105 research outputs found

    Adaptive AR and Neurofuzzy Approaches: Access to Cerebral Particle Signatures

    Get PDF
    International audienceIn recent years, a relationship has been suggested between the occurrence of cerebral embolism and stroke. Ultrasound has therefore become essential in the detection of emboli when monitoring cerebral vascular disorders and forms part of ultrasound brain-imaging techniques. Such detection is based on investigating the middle cerebral artery using a TransCranial Doppler (TCD) system, and analyzing the Doppler signal of the embolism. Most of the emboli detected in practical experiments are large emboli because their signatures are easy to recognize in the TCD signal. However, detection of small emboli remains a challenge. Various approaches have been proposed to solve the problem, ranging from the exclusive use of expert human knowledge to automated collection of signal parameters. Many studies have recently been performed using time-frequency distributions and classical parameter modeling for automatic detection of emboli. It has been shown that autoregressive (AR) modeling associated with an abrupt change detection technique is one of the best methods for detection of microemboli. One alternative to this is a technique based on taking expert knowledge into account. This paper aims to unite these two approaches using AR modeling and expert knowledge through a neurofuzzy approach. The originality of this approach lies in combining these two techniques and then proposing a parameter referred to as score ranging from 0 to 1. Unlike classical techniques, this score is not only a measure of confidence of detection but also a tool enabling the final detection of the presence or absence of microemboli to be performed by the practitioner. Finally, this paper provides performance evaluation and comparison with an automated technique, i.e., AR modeling used in vitr

    Etude de la cyclostationnarité du signal Doppler sanguin pour la détection de micro-emboles : étude préliminaire

    Get PDF
    Ce papier traite de la détection ultrasonore de micro-emboles par un système Doppler transcrânien. L'originalité de ce travail réside dans le fait que nous utilisons les propriétés cyclostationnaires du signal Doppler ultrasonore sanguin pour détecter des micro-emboles, depuis lors, masqués dans les phases de systoles-diastoles du cycle cardiaque. Dans cette étude nous évaluons théoriquement, à partir d'un modèle réaliste du signal Doppler sanguin, le spectre de corrélation. Nous proposons un paramètre informatif permettant la détection de micro-emboles et nous quantifions les performances du détecteur associé pour le comparer à un détecteur standard

    Les caractéristiques techno-typologiques et fonctionnelles du débitage d’éclats au VSG : le cas et la place des sites hauts-normands dans le nord de la France

    Get PDF
    Suite à une première année test très concluante, le projet présenté dans le cadre de ce projet collectif de recherche triennal, concerne les problématiques relatives au débitage d’éclats au VSG/Blicquy (Néolithique ancien) dans le Bassin parisien, ses marges occidentales et plus particulièrement la Haute-Normandie. En effet, si les grandes lignes chronoculturelles et la nature des implantations du Néolithique ancien sont assez bien perçues dans notre région, les données sur le mobilier lithiq..

    Les caractéristiques techno-typologiques et fonctionnelles du débitage d’éclats au VSG : le cas et la place des sites hauts-normands dans le nord de la France

    Get PDF
    Depuis plusieurs années, nombre de sites du Villeneuve-Saint-Germain ont été découverts en Haute-Normandie. Résultant notamment du développement de l’archéologie préventive cette dynamique de recherche a permis de préciser la nature des implantations au cours du Néolithique ancien mais reste toutefois à approfondir. Si le cadre chronoculturel et son évolution sont mieux définis depuis plusieurs années, nombre de données, et notamment de corpus mobilier, nécessiteraient une étude plus détaillé..

    Role of ATM in the telomere response to the G-quadruplex ligand 360A

    Get PDF
    Telomeres are known to prevent chromosome ends from being recognized as DNA double-strand breaks. Conversely, many DNA damage response proteins, including ATM, are thought to participate to telomere maintenance. However, the precise roles of ATM at telomeres remain unclear due to its multiple functions in cell checkpoints and apoptosis. To gain more insights into the role of ATM in telomere maintenance, we determined the effects of the G-quadruplex ligand 360A in various cell lines lacking functional ATM. We showed, by using Fluorescence in situ hybridization (FISH) and Chromosome Orientation-FISH using telomere PNA probes, that 360A induced specific telomere aberrations occurring during or after replication, mainly consisting in sister telomere fusions and also recombinations that involved preferentially the lagging strand telomeres. We demonstrate that ATM reduced telomere instability independently of apoptosis induction. Our results suggest thus that ATM has a direct role in preventing inappropriate DNA repair at telomeres, which could be related to its possible participation to the formation of protected structures at telomeres

    Role of the ubiquitin-binding domain of Polη in Rad18-independent translesion DNA synthesis in human cell extracts

    Get PDF
    In eukaryotic cells, the Rad6/Rad18-dependent monoubiquitination of the proliferating cell nuclear antigen (PCNA) plays an essential role in the switching between replication and translesion DNA synthesis (TLS). The DNA polymerase Polη binds to PCNA via a consensus C-terminal PCNA-interacting protein (PIP) motif. It also specifically interacts with monoubiquitinated PCNA thanks to a recently identified ubiquitin-binding domain (UBZ). To investigate whether the TLS activity of Polη is always coupled to PCNA monoubiquitination, we monitor the ability of cell-free extracts to perform DNA synthesis across different types of lesions. We observe that a cis-syn cyclobutane thymine dimer (TT-CPD), but not a N-2-acetylaminofluorene-guanine (G-AAF) adduct, is efficiently bypassed in extracts from Rad18-deficient cells, thus demonstrating the existence of a Polη-dependent and Rad18-independent TLS pathway. In addition, by complementing Polη-deficient cells with PIP and UBZ mutants, we show that each of these domains contributes to Polη activity. The finding that the bypass of a CPD lesion in vitro does not require Ub-PCNA but nevertheless depends on the UBZ domain of Polη, reveals that this domain may play a novel role in the TLS process that is not related to the monoubiquitination status of PCNA

    The impact of cyclin-dependent kinase 5 depletion on poly(ADP-ribose) polymerase activity and responses to radiation

    Get PDF
    Cyclin-dependent kinase 5 (Cdk5) has been identified as a determinant of sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors. Here, the consequences of its depletion on cell survival, PARP activity, the recruitment of base excision repair (BER) proteins to DNA damage sites, and overall DNA single-strand break (SSB) repair were investigated using isogenic HeLa stably depleted (KD) and Control cell lines. Synthetic lethality achieved by disrupting PARP activity in Cdk5-deficient cells was confirmed, and the Cdk5KD cells were also found to be sensitive to the killing effects of ionizing radiation (IR) but not methyl methanesulfonate or neocarzinostatin. The recruitment profiles of GFP-PARP-1 and XRCC1-YFP to sites of micro-irradiated Cdk5KD cells were slower and reached lower maximum values, while the profile of GFP-PCNA recruitment was faster and attained higher maximum values compared to Control cells. Higher basal, IR, and hydrogen peroxide-induced polymer levels were observed in Cdk5KD compared to Control cells. Recruitment of GFP-PARP-1 in which serines 782, 785, and 786, potential Cdk5 phosphorylation targets, were mutated to alanines in micro-irradiated Control cells was also reduced. We hypothesize that Cdk5-dependent PARP-1 phosphorylation on one or more of these serines results in an attenuation of its ribosylating activity facilitating persistence at DNA damage sites. Despite these deficiencies, Cdk5KD cells are able to effectively repair SSBs probably via the long patch BER pathway, suggesting that the enhanced radiation sensitivity of Cdk5KD cells is due to a role of Cdk5 in other pathways or the altered polymer levels

    Rad51 and DNA-PKcs are involved in the generation of specific telomere aberrations induced by the quadruplex ligand 360A that impair mitotic cell progression and lead to cell death

    Get PDF
    Functional telomeres are protected from non-homologous end-joining (NHEJ) and homologous recombination (HR) DNA repair pathways. Replication is a critical period for telomeres because of the requirement for reconstitution of functional protected telomere conformations, a process that involves DNA repair proteins. Using knockdown of DNA-PKcs and Rad51 expression in three different cell lines, we demonstrate the respective involvement of NHEJ and HR in the formation of telomere aberrations induced by the G-quadruplex ligand 360A during or after replication. HR contributed to specific chromatid-type aberrations (telomere losses and doublets) affecting the lagging strand telomeres, whereas DNA-PKcs-dependent NHEJ was responsible for sister telomere fusions as a direct consequence of G-quadruplex formation and/or stabilization induced by 360A on parental telomere G strands. NHEJ and HR activation at telomeres altered mitotic progression in treated cells. In particular, NHEJ-mediated sister telomere fusions were associated with altered metaphase-anaphase transition and anaphase bridges and resulted in cell death during mitosis or early G1. Collectively, these data elucidate specific molecular and cellular mechanisms triggered by telomere targeting by the G-quadruplex ligand 360A, leading to cancer cell death
    corecore