Background: Non-small cell lung cancer (NSCLC) accounts for 81% of all cases of lung cancer and they are often
fatal because 60% of the patients are diagnosed at an advanced stage. Besides the need for earlier diagnosis, there
is a high need for additional effective therapies. In this work, we investigated the feasibility of a lung cancer
progression mouse model, mimicking features of human aggressive NSCLC, as biological reservoir for potential
therapeutic targets and biomarkers.
Results: We performed RNA-seq profiling on total RNA extracted from lungs of a 30 week-old K-rasLA1/p53R172H\u394g
and wild type (WT) mice to detect fusion genes and gene/exon-level differential expression associated to the
increase of tumor mass. Fusion events were not detected in K-rasLA1/p53R172H\u394g tumors. Differential expression at
exon-level detected 33 genes with differential exon usage. Among them nine, i.e. those secreted or expressed on
the plasma membrane, were used for a meta-analysis of more than 500 NSCLC RNA-seq transcriptomes. None of
the genes showed a significant correlation between exon-level expression and disease prognosis. Differential
expression at gene-level allowed the identification of 1513 genes with a significant increase in expression
associated to tumor mass increase. 74 genes, i.e. those secreted or expressed on the plasma membrane, were used
for a meta-analysis of two transcriptomics datasets of human NSCLC samples, encompassing more than 900
samples. SPP1 was the only molecule whose over-expression resulted statistically related to poor outcome
regarding both survival and metastasis formation. Two other molecules showed over-expression associated to poor
outcome due to metastasis formation: GM-CSF and ADORA3. GM-CSF is a secreted protein, and we confirmed its
expression in the supernatant of a cell line derived by a K-rasLA1/p53R172H\u394g mouse tumor. ADORA3 is instead
involved in the induction of p53-mediated apoptosis in lung cancer cell lines. Since in our model p53 is
inactivated, ADORA3 does not negatively affect tumor growth but remains expressed on tumor cells. Thus, it could
represent an interesting target for the development of antibody-targeted therapy on a subset of NSCLC, which are
p53 null and ADORA3 positive.
Conclusions: Our study provided a complete transcription overview of the K-rasLA1/p53R172H\u394g mouse NSCLC
model. This approach allowed the detection of ADORA3 as a potential target for antibody-based therapy in p53
mutated tumors