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SUMMARY

A major goal of systems biology is the development
of models that accurately predict responses to
perturbation. Constructing such models requires
the collection of dense measurements of system
states, yet transformation of data into predictive
constructs remains a challenge. To begin to model
human immunity, we analyzed immune parameters
in depth both at baseline and in response to influ-
enza vaccination. Peripheral blood mononuclear
cell transcriptomes, serum titers, cell subpopulation
frequencies, and B cell responses were assessed in
63 individuals before and after vaccination and
were used to develop a systematic framework to
dissect inter- and intra-individual variation and build
predictive models of postvaccination antibody re-
sponses. Strikingly, independent of age and pre-
existing antibody titers, accurate models could
be constructed using pre-perturbation cell popula-
tions alone, which were validated using indepen-
dent baseline time points. Most of the parameters
contributing to prediction delineated temporally
stable baseline differences across individuals,
raising the prospect of immune monitoring before
intervention.
INTRODUCTION

The development of accurate models that predict biological re-

sponses is one of the major goals of systems biology. Such

models have the potential to increase our understanding of path-

ophysiology and contribute to the development of improved

therapeutics (Kitano, 2002; Schadt, 2009). The human immune

system provides an excellent context for developing such ap-

proaches: many immune cells and molecular components are

readily accessible from blood, permitting collection of samples

from individuals across multiple time points, followed by in-

depth data generation and analyses (Davis, 2008; Pulendran

et al., 2010). Furthermore, it is increasingly clear that the immune

system and inflammation contribute not only to the pathogenesis

of autoimmune and infectious disease, but also to cancer, car-

diac disease, diabetes, obesity, neurodegeneration, and other

chronic illnesses (Germain and Schwartzberg, 2011). Thus, a

more comprehensive and quantitative understanding of how

immune responses are orchestrated, together with identification

of predictive parameters of effective versus damaging re-

sponses, could have implications for the prevention and treat-

ment of diverse diseases.

Building quantitative models often involves the application of

perturbations to the system and comprehensive measurements

of the initial and resulting states (Chuang et al., 2010). Although

advances in high-throughput technologies have made such

measurements more routine, utilization of appropriate and

ethical perturbations in humans is often a challenge. Here, the
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Figure 1. Study Design

Study design indicating blood collections and assays performed. Each subject

was vaccinated with the seasonal and pandemic H1N1 influenza vaccines

right after the day 0 blood draw.
immune system again offers an advantage, as it is amenable to

experimental manipulation. The inactivated influenza vaccine,

in particular, is used routinely in healthy and ill populations (Fiore

et al., 2009) and provides an attractive perturbation for global

data collection and systematic modeling. Upon vaccination,

the immune system responds with coordinated changes that

reflect the activation and interaction of distinct cell populations

and pathways, culminating in the generation of short-lived

plasma cells and the formation of germinal centers, from which

high-affinity long-lived antibody-producing plasma and memory

B cells derive (Pulendran and Ahmed, 2011). By one week post-

immunization, a strong but transient plasmablast response can

be detected in the blood (Cox et al., 1994; Pulendran et al.,

2010), accompanied by increased antibodies in the serum (de

Jong et al., 2003). Accordingly, transcriptional profiling of periph-

eral blood mononuclear cells (PBMCs) revealed substantial

changes on days 1, 3, and 7 postvaccination, reflecting both

early innate immune activation and day 7 plasmablast responses

(Bucasas et al., 2011; Nakaya et al., 2011; Obermoser et al.,

2013). Thus, influenza vaccination provides an excellent model

of coordinated immune activity involving innate and adaptive

responses.

While perturbation analysis is a cornerstone of systems

biology, another critical factor for building models in humans is

natural population variation. Differences in genetics and environ-

ment result in substantial diversity in molecular and cellular

states among individuals before and after perturbation. Through

correlation analysis, heterogeneity among individuals provides

raw ingredients to infer functional relationships among system

components—links that cannot be drawn if the parameters

analyzed have insufficient diversity in a population. For example,

intersubject variation in PBMCgene expression after vaccination

has helped to identify postvaccination transcript correlates for

antibody responses to yellow fever or influenza vaccination

(Gaucher et al., 2008; Nakaya et al., 2011; Querec et al., 2009).

However, with the exception of age, how intersubject differences

at baseline contribute to outcome has not been well examined. A

better characterization of immune variation in healthy individuals

is critical not only for the identification of correlates and model

building, but also for biomarker development, the definition

and characterization of pathological states, and eventually,

personalized medicine.
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Here, we present a computational framework that utilizes

vaccination and multiplexed measurements (gene expression,

high density analyses of cell populations, and cellular and

serological responses) to quantify baseline and response

heterogeneity in a cohort of individuals and systematically

identify correlates, build predictive models of vaccination

response quality, and infer functional connectivities in the

immune system. Using antibody responses as an exemplar

endpoint, our analyses confirmed previously reported post-

vaccination transcriptome correlates (Gaucher et al., 2008;

Nakaya et al., 2011; Querec et al., 2009). Importantly, after

accounting for the influence of pre-existing serology, age,

ancestry, and gender, we have successfully constructed

predictive models and have identified correlates of antibody

responses based on prevaccination parameters alone. The

robustness and translational potential of these findings is

emphasized by our demonstration that the parameters playing

essential roles in accurate prediction were cell subsets with

temporally stable baseline values within individuals, raising

the prospect of predicting the quality of immune responses

in the clinic. The data and analytic framework presented pro-

vide a potential resource for studying human immunity in health

and disease.

RESULTS

In-Depth Analysis of Human Immune Status before and
after Vaccination
As a first step toward developing a systems-level understanding

of human immunity, we generated a database of immunological

measurements using samples drawn from healthy volunteers

before and after administration of the 2009 seasonal and

pandemic H1N1 (pH1N1) vaccines (Fiore et al., 2009; Table S1

available online and Figure 1). To facilitate the evaluation of

intra-individual variation, two baseline blood samples were ob-

tained: one a week before and the other immediately prior to

vaccination. Responses were evaluated on days 1, 7, and 70

postvaccination to examine innate, adaptive, and long-term re-

sponses, respectively (Figure 1). Purified PBMCs and sera

were frozen to allow subsequent assessments to be performed

at the same time for a given individual, thereby minimizing batch

effects. For the present study, assays included antibody-forming

cell responses, influenza-specific serum neutralization titers,

multiple 15 color flow cytometric analyses (examining 126 cell

subpopulations), and transcriptome analyses using microarrays

(Figures 1 and S1A andS1B). Analyseswere performed on the 63

subjects from whom we were able to obtain samples at all

scheduled time points.

Substantial Immune Baseline Variations in Healthy
Subjects
We first examined baseline variation in immune parameters. As

expected for subjects from the general population, we found a

wide range of baseline titers to the seasonal vaccine, with corre-

sponding large variations in vaccine-specific memory B cell

numbers (Figure S2A) (Sasaki et al., 2008). In contrast, most of

the cohort was naive for the pH1N1 virus based on titers,

despite some potential cross-reactive memory B cell responses,



consistent with previous observations (Hancock et al., 2009; Li

et al., 2012).

Examination of 126 PBMC subsets (Biancotto et al., 2011)

(Figure S1B and Table S2) revealed a wide range of frequencies

formany cell populations on day 0 (Figure S2B). Cell subsets with

the highest variability among individuals were typically charac-

terized by expression of activation markers or cytokines, likely

reflecting activation of cells within a broadly defined parent

population. To exclude experimental variability as the primary

source of variation, we analyzed multiple aliquots of a control

frozen PBMC sample along with an independent group of sam-

ples over a 2-month period. We found that technical variability

was minimal (average control sample replication R2 = 0.99;

Figure S1B).

Aside from experimental noise, variation can be attributed to

the combined effects of baseline differences across individuals

(intersubject baseline variation) and temporal changes around

the baseline within subjects (intrasubject variation). We took

advantage of our multiple baseline measurements (days �7, 0,

and 70) to assess the relative contribution of these two types

of variation for each cell subset. Day70was used as an additional

baseline because we did not observe substantial postvaccina-

tion changes except for influenza-specific antibody titers and B

cell memory responses (Figure 2A; Experimental Procedures).

Among populations with high overall variability, many B cell sub-

sets showed low within-subject variability (and therefore high

temporal stability) over a period ofmore than 2months (indicated

in dark gray in Figure 2A).

Transcript abundance for day 0 PBMCs also showed substan-

tial variation (Figure 2B), likely reflecting, in part, the different

proportions of cell subsets among subjects. To better quantify

this variation in a functional context, we developed an approach

to summarize ‘‘pathway activity’’ for each subject based on

whether a substantial number of genes in a given annotated

pathway or function were expressed at different levels in the

PBMC of the individual relative to the cohort average (see Exper-

imental Procedures). In addition to innate and adaptive immune

pathways (Figures S2C and 2C), somemetabolic pathways were

also highly variable (Figure S2C), perhaps reflecting changes in

metabolic profiles that occur in immune cells upon activation

and differentiation (Gerriets and Rathmell, 2012). Assessment

of inter- versus intrasubject variation demonstrated diverse pat-

terns, with subject-to-subject baseline differences (blue bars)

contributing substantially to the observed variability of many

genes and pathways (Figures 2B and 2C).

Coherent Changes in Immune Parameters
Postvaccination
We next evaluated whether we could detect coherent changes

(i.e., consistent across subjects) following vaccination. As ex-

pected, we observed strong but highly variable increases in influ-

enza vaccine-specific IgG+ antibody-secreting cells on day 7

(Figure 3A). As previously reported (Bucasas et al., 2011; Nakaya

et al., 2011; Obermoser et al., 2013), we also found coherent

changes in gene expression, with largely nonoverlapping signa-

tures on days 1 and 7 (Figures 3B and 3C). Overall, day 1

responses included pathways reflecting innate immune-cell

activation, including interferon-related genes, as observed by
others (Bucasas et al., 2011; Nakaya et al., 2011; Obermoser

et al., 2013) (Figure 3C and Table S3). By day 7, adaptive path-

ways were more predominant, including those strongly associ-

ated with plasmablasts, such as ‘‘endoplasmic reticulum (ER)

stress’’ and ‘‘N-glycan biosynthesis’’ (see below) (Gass et al.,

2004; Iwakoshi et al., 2003). Nonetheless, transcript changes

associated with adaptive responses were also observed on

day 1, including ‘‘B cell receptor signaling.’’

We were particularly interested in evaluating changes in the

frequency of cell subsets, the majority of which have not been

examined in the context of vaccination. As with the transcrip-

tome, changes in subset frequencies on days 1 and 7 were

largely nonoverlapping (Figure 3D). Again, day 1 changes re-

flected activation of innate immune cells, including CD40+ and

CD86+ monocytes (ID65 and ID67) and IFNa+ plasmacytoid

DCs (ID78), populations that have been linked to vaccination

efficacy and responses to influenza (Fonteneau et al., 2003;

van Duin et al., 2007). However, we also observed changes in

adaptive cell populations, particularly those reflecting activation

of CD8+ and CD4+ T cells, as well as both naive and memory B

cells (Kaminski et al., 2012). Day 7 responses primarily reflected

changes in adaptive cell populations, including plasmablasts

(ID87), as expected, but also in a relatedCD20+B subset that ex-

pressed CD27 and CD38 (ID96; Figure S3), as well as activated

T cell populations. Thus, despite substantial baseline differences

among subjects, there were clear coherent changes in cell pop-

ulations and gene expression postvaccination, with days 1 and 7

involving distinct cell types and genes.

Antibody Titer and Cellular Responses Depend on
Prevaccination Serological State
A major question in understanding human immunity is the extent

to which responses to a perturbation are affected by pre-existing

immune status. To address this question, we first assessed the

effects of day 0 serology andmemory B cell status on outcomes.

To evaluate titer responses, we adopted the ‘‘fold-change from

baseline’’ metric used by the FDA andWorld Health Organization

for the evaluation of vaccine efficacy (Figures 4A and S4A).

Because the day 70 over day 0 fold change in titer correlated

with both the day 7 fold change in titer and effector B cell re-

sponses and thus reflected both short- and long-term responses

(Figures S4B and S4C), we used day 70 titer responses as the

endpoint for subsequent analyses. Interestingly, subjects with

higher initial titers tended to have lower fold changes. Though

not intuitively obvious, inverse correlations have been observed

in other influenza vaccination studies (Bucasas et al., 2011; Fur-

man et al., 2013; Sasaki et al., 2008).

Next, we clustered subjects using a combination of six base-

line parameters: the four normalized baseline titers to the viruses

targeted by the vaccines and the fractions of memory IgG+ B

cells specific for the seasonal and pH1N1 vaccines (Experi-

mental Procedures). Unsupervised clustering followed by

robustness analysis (Experimental Procedures) revealed two

separable groups containing 33 and 26 subjects. Group 1 indi-

viduals were generally low for all six parameters, whereas

group 2 had mostly higher values though less uniformly so for

pH1N1 titers (Figure 4B). Analyses of postvaccination transcript

changes revealed no significant differences between the two
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(A) Variation in cell population frequencies at baseline. The length of the bar denotes observed sum of squares (R2). Blue and gray designate R2 attributed to inter-

and intrasubject variation, respectively.

(B) Variation in gene expression at baseline. Hierarchical-clustered heatmap of the 500 most variable genes and the relative proportion of inter- and intrasubject

variation (Experimental Procedures).

(C) Clustered heatmaps of genes from two variable immune relevant pathways showing distinct patterns of expression heterogeneity across subjects (see

Figure S2C and Experimental Procedures).
groups. However, the more naive group exhibited significantly

greater increases in plasmablasts (ID87) and seasonal vaccine-

specific ELISpot responses on day 7 (Figure 4C). Thus, both

the plasmablast response on day 7 and the mean fold change

in titers on day 70 were inversely correlated with initial titers.

Systematic Identification of Pre- and Postvaccination
Predictors and Correlates
Wenext developed a systematic framework to take advantage of

intersubject baseline and response variations to build predictive

models of antibody responses. Our approach involved delinea-
502 Cell 157, 499–513, April 10, 2014 ª2014 Elsevier Inc.
tion of the impact of intrinsic (e.g., age and gender), baseline,

and response variables on outcome (Figure 5A). Given that

most studies have focused primarily on linking postvaccination

parameters to titers, we were especially interested in whether

baseline parameters correlated with and could potentially pre-

dict outcome independent of age, gender, and pre-existing anti-

body titers.

Defining Titer Response Endpoints
To account for the strong influence of baseline titer on day 70 re-

sponses, we devised two endpoint metrics. The first, maximum
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fold change (MFC), was defined as the maximum of the day 70

over day 0 fold change across all viral titers, based on normalized

values (Experimental Procedures). The second, adjusted MFC

(adjMFC), removed the nonlinear correlation between MFC and

day 0 titers by first dividing the cohort into groups of subjects

with similar day 0 titers and then adjusting the response within

each group so that they were normalized and thus comparable

(see Experimental Procedures and related approaches [Bucasas

et al., 2011; Nauta, 2011]). Finally, for each metric, we defined

‘‘high’’ and ‘‘low’’ responders as subjects ranked above or below

the top or bottom 20th percentile mark of the metric, respec-

tively. We modeled the maximum response (Nakaya et al.,

2011) because none of the cell population and gene expression

parameters that we assessed targeted specific antigens. Thus,

our goal was to determine whether models could be built to pre-

dict robust responses to at least one of the vaccine antigens.

Our analyses suggested that baseline titer alone should be a

predictor of antibody responses postvaccination. However, re-

sponses were still highly variable within groups of individuals

with similar baseline titers (Figures 4A and S4A). Thus, this vari-

ation (captured by adjMFC) could be utilized to determine base-

line titer-independent correlates and predictive models. Though

we were mainly interested in adjMFC, we also analyzed MFC to

assess the effects of day 0 titers on prediction and associated

predictive parameters.

Contributions of Intrinsic Factors
We first assessed the effects of intrinsic factors, including age,

gender, and self-reported ancestry (Figure 5A), by using

ANOVA analysis on all variables simultaneously. Consistent

with previous data (Furman et al., 2013; Goodwin et al., 2006;

Gross et al., 1995), age was the only correlate for both metrics

(Figure 5B). As expected, initial titers were significantly corre-

lated with MFC (Figure 5B), but not with adjMFC, for which

more than 80% of the variance remained unexplained.

MethodOverview for the Identification of Predictors and
Correlates
We next conducted two types of analyses—predictive modeling

and robust correlate identification—to assess whether any base-

line or postvaccination parameters were associated with re-

sponses. Predictive modeling analyses pooled the high and low

responders in our cohort and randomly divided them into

nonoverlapping training and testing sets containing 75% and

25% of the subjects, respectively; the former was used for build-

ing models whose predictive performance was then evaluated in

the unseen testing set (Experimental Procedures). Analyseswere

repeated 5,000 times using different randomly generated sets to
Figure 3. Postvaccination Changes in Serologic, Cellular, and Transcr

(A) Increased antigen-specific antibody secreting cells on day 7 following vaccin

(B) Heatmap of genes from days�7, 1, 7, and 70 that changed significantly comp

day 0 is indicated by color). Genes with similar patterns of change were grouped

(C) Coherently changed genes in the clusters from (B). (Right) Representative imm

(Experimental Procedures). Genes found to be predictive of or correlated with res

marked in blue.

(D) Coherently changed cell populations on days 1 and 7 postvaccination (FDR

populations considered ‘‘innate’’ and ‘‘adaptive,’’ respectively.
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evaluate the robustness of themodel constructionmethod and to

identify parameters that consistently contributed to prediction.

When prediction was not possible, we also assessed whether

we could identify parameters that consistently correlated with

the response endpoints when different random subsets of sub-

jectswere used in the analysis (Experimental Procedures)—while

an endpoint may have such robust correlates, these may be

insufficient for reliable, quantitative prediction.

The first step for training predictive models involved selecting

the top k parameters based on the parameters’ strength of cor-

relation with the endpoint in the training set; we tested multiple

values of k (see below). Our criterion for assessing robust pre-

diction was to determine whether the area under the receiver

operator characteristic curve (AUC) was above 0.5 in at least

75% of the 5,000 iterations (0.5 is the AUC level expected by

chance). To reveal which parameters contributed to prediction,

we identified those that were: (1) consistently ranked in the top

k and therefore selected for model construction in a large num-

ber of iterations (% selected) and (2) weighted highly by the

model in making its predictions (median weight) (Experimental

Procedures).

Identification of Postvaccination Predictors and Robust
Correlates
Given previous findings of postvaccination transcript correlates

with antibody responses (Nakaya et al., 2011), we first examined

data from days 1 and 7. To ensure that correlates were indepen-

dent of intrinsic factors, we removed age, gender, and race

effects from both cell population and gene expression data

sets via linear regression (Experimental Procedures). Though

models built using either gene expression or cell populations

from day 1 were not predictive, interferon signaling correlated

robustly with MFC (Figure 5C). Coherent changes in interferon-

associated transcripts have been detected on days 1 and 7 in

our and other related studies (Bucasas et al., 2011; Gaucher

et al., 2008; Nakaya et al., 2011; Obermoser et al., 2013; Querec

et al., 2009). In contrast, highly predictive models could be built

using day 7 cell population or gene expression data for both

adjMFC and MFC (Figures 5D and 5F). Consistent with previous

findings (Nakaya et al., 2011), MFC could be predicted using as

few as two or five genes, though more were required for adjMFC

(Figure 5F). Notably, robustly correlated (Figure 5C) and predic-

tive genes (Table S4) were enriched for ER stress, N-glycan

biosynthesis, and cell-cycle pathways, whose gene members

correlated strongly with plasmablast frequencies (see below).

Accordingly, plasmablasts (ID87) and the overlapping CD20+

subpopulation (ID96) were the dominant cellular contributors

(Figure 5E) (Withers et al., 2007).
iptomic Parameters

ation measured by ELISpot.

ared to day 0 (FDR < 0.05 and absolute log-fold change > 0.2; fold change from

by clustering analysis (indicated by the color bars on the left).

unological pathways enriched in coherently changing genes on days 1 and 7

ponse titers in a previous influenza vaccination study (Nakaya et al., 2011) are

< 0.05 and > 10% change from day 0). Blue and light-brown boxes denote
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Figure 4. Postvaccination Responses Depend on Baseline Serology and Memory B Cell Status

(A) Relationship between initial and fold change (day 70/day 0) in titer for A/Uruguay after vaccination (see Figure S4 for other viruses). Histogram at left shows

distribution of the titer responses.

(B) Heatmap showing two distinct groups of subjects identified based on robust clustering analysis of day 0 serologic and memory B cell variables (see

Experimental Procedures)

(C) Postvaccination changes in plasmablast frequencies (left) and frequencies of IgG+ seasonal influenza vaccine-specific antibody secreting cells (right) on day 7

for the low (1) and high (2) initial titer groups from (B).
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Identification of Prevaccination Predictors and
Correlates
We next asked whether predictive models could be built using

baseline (day 0) parameters alone. Again, we removed age,

gender, and ancestry from cell population and gene expression

data to ensure that models and correlates that we identified were

independent of these factors (Experimental Procedures). Neither

day 0 gene expression nor pathway activity (defined in Fig-

ure S2C) alone was predictive of either endpoint, though a

number of robustly correlated genes and pathways could be

identified (Figure 6A). Notably, genes associated with pattern

recognition and interferon signaling robustly correlated to MFC

but less so to adjMFC.

We then built and tested models for MFC and adjMFC using:

(1) the frequency of 126 cell populations or (2) both the cell

population frequencies and the activity score of 183 annotated

pathways (Figure S2C). Cell frequency and transcript data

were integrated using the pathway activity score because the

numbers of pathways and cell populations were comparable,

whereas the large number of genes could overwhelm signal

from cell populations. Of note, predictive models could be

built by using cell populations alone (Figure 6B); integrating

pathway/transcript with cell population data performed substan-

tially worse (best median AUC was 0.6 versus 0.78 using cell

populations alone). Thus, day 0 cell frequencies alone provided

the essential information for prediction.

We next identified cell populations that contributed most to

prediction. Twelve cell populations were identified for adjMFC,

including memory, naı̈ve, and transitional B cells; CD4 effector

memory T cells; IFNa+myeloid dendritic cells (mDC); and several

activated T cell populations (Figure 6C and Experimental Proce-

dures). Several of the B cell populations were CD38+, including

CD20+IgD-CD27+CD38+ B cells (ID96), as well as transitional

(ID91) and naive (ID108) populations and an IgD+CD27+memory

population (ID103) that has been linked to early production of IgM

(Shi et al., 2003). Only some of these populations—primarily the

T cell subsets—contributed to the prediction of MFC (Figure 6C).

Thus, by accounting for baseline serology using adjMFC, we un-

covered additional baseline predictors.

Temporal Stability of Predictive Cell Populations
To evaluate the temporal stability of the day 0 predictive cell pop-

ulations, we examined their intra- versus intersubject variation

over time (Figure 2A). Except for ID105 (CD86+IgD+ memory B
Figure 5. Predictive Modeling of Antibody Response and Identification

(A) Conceptual framework for analyzing contributors to titer response variation

variation in baseline immune statuses (day 0, marked in blue) and postvaccinati

could, in turn, contribute to response variation, and all sources of variation could t

were analyzed following the ‘‘flow’’ of time. (Right) The contributions of intrinsic va

and response (days 1 and 7) parameters, which were then analyzed in a similar s

(B) ANOVAmodeling of day 70 titer response using age, gender, ethnicity, and bas

p values are shown for MFC and adjMFC.

(C) Robust transcriptomic correlates from days 1 and 7 postvaccination (shown as

100 random trials) that apathwaywasenriched (p<0.05) is shown.Pathways thatw

(D) Prediction performance for MFC and adjMFC is shown for models built using

imental Procedures).

(E) Day 7 predictive cell populations (see Results and Experimental Procedures

included in themodel is shown. Median normalized weights of each population are

between the cell population and the titer endpoint.
cells), all of the B cell and some of the CD4+ T cell (including

effector memory) predictive populations were remarkably stable

within individuals over aperiodofmore than2months (Figure 6D).

Among these were B cell subsets that also exhibited some of the

highest intersubject variation among all of the cell populations

that we measured (e.g., ID103 and 91; Figure 2A), suggesting

that these may be robust baseline markers for delineating inter-

subject differences. These stable B cell populations (ID91, 96,

103, 108) were all CD38+ and contributed to the prediction of

adjMFC, but not MFC. Examining the predictive cell populations’

temporal profile further confirmed their stability and ability to

separate the high and low responders (Figures 6E, 6F, and S5).

This was true even for ID96, which increased coherently across

subjects at day 7 postvaccination and returned to lower levels

by day 70. Together, these results suggest that many of the pre-

dictive markers that we uncovered reflected stable individual

differences in baseline immune states that correlated with the

capacity for robust responses to influenza vaccination.

Because some of the predictive populations were less tempo-

rally stable and thusmay indicate transient events (e.g., an infec-

tion), we next assessed whether predictive models could be built

using only the 56 most stable populations (those above the 80%

stability mark; Figure 6D) as inputs to our 5,000 iteration cross-

validation assessment. Even using a smaller k of 10 (versus

30 previously), adjMFC could be robustly predicted (median

AUC = 0.78; Figure 6G). As expected, the populations contrib-

uting most to adjMFC prediction were the same stable ones

identified above. Thus, the less stable populations were not

essential for adjMFC prediction. In contrast, use of the stable

cell populations decreased the predictive performance for

MFC, which remained flat for all values of k. However, if the sta-

ble populations above the 80% mark in Figure 6D were omitted

instead, performance remained high for MFC (median AUC =

0.83 for k = 10) but dropped substantially for adjMFC (median

AUC = 0.56 for k = 10). Thus, the more transient signals provided

the bulk of the predictive power for MFC, whereas that for

adjMFC came from temporally stable parameters that may

have captured the unique immune status of individuals.

We further evaluated the robustness of our results by building

models using the entire cohort’s day 0 cell population data as the

training set (k = 2, 5, 10, or 30) and then assessing whether these

models could predict adjMFC using independent measurements

from other baseline time points (day �7 or the more temporally

removed day 70). Highly accurate prediction could still be
of Correlates

following vaccination. Variation in intrinsic factors (purple) could contribute to

on responses (days 1 and 7, marked in green and orange). Baseline variation

ogether contribute to variation in titer responses. Contributions to titer variation

riables were first analyzed, and their effects were removed from baseline (day 0)

tep-wise manner (Experimental Procedures).

eline titers. Fraction of variance explained by each variable and the associated

pathway enrichments) (Experimental Procedures). The percentage of times (in

ere significant inmore than80%of the trials in at least one timepoint are shown.

different number of top cell populations (D) and genes (F) from day 7 (Exper-

). The percentage of times (in 5,000 random trials) that a cell population was

shown on the right. The sign of the weight indicates the direction of correlation

Cell 157, 499–513, April 10, 2014 ª2014 Elsevier Inc. 507



0 50 100
% at top

−0.5 0 0.5 1
Median weight

ID21. % IL22+ of CD161+CD4+ T cells 

ID24. % IL21+ of CD161−CD4+ T cells 

ID25. % IL22+ of CD161−CD4+ T cells 

ID26. % IL2+ of CD4+ T cells 

ID50. % Perforin+ of CD8+ T cells

ID75. % IFNa+ of mDCs

ID105. % CD86+ of IgD+CD27+ memory B cells

ID36. % CD27+CCR7− of memory CD4+ T cells
(Effector memory CD4+ T)

ID91. % CD38+ of transitional B cells

ID96. % CD38+ of IgD−CD27+ memory B cells*

ID103. % CD38+ of IgD+CD27+ memory B cells*

ID108. % CD38+ of Naïve B cells

B

E

F

C

G

D

da
y0

Number of top populations used

R
an

do
m

ex
pe

ct
at

io
n

day0

M
ed

ia
n 

A
U

C

2 5 10 30

0
0.

2
0.

4
0.

6
0.

8

Number of top populations used

Ra
nd

om
ex

pe
ct

at
io

n

day0 (stable populations only)

M
ed

ia
n 

A
U

C

2 5 10 30

0
0.

2
0.

4
0.

6
0.

8

0.470% -0.4

MFC
adjMFC

(applies to panels A,B,C and G)

MFC
adjMFC

* overlaps with CD20int plasmablasts

−7 0 1 7 70

0.2

0.6

1.0

1.4

Time (days)

ID36. % CD27+CCR7-
of memory CD4+ T cells

(E ector memory CD4+ T cells)

High LowadjMFC :

−7 0 1 7 70

−0.5

0

0.5

1

1.5

Time (days)

ID96. % CD38+
of IgD-CD27+ memory B cells

(overlaps with CD20int plasmablasts)

A

 % significantly enriched

20 60 100

Interferon Signaling

Methane Metabolism

One Carbon Pool by Folate

Starch and Sucrose Metabolism
Fcγ Receptor−mediated Phagocytosis

in Macrophages and Monocytes
TREM1 Signaling

Citrate Cycle

Androgen and Estrogen Metabolism
Role of Pattern Recognition Receptors
in Recognition of Bacteria and Viruses

Nucleotide Sugars Metabolism
Nicotinate and Nicotinamide

Metabolism

day0

0 20 40 60 80 100
30

40

50

60

70

80

90

100

Inter−subject variation
(total inter-subject R2 of log10 cell-population frequency)

W
ith

in
−s

ub
je

ct
 s

ta
bi

lit
y 

(%
)

ID75

ID96

ID103

ID105

ID108

ID21
ID24

ID25
ID26

ID36

ID50

ID91

Other populations

Highly stable predictive populations
Less stable predictive populations

ce
ll-

po
pu

la
tio

n
fre

qu
en

cy
 (l

og
10

)
ce

ll-
po

pu
la

tio
n

fre
qu

en
cy

 (l
og

10
)

(legend on next page)

508 Cell 157, 499–513, April 10, 2014 ª2014 Elsevier Inc.



made for all k’s, e.g., AUC= 0.91 and AUC= 0.86 for days�7 and

70 using k = 10, respectively. Thus, the predictive signals were

remarkably stable over time.

Transcriptomic Signature of the Predictive Cell
Populations
To obtain functional insight into the predictors, we took advan-

tage of our simultaneous assessments of cell population fre-

quencies and the PBMC transcriptome to identify transcripts

and associated pathways whose abundance correlated with

the frequency of predictive cell subsets (Experimental Proce-

dures). As expected, the two predictive and coherently changing

cell populations from day 7 (ID87 and ID96) were linked to

known antigen-secreting cell/B cell/plasmablast-specific genes,

including Ig chains, XBP1 and IRF4, aswell as plasmablast-asso-

ciated pathways such as ER stress (Figures 7B and 7D). These

populations were also associated with N-glycan biosynthesis,

consistent with the highly glycosylated state of immunoglobulins

and the requirement for proper glycosylation for plasma cell

development (Tulp et al., 1986). Many plasmablast-correlated

genes were also ones that changed on day 7 (Figures 3B, 3C,

and 7B [marked in purple and orange]) and included genes found

to be predictive of or correlated with response titers in previous

studies (e.g., TNFRSF17) (Gaucher et al., 2008; Nakaya et al.,

2011; Querec et al., 2009). Thus, our analyses suggest that the

day 7 coherent and predictive signatures in our as well as previ-

ous studies were likely drawn from a tight coupling between titer

response and the degree of plasmablast expansion.

Our analyses also revealed that day 0 predictive populations

were associated with distinct transcriptomic signatures (Figures

7A and 7C). Several mitochondria-related pathways were posi-

tively associated with ID108 (CD38+ naive B cells) and ID91

(CD38hi transitional B cells), perhaps reflecting changes in bioen-

ergetic states associated with B cell development and activation.

ID36 (effector memory CD4+ T cells) and ID50 (perforin+ CD8+

cells) also shared signatures, suggestive of common features of

activation. Of note, several innate pathways (PRR signaling,

TREM1 signaling, and interferon-related genes) were positively

linked to IL22+ and IL2+ CD4+ T cells (ID25 and ID26) and were

negatively linked to ID36and ID50. Theassociationof innatepath-

ways with these adaptive subsets before vaccination suggests

that activationof thesepathways in theseor other interactingcells

may play important roles in determining response quality. Inter-

estingly, ID96, a day0predictiveBcell population that also coher-

ently increased on day 7 (Figures 3D and 6F), showed largely

distinct signatures on days 0 and 7 (Figures 7A–7D), suggesting

differences in the cell population defined by those markers or

distinct functional interactions with other cell populations post-

vaccination. Thus, by linking intersubject variation in geneexpres-
Figure 6. Day 0 Predictors and Correlates

(A) Robust correlates between day 0 gene expression and response titers (see F

(B) Prediction performance using day 0 populations (as in Figure 5D).

(C) Day 0 predictive cell populations analyzed as in Figure 5E.

(D) Scatter plot of intrasubject stability (y) versus inter-subject variance (x) (see M

populations) and yellow (less stable).

(E and F) Temporal profiles of two stable predictive cell populations for high (o

correspond to samples with low viability.

(G) Predictive performance for day 0 using only the temporally stable population
sion to cell subset frequencies, our approach reveals potential

connections among components of the immune system.

DISCUSSION

Using influenza vaccination as a model perturbation, we have

gone beyond post hoc prediction and developed a framework

that transformsmultimodal data sets and natural population vari-

ation into predictive models that, unexpectedly, predicted sero-

logic responses to influenza vaccination in our cohort usingbase-

linePBMCsubpopulation frequencies alone, independent of age,

gender, initial serology, and the specificity of the cell populations

for vaccine antigens. Notably, the essential cell subsets contrib-

uting to prediction were among the most stable within subjects

over a time span of more than 70 days. Some of these also had

the highest intersubject variation and thus were likely predictive

because they delineated distinct baseline immune states among

individuals. Our findings raise the possibility of using such mea-

sures as biomarkers of immune response potential in the clinic.

Despite substantial intersubject differences at baseline, we de-

tected coherent changes in hundreds of transcripts postvaccina-

tion, as seen in recent vaccine studies (Bucasas et al., 2011;

Gaucher et al., 2008; Nakaya et al., 2011; Querec et al., 2009).

However, we also detected changes in the frequencies of cell

populations, many of which have not been examined in the

context of vaccination. Some of these changes reflect expected

biology, with innate immune activation early and adaptive

changespredominatingby1weekpostvaccination.Nonetheless,

themagnitude of responseswas intimately linked to the prevacci-

nation status of the individual, with lower initial titers being asso-

ciated with larger fold increases in serum titers and plasmablast

frequencies postvaccination. Although seemingly counterintui-

tive, such inverse correlations may reflect the current use of fold

change to measure vaccine responses, differences in response

timing (Henn et al., 2013), or inhibitory responses in pre-immune

subjects (He et al., 2008). Thus, initial serology is an important

yet potentially confounding variable that should be considered

when exploring correlates and building predictive models.

A key question is whether some of our predictors captured the

memory or activation status of the system due to prior exposure

or whether they are indicative of the immune system’s general

propensity to respond. For example, the overall immune

‘‘threshold’’ for mounting a response may be determined by ge-

netics and environmental factors such as the microbiota,

contemporaneous stimulations by prevalent viruses such as

CMV and EBV, or heterologous immunity due to degeneracy in

T cell recognition (Münz et al., 2009; Welsh and Selin, 2002).

Although it is possible that our observations were specific to

the particular season or cohort, several lines of evidence suggest
igure 5C).

ethods). Predictive populations from (C) are highlighted in blue (more stable

range) and low (green) responders (based on adjMFC). Missing data points

s (those above the 80% mark in Figure 6D).
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that they have broader implications. First, the overall postvacci-

nation responses of our cohort were consistent with those

observed in other influenza vaccination cohorts from different

seasons (Bucasas et al., 2011; Furman et al., 2013; Nakaya

et al., 2011; Obermoser et al., 2013). Second, validation using

independent measurements from other baseline time points

(days�7 and 70) suggests that the essential predictive cell pop-

ulations reflect stable baseline immune states as opposed to

acute events. Indeed, initial analyses of four of our predictive B

cell populations in healthy individuals from independent vaccine

cohorts across multiple seasons (Obermoser et al., 2013) pro-

vides further support for their temporal stability (data not shown).

Moreover, though the less stable predictive subsets (e.g., IFNa+

mDC [ID75] and CD86+IgD+memory B cells [ID105]) may reflect

temporary environmental effects, removing them from our data

only affected prediction of the initial titer-dependent endpoint

(MFC), but not the baseline serology-independent adjMFC. Sup-

porting the idea that B cell subsets can be useful response

predictors, a correlation between prevaccination levels of

class-switched memory B cells and serological responses to

vaccination has been recently shown (Frasca et al., 2012).

Another recent study has reported genetic determinants of im-

mune cell population frequencies in humans (Orrù et al., 2013).

Although B cell subset frequencies were not examined, it will

be of interest to assess whether genetics regulates the fre-

quencies of our temporally stable, predictive populations.

Byassociating changes ingeneexpressionwith changes in cell

population frequencies, we have started to explore the nature of

transcriptomic changes following vaccination. Changes in tran-

script abundance in PBMCs can originate from a combination

of alterations in gene expressionwithin individual cell populations

and changes in cell population frequencies. Others have started

to address these issues by sorting cell subsets followed by

expressionprofiling, by correlating expression changes to known

patterns of expression in major immune cell populations, or by

computational deconvolution to infer cell-population-specific

changes (Brandes et al., 2013; Nakaya et al., 2011; Shen-Orr

et al., 2010). Here, we also found that changes in some cells

were accompanied by transcript changes in the related cell pop-

ulations. Tight correlations between plasmablast frequencies on

day 7 and plasma cell-associated genes, such as immunoglobu-

lins, ER stress, cell cycle, and N-glycan biosynthesis pathway

genes, were involved. These plasmablast-correlated genes also

included many that were previously associated with postvacci-

nation response and predictive signatures (Nakaya et al., 2011;

Querec et al., 2009). Thus, our results suggest that many of these

transcriptomic changescanbeaccounted forby changes inplas-

mablast frequencies on day 7. Our observation that increases in

plasmablasts were more prominent in subjects with low baseline

titers, along with our integration of cell population, gene expres-

sion, and baseline immune status data, reveal that a sizable
Figure 7. Gene Expression and Pathway Enrichment Signatures of Pre

Genes significantly correlated with predictive populations from (A) day 0 and (B) d

denoting the clusters from Figure 3B. Genes found to be predictive of or correlate

2011) are marked in blue. Analyses were performed separately for positively and

significantly correlated with at least one population are shown (FDR < 0.01). Pathw

cell populations (from Figure 6C).
component of the day 7 predictive transcriptome signature for

MFC is likely derived from intersubject differences in prevaccina-

tion titers.

Unlike day 7 models, our baseline predictive models could

only be built using cell population frequencies, suggesting that

transcriptomic measurements of PBMCs were insufficiently sen-

sitive to capture intersubject differences derived from the day 0

predictive populations, in contrast to the highly transcriptionally

active plasmablasts. Whether expression data obtained from a

simpler transcript pool, such as sorted B cell populations, pro-

vides better predictive power remains an important question.

Correlating frequencies of cell populations with gene expression

can also potentially reveal the internal state of that cell subset as

well as that of other cell populations. Though most of our base-

line predictive populations are adaptive, they are strongly corre-

lated to genes and pathways with innate functions, some of

which may reflect the (activation) states of functionally interact-

ing cell populations. It will therefore be of interest to evaluate

immune-activation differences (e.g., responses of PBMCs to

TLR ligands) in high versus low responders to vaccination.

Even on day 7, when the overlapping populations ID87 and

ID96 were significantly correlated to largely the same genes

and pathways, ID96 exhibited a stronger inverse association

with several innate signaling pathways. These connections sug-

gest distinct features for the CD20+ and CD20� populations of

IgD-CD27+CD38+ B cells (Clutterbuck et al., 2006). Our results

highlight the importance of evaluating and integrating multiple

data sets for understanding human immune function.

Our data and analyses also serve as a potential resource for

characterizing normal human immunevariationsand their implica-

tions for health and disease. One important goal of this study was

to begin the building and analysis of the ‘‘normal human

immunome’’ that characterizes the status of the apparently

healthy immune systemmore broadly and fully than traditional as-

sessments for future mining and reference. Such information

would include clinical and family history, detailed cellular and

molecular measurements of immune status, andmicrobiome sta-

tus, as well as genome-wide genotypic information. Through the

quantification of inter- as well as intraindividual variations, such

a resource can provide essential baseline and comparative data

for analyses of immune system behavior after perturbation and,

through computational analyses, for de novo discovery of func-

tional connections amongmolecular, cellular, and physiologic pa-

rameters of the human immune system in health or disease.

Our study highlights the importance of untangling correlation

structures to identify the potential ‘‘root’’ correlates of responses

as opposed to ‘‘passengers.’’ We have specifically shown that

the strong effects of initial serology on titer outcome need to

be properly modeled in order to identify whether and which

baseline and response parameters contribute most to outcome.

This may be particularly important in the context of influenza
dictive Cell Populations

ay 7. In (B), coherently changing genes from Figure 3 are highlighted by color,

d with response titers in a previous influenza vaccination study (Nakaya et al.,

negatively correlated genes (in red and blue scales, respectively). Only genes

ay enrichment analyses of gene correlates of (C) day 0 and (D) day 7 predictive
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vaccination, in which partial immunity is highly prevalent. Our

adjMFC metric helped to reveal a number of temporally stable

correlates not associated with MFC and thus may be useful in

similar vaccine studies. One major constraint limiting predictive

model construction and the discovery of novel functional rela-

tionships among parameters in a study like ours is statistical

power, partially because the number of subjects, particularly

the extreme responders, is far less than the thousands of

parameters measured and the need to correct for multiple hy-

pothesis testing. Meta-analyses across multiple studies will start

to mitigate this issue but require the coordinated development

and sharing of experimental and computational approaches in

the research community to address issues ranging from control-

ling batch effects and standardizing quality control metrics to

constructing predictive models. Achieving such integrated ap-

proaches across research centers will provide a major step for-

ward in using computational approaches to understand the

workings of the human immune system in health and disease.

EXPERIMENTAL PROCEDURES

For details and associated references, see Extended Experimental

Procedures.

Fasting blood samples were drawn between 8 and 11 AM from healthy

volunteers on IRB-approved protocol (09-H-0239) and were processed within

30 min. PBMCs were cryopreserved or lysed and stored at �80�C for subse-

quent RNA extraction using miRNeasy (QIAGEN) and hybridization to HG 1.0

ST arrays (Affymetrix).

Frozen PBMCs from all time points for a subject were stained for five panels

(Figure S1A) (Biancotto et al., 2011) using a common antibody mix on the same

day. Cell frequencies were expressed as percent of parent population.

Virus-neutralizing titers (A/California/07/2009 [H1N1pdm09], H1N1 A/Bris-

bane/59/07, H3N2 A/Uruguay/716/07, and B/Brisbane/60/2001) were deter-

mined according to Hancock et al. (2009). Reported titers were the highest

dilution that completely suppressed virus replication. Total and influenza-spe-

cific IgG/A frequencies of antibody-secreting cells were measured by ELISpot

assays modified for frozen samples (Ho et al., 2011).

Microarray data were processed using APT (Affymetrix). Batch effects were

removed using linear models in both raw and baseline-subtracted data. Fre-

quencies of cell populations were transformed by log10 (with zero values first

set to 0.01). Samples and populations with low viability or cell numbers,

respectively, were excluded.

Coherent changes from day 0 were computed using paired test in Limma

(Smyth, 2004). Surrogate variable analysis (Leek and Storey, 2007) was used

to remove hidden batch effects. The Wilcoxon test was used to compute

coherent changes in cell population frequencies. False discovery rates were

computed as described (Benjamini and Hochberg, 1995). Pathway enrichment

analyses were performed using the geneSetTest function (Limma) and path-

ways annotated by Ingenuity (http://www.ingenuity.com).

To assess inter- and intrasubject variation, we used data from days �7, 0,

and 70 for each parameter and fitted an ANOVA model to obtain: (1) total

R2, (2) the amount of variation explained by subject, and (3) the residual as

an estimate of intrasubject variation.

AdjMFC and MFC are defined in the text. To take the maximum of individual

viruses, we performed standardization by subtracting the median followed by

dividing the maximum absolute deviation (MAD) within each virus. To compute

adjMFC,webinned subjects basedon theirmaximumbaseline titers (across vi-

ruses) and then subtracted themedian and divided by theMADwithin each bin.

Contributions to titer response from age, gender, and ancestry were

assessed using ANOVA. Effects were then removed from the cell population

frequency and microarray data by retaining the residual after fitting a linear

model for eachprobe andsubset frequency.Cross-validation-basedpredictive

modelingwas done as described in the text andExtended Experimental Proce-

dures.Weuseddiagonal linear discriminant analysis for cell frequencydata and
512 Cell 157, 499–513, April 10, 2014 ª2014 Elsevier Inc.
when cell frequency and pathway status were combined. For transcript data

alone, we used partial least square (for data dimension reduction due to the

large number of genes) followed by linear discriminant analysis (PLS-LDA).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, five

figures, four tables, and a complete author list and can be found with this

article online at http://dx.doi.org/10.1016/j.cell.2014.03.031.
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