2,015 research outputs found

    Effects of azimuth-symmetric acceptance cutoffs on the measured asymmetry in unpolarized Drell-Yan fixed target experiments

    Get PDF
    Fixed-target unpolarized Drell-Yan experiments often feature an acceptance depending on the polar angle of the lepton tracks in the laboratory frame. Typically leptons are detected in a defined angular range, with a dead zone in the forward region. If the cutoffs imposed by the angular acceptance are independent of the azimuth, at first sight they do not appear dangerous for a measurement of the cos(2\phi)-asymmetry, relevant because of its association with the violation of the Lam-Tung rule and with the Boer-Mulders function. On the contrary, direct simulations show that up to 10 percent asymmetries are produced by these cutoffs. These artificial asymmetries present qualitative features that allow them to mimic the physical ones. They introduce some model-dependence in the measurements of the cos(2\phi)-asymmetry, since a precise reconstruction of the acceptance in the Collins-Soper frame requires a Monte Carlo simulation, that in turn requires some detailed physical input to generate event distributions. Although experiments in the eighties seem to have been aware of this problem, the possibility of using the Boer-Mulders function as an input parameter in the extraction of Transversity has much increased the requirements of precision on this measurement. Our simulations show that the safest approach to these measurements is a strong cutoff on the Collins-Soper polar angle. This reduces statistics, but does not necessarily decrease the precision in a measurement of the Boer-Mulders function.Comment: 13 pages, 14 figure

    Universal pattern in (e,e'p) at large missing momenta: quasi-deuteron or diffractive final state interactions?

    Get PDF
    The intrinsic single particle momentum distributions in nuclei are supposed to show a universal behavior at large momenta, dominated by short-range correlated pairs, or quasi-deuterons. We discuss whether the quasi-deuteron universality survives the final state interaction effects, which are present in the missing momentum spectra measured in A(e,e′p)A(e,e'p) experiments at GeV energies. We demonstrate that in the observed missing momentum spectra an approximate universality is present, but originating from the universal pattern of diffractive final state interactions of the struck proton independent of the target nucleus.Comment: 10 pages, Latex, 3 uuencoded figure

    Asymmetry of the Missing Momentum Distribution in (e,e′'p) Reactions and Color Trnasparency

    Full text link
    We suggest the measurement of the integrated asymmetry of teh missing momentum distribution in (e,e′'p)reactions to check color transparency effects at intermediate momentum transfers.Comment: 8 pages and 3 figures (available from the authors), FNT/T-93-45, University of Pavi

    A Superconductor Made by a Metal Heterostructure at the Atomic Limit Tuned at the "Shape Resonance": MgB2

    Full text link
    We have studied the variation of Tc with charge density and lattice parameters in Mg1-xAlxB2 superconducting samples at low Al doping x<8%. We show that high Tc occurs where the chemical potential is tuned at a "superconducting shape resonance" near the energy Ec of the quantum critical point (QCP) for the dimensional transition from 2D to 3D electronic structure in a particular subband of the natural superlattice of metallic atomic boron layers. At the "shape resonance" the electrons pairs see a 2D Fermi surface at EF-w0 and a 3D Fermi surface at EF+wo, where wo is the energy cut off of the pairing interaction. The resonant amplification occurs in a narrow energy range where EF-Ec is in the range of 2wo.Comment: 16 page

    Magnetorotational instability in cool cores of galaxy clusters

    Get PDF
    Clusters of galaxies are embedded in halos of optically thin, gravitationally stratified, weakly magnetized plasma at the system's virial temperature. Due to radiative cooling and anisotropic heat conduction, such intracluster medium (ICM) is subject to local instabilities, which are combinations of the thermal, magnetothermal and heat-flux-driven buoyancy instabilities. If the ICM rotates significantly, its stability properties are substantially modified and, in particular, also the magnetorotational instability (MRI) can play an important role. We study simple models of rotating cool-core clusters and we demonstrate that the MRI can be the dominant instability over significant portions of the clusters, with possible implications for the dynamics and evolution of the cool cores. Our results give further motivation for measuring the rotation of the ICM with future X-ray missions such as ASTRO-H and ATHENA.Comment: 17 pages, 10 figures, accepted for publication in Journal of Plasma Physics, Special Issue "Complex Plasma Phenomena in the Laboratory and in the Universe

    Non-neutral theory of biodiversity

    Full text link
    We present a non-neutral stochastic model for the dynamics taking place in a meta-community ecosystems in presence of migration. The model provides a framework for describing the emergence of multiple ecological scenarios and behaves in two extreme limits either as the unified neutral theory of biodiversity or as the Bak-Sneppen model. Interestingly, the model shows a condensation phase transition where one species becomes the dominant one, the diversity in the ecosystems is strongly reduced and the ecosystem is non-stationary. This phase transition extend the principle of competitive exclusion to open ecosystems and might be relevant for the study of the impact of invasive species in native ecologies.Comment: 4 pages, 3 figur

    Local structure of directed networks

    Full text link
    Previous work on undirected small-world networks established the paradigm that locally structured networks tend to have high density of short loops. On the other hand, many realistic networks are directed. Here we investigate the local organization of directed networks and find, surprisingly, that real networks often have very few short loops as compared to random models. We develop a theory and derive conditions for determining if a given network has more or less loops than its randomized counterpart. These findings carry broad implications for structural and dynamical processes sustained by directed networks
    • …
    corecore