrogen receptor-negative breast cancer subtypes. Here, we report that SPAG5 is a direct target of miR-10b-3p, and its aberrantly high expression associates with poor disease-free survival in two large cohorts of breast cancer patients. SPAG5 depletion strongly impaired cancer cell cycle progression, proliferation, and migration. Interestingly, high expression of SPAG5 pairs with a YAP/TAZ-activated signature in breast cancer patients. Reassuringly, the depletion of YAP, TAZ, and TEAD strongly reduced SPAG5 expression and diminished its oncogenic effects. YAP, TAZ coactivators, and TEAD transcription factors are key components of the Hippo signaling pathway involved in tumor initiation, progression, and metastasis. Furthermore, we report that SPAG5 is a direct transcriptional target of TEAD/YAP/TAZ, and pharmacological targeting of YAP and TAZ severely reduces SPAG5 expression. Collectively, our data uncover an oncogenic feedback loop, comprising miR-10b-3p, SPAG5, and YAP/TAZ/TEAD, which fuels the aberrant proliferation of breast cancer

    Circulating mucosal-associated invariant T cells identify patients responding to anti-PD-1 therapy

    Get PDF
    Immune checkpoint inhibitors are used for treating patients with metastatic melanoma. Since the response to treatment is variable, biomarkers are urgently needed to identify patients who may benefit from such therapy. Here, we combine single-cell RNA-sequencing and multiparameter flow cytometry to assess changes in circulating CD8+ T cells in 28 patients with metastatic melanoma starting anti-PD-1 therapy, followed for 6 months: 17 responded to therapy, whilst 11 did not. Proportions of activated and proliferating CD8+ T cells and of mucosal-associated invariant T (MAIT) cells are significantly higher in responders, prior to and throughout therapy duration. MAIT cells from responders express higher level of CXCR4 and produce more granzyme B. In silico analysis support MAIT presence in the tumor microenvironment. Finally, patients with >1.7% of MAIT among peripheral CD8+ population show a better response to treatment. Our results thus suggest that MAIT cells may be considered a biomarker for patients responding to anti-PD-1 therapy

    Engagement of nuclear coactivator 7 by 3-hydroxyanthranilic acid enhances activation of aryl hydrocarbon receptor in immunoregulatory dendritic cells

    Get PDF
    Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the first step in the kynurenine pathway of tryptophan (Trp) degradation that produces several biologically active Trp metabolites. L-kynurenine (Kyn), the first byproduct by IDO1, promotes immunoregulatory effects via activation of the Aryl hydrocarbon Receptor (AhR) in dendritic cells (DCs) and T lymphocytes. We here identified the nuclear coactivator 7 (NCOA7) as a molecular target of 3-hydroxyanthranilic acid (3-HAA), a Trp metabolite produced downstream of Kyn along the kynurenine pathway. In cells overexpressing NCOA7 and AhR, the presence of 3-HAA increased the association of the two molecules and enhanced Kyn-driven, AhR-dependent gene transcription. Physiologically, conventional (cDCs) but not plasmacytoid DCs or other immune cells expressed high levels of NCOA7. In cocultures of CD4+ T cells with cDCs, the co-addition of Kyn and 3-HAA significantly increased the induction of Foxp3+ regulatory T cells and the production of immunosuppressive transforming growth factor β in an NCOA7-dependent fashion. Thus, the co-presence of NCOA7 and the Trp metabolite 3-HAA can selectively enhance the activation of ubiquitary AhR in cDCs and consequent immunoregulatory effects. Because NCOA7 is often overexpressed and/or mutated in tumor microenvironments, our current data may provide evidence for a new immune check-point mechanism based on Trp metabolism and AhR
    • …
    corecore