43 research outputs found

    Globin gene expression in correlation with G protein-related genes during erythroid differentiation

    Get PDF
    Background: The guanine nucleotide binding protein (G protein)-coupled receptors (GPCRs) regulate cell growth, proliferation and differentiation. G proteins are also implicated in erythroid differentiation, and some of them are expressed principally in hematopoietic cells. GPCRs-linked NO/cGMP and p38 MAPK signaling pathways already demonstrated potency for globin gene stimulation. By analyzing erythroid progenitors, derived from hematopoietic cells through in vitro ontogeny, our study intends to determine early markers and signaling pathways of globin gene regulation and their relation to GPCR expression. Results: Human hematopoietic CD34(+) progenitors are isolated from fetal liver (FL), cord blood (CB), adult bone marrow (BM), peripheral blood (PB) and G-CSF stimulated mobilized PB (mPB), and then differentiated in vitro into erythroid progenitors. We find that growth capacity is most abundant in FL- and CB-derived erythroid cells. The erythroid progenitor cells are sorted as 100% CD71(+), but we did not find statistical significance in the variations of CD34, CD36 and GlyA antigens and that confirms similarity in maturation of studied ontogenic periods. During ontogeny, beta-globin gene expression reaches maximum levels in cells of adult blood origin (176 fmol/mu g), while gamma-globin gene expression is consistently up-regulated in CB-derived cells (60 fmol/mu g). During gamma-globin induction by hydroxycarbamide, we identify stimulated GPCRs (PTGDR, PTGER1) and GPCRs-coupled genes known to be activated via the cAMP/PKA (ADIPOQ), MAPK pathway (JUN) and NO/cGMP (PRPF18) signaling pathways. During ontogeny, GPR45 and ARRDC1 genes have the most prominent expression in FL-derived erythroid progenitor cells, GNL3 and GRP65 genes in CB-derived cells (high gamma-globin gene expression), GPR110 and GNG10 in BM-derived cells, GPR89C and GPR172A in PB-derived cells, and GPR44 and GNAQ genes in mPB-derived cells (high beta-globin gene expression). Conclusions: These results demonstrate the concomitant activity of GPCR-coupled genes and related signaling pathways during erythropoietic stimulation of globin genes. In accordance with previous reports, the stimulation of GPCRs supports the postulated connection between cAMP/PKA and NO/cGMP pathways in activation of.-globin expression, via JUN and p38 MAPK signaling

    Global analyses of human immune variation reveal baseline predictors of postvaccination responses.

    Get PDF
    A major goal of systems biology is the development of models that accurately predict responses to perturbation. Constructing such models requires the collection of dense measurements of system states, yet transformation of data into predictive constructs remains a challenge. To begin to model human immunity, we analyzed immune parameters in depth both at baseline and in response to influenza vaccination. Peripheral blood mononuclear cell transcriptomes, serum titers, cell subpopulation frequencies, and B cell responses were assessed in 63 individuals before and after vaccination and were used to develop a systematic framework to dissect inter- and intra-individual variation and build predictive models of postvaccination antibody responses. Strikingly, independent of age and pre-existing antibody titers, accurate models could be constructed using pre-perturbation cell populations alone, which were validated using independent baseline time points. Most of the parameters contributing to prediction delineated temporally stable baseline differences across individuals, raising the prospect of immune monitoring before intervention

    In vivo effects of horse and rabbit antithymocyte globulin in patients with severe aplastic anemia

    Get PDF
    We recently reported that rabbit antithymocyte globulin was markedly inferior to horse antithymocyte globulin as a primary treatment for severe aplastic anemia. Here we expand on our findings in this unique cohort of patients. Rabbit antithymocyte globulin was detectable in plasma for longer periods than horse antithymocyte globulin; rabbit antithymocyte globulin in plasma retained functional capacity to bind to lymphocytes for up to 1 month, horse antithymocyte globulin for only about 2 weeks. In the first week after treatment there were much lower numbers of neutrophils in patients treated with rabbit antithymocyte globulin than in patients receiving horse antithymocyte globulin. Both antithymocyte globulins induced a “cytokine storm” in the first 2 days after administration. Compared with horse antithymocyte globulin, rabbit antithymocyte globulin was associated with higher levels of chemokine (C-C motif) ligand 4 during the first 3 weeks. Besides a much lower absolute number and a lower relative frequency of CD4(+) T cells, rabbit antithymocyte globulin induced higher frequencies of CD4(+)CD38(+), CD3(+)CD4(−)CD8(−) T cells, and B cells than did horse antithymocyte globulin. Serum sickness occurred around 2 weeks after infusion of both types of antithymocyte globulin. Human anti-antithymocyte globulin antibodies, especially of the IgM subtype, correlated with serum sickness, which appeared concurrently with clearance of antithymocyte globulin in blood and with the production of cytokines. In conclusion, rabbit and horse antithymocyte globulins have very different pharmacokinetics and effects on neutrophils, lymphocyte subsets, and cytokine release. These differences may be related to their efficacy in suppressing the immune system and restoring hematopoiesis in bone marrow failure. Clinicaltrials.gov identifier: NCT00260689

    An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome

    Get PDF
    Inflammasomes are innate immune sensors that respond to pathogen and damage-associated signals with caspase-1 activation, IL-1β and IL-18 secretion, and macrophage pyroptosis. The discovery that dominant gain-of-function mutations in NLRP3 cause the Cryopyrin Associated Periodic Syndromes (CAPS) and trigger spontaneous inflammasome activation and IL-1β oversecretion, led to successful treatment with IL-1 blocking agents1. Herein, we report a de novo missense mutation, c.1009A>T, p.Thr337Ser, in the nucleotide-binding domain of inflammasome component NLRC4 (IPAF/CARD12) that causes early-onset recurrent fever flares and Macrophage Activation Syndrome (MAS). Functional analyses demonstrated spontaneous inflammasome formation and production of the inflammasome-dependent cytokines IL-1β and IL-18, the latter exceeding levels in CAPS. The NLRC4 mutation caused constitutive caspase-1 cleavage in transduced cells and increased production of IL-18 by both patient and NLRC4 mutant macrophages. Thus, we describe a novel monoallelic inflammasome defect that expands the monogenic autoinflammatory disease spectrum to include MAS and suggests novel targets for therapy

    JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies

    Get PDF
    BACKGROUND. Monogenic IFN-mediated autoinflammatory diseases present in infancy with systemic inflammation, an IFN response gene signature, inflammatory organ damage, and high mortality. We used the JAK inhibitor baricitinib, with IFN-blocking activity in vitro, to ameliorate disease. METHODS. Between October 2011 and February 2017, 10 patients with CANDLE (chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperatures), 4 patients with SAVI (stimulator of IFN genes-associated [STING-associated] vasculopathy with onset in infancy), and 4 patients with other interferonopathies were enrolled in an expanded access program. The patients underwent dose escalation, and the benefit was assessed by reductions in daily disease symptoms and corticosteroid requirement. Quality of life, organ inflammation, changes in IFN-induced biomarkers, and safety were longitudinally assessed. RESULTS. Eighteen patients were treated for a mean duration of 3.0 years (1.5-4.9 years). The median daily symptom score decreased from 1.3 (interquartile range [IQR], 0.93-1.78) to 0.25 (IQR, 0.1-0.63) (P < 0.0001). In 14 patients receiving corticosteroids at baseline, daily prednisone doses decreased from 0.44 mg/kg/day (IQR, 0.31-1.09) to 0.11 mg/kg/day (IQR, 0.02-0.24) (P < 0.01), and 5 of 10 patients with CANDLE achieved lasting clinical remission. The patients' quality of life and height and bone mineral density Z-scores significantly improved, and their IFN biomarkers decreased. Three patients, two of whom had genetically undefined conditions, discontinued treatment because of lack of efficacy, and one CANDLE patient discontinued treatment because of BK viremia and azotemia. The most common adverse events were upper respiratory infections, gastroenteritis, and BK viruria and viremia. CONCLUSION. Upon baricitinib treatment, clinical manifestations and inflammatory and IFN biomarkers improved in patients with the monogenic interferonopathies CANDLE, SAVI, and other interferonopathies. Monitoring safety and efficacy is important in benefit-risk assessment

    Contrasting Roles for TLR Ligands in HIV-1 Pathogenesis

    Get PDF
    The first line of a host's response to various pathogens is triggered by their engagement of cellular pattern recognition receptors (PRRs). Binding of microbial ligands to these receptors leads to the induction of a variety of cellular factors that alter intracellular and extracellular environment and interfere directly or indirectly with the life cycle of the triggering pathogen. Such changes may also affect any coinfecting microbe. Using ligands to Toll-like receptors (TLRs) 5 and 9, we examined their effect on human immunodeficiency virus (HIV)-1 replication in lymphoid tissue ex vivo. We found marked differences in the outcomes of such treatment. While flagellin (TLR5 agonist) treatment enhanced replication of CC chemokine receptor 5 (CCR 5)-tropic and CXC chemokine receptor 4 (CXCR4)-tropic HIV-1, treatment with oligodeoxynucleotide (ODN) M362 (TLR9 agonist) suppressed both viral variants. The differential effects of these TLR ligands on HIV-1 replication correlated with changes in production of CC chemokines CCL3, CCL4, CCL5, and of CXC chemokines CXCL10, and CXCL12 in the ligand-treated HIV-1-infected tissues. The nature and/or magnitude of these changes were dependent on the ligand as well as on the HIV-1 viral strain. Moreover, the tested ligands differed in their ability to induce cellular activation as evaluated by the expression of the cluster of differentiation markers (CD) 25, CD38, CD39, CD69, CD154, and human leukocyte antigen D related (HLA)-DR as well as of a cell proliferation marker, Ki67, and of CCR5. No significant effect of the ligand treatment was observed on apoptosis and cell death/loss in the treated lymphoid tissue ex vivo. Our results suggest that binding of microbial ligands to TLRs is one of the mechanisms that mediate interactions between coinfected microbes and HIV-1 in human tissues. Thus, the engagement of appropriate TLRs by microbial molecules or their mimetic might become a new strategy for HIV therapy or prevention

    Transcriptional Suppression of In Vitro-Integrated Human Immunodeficiency Virus Type 1 Does Not Correlate with Proviral DNA Methylation

    No full text
    Persistence of human immunodeficiency virus type 1 (HIV-1) constitutes a major obstacle in the control of HIV-1 infection. Here we investigated whether the CpG methylation of the HIV-1 promoter can directly influence the expression of the HIV-1 genome and thereby contribute to the persistence and latency of HIV-1. The levels of CpG methylation in the promoter of HIV-1 were studied after bisulfite-induced modification of DNA in five Jurkat clonal cell lines transduced by an HIV-1 long terminal repeat (LTR)-driven retroviral vector and expressing enhanced green fluorescent protein (GFP) and in primary resting memory T cells challenged with HIV-1 or with an HIV-1-derived retroviral vector. Basal HIV-1 promoter activities were low or undetectable in three tested HIV-1 LTR-GFP clones, one of which encoded the Tat protein, and they reached medium or high levels in two other clones. The CpG dinucleotide that occurred in a latently infected clonal cell line 240 nucleotides upstream of the transcription start remained methylated after reactivation of HIV-1 transcription with 10 nM phorbol-12-myristate-13-acetate. In two clones showing a medium promoter activity and in resting memory T cells, the HIV-1 LTR was generally not methylated. Our results show that the methylation profiles of the HIV-1 LTR, including those present in latently infected cells, are low and do not correlate with the transcriptional activity. We suggest that, in a noncloned cellular population in which the HIV-1 proviruses are randomly integrated in the human genome, HIV-1 latency is imperfectly controlled by CpG methylation and is inherently accompanied by residual replication
    corecore