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A b s t r a c t

The intrinsic single particle momentum distributions in nuclei are supposed to show
a universal behavior at large momenta, dominated by short-range correlated pairs, or
quasi-deuterons. We discuss whether the quasi-deuteron universality survives the final
state interaction effects, which are present in the missing momentum spectra measured
in A(e, e′p) experiments at GeV energies. We demonstrate that in the observed missing
momentum spectra an approximate universality is present, but originating from the uni-
versal pattern of diffractive final state interactions of the struck proton independent of
the target nucleus.
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In the past decades, a great theoretical effort has been devoted to the study of the

nuclear single particle momentum distribution N(k). Particular importance is attributed

to the large momentum tail of N(k), which is expected to be dominated by two nucleon

short-range correlations, or “quasi-deuteron” configurations [1] (QD onwards). The quasi-

deuteron idea was first discussed quantitatively in [2] (see also [3]). This name originates in

the predicted analogous behavior of short-range interactions in all nuclei, from deuteron to

nuclear matter. This should be reflected in a similar shape for the large-k tail (k > 1.5÷2

fm−1) of N(k) in deuteron or in any other nucleus (hereafter the universality ofN(k) refers

to the k-dependence, apart from a k-independent normalization factor). An example can

be seen, e.g., in Fig.5 of [4] where the ratio between 4He and D distributions varies roughly

between 2.5 and 4.5 in the range 1 fm−1 < k < 4 fm−1.

However, the pressing issue is how this important intrinsic feature of the nuclear struc-

ture can be tested in the missing momentum distributionW (~pm) measured experimentally

in (e, e′p) reactions at large missing momentum ~pm. In two previous papers [5, 6] we have

shown that final state interactions (FSI) between the struck nucleon and the spectator

nucleons take over at large ~pm, making the observed W (~pm) substantially different from

the ground state distribution N(k). Furthermore, the sensitivity to the details of the

nuclear structure is lost to a large extent. In this communication we wish to focus on an

approximate universality of the observed W (~pm) for 4He and D targets, which is driven

by the target independence of FSI between the struck and spectator nucleons.

We confine ourselves to large Q2 and high kinetic energy of the struck proton Tkin ≈

Q2/2mp. The very nature of nucleon-nucleon interaction changes from the purely elastic

potential scattering at low energies to a strongly absorptive, diffractive small angle scat-

tering at Tkin ∼> 0.5-1GeV. In this high energy regime, the Compton wavelength of the

struck proton is much smaller than the size of a nucleon and/or average nucleon-nucleon

separation in nuclei. The Glauber model [7] becomes a natural framework for quantitative

description of FSI.

The single particle momentum distribution N(k) coincides with the longitudinal re-

duced response in (e,e’p) scattering in the Plane Wave Impulse Approximation (i.e. ne-
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glecting FSI) integrated over all the missing energies. This can be written as:

N(pm) =
∑
n

∣∣∣〈Ψn|e
i~pm~r|ΨA〉

∣∣∣2 (1)

where ΨA is the ground-state wave function of the target nucleus (mass number A), the

sum goes over all the possible states Ψn for the recoiling system of A-1 particles, ~r is the

position of the struck proton, ~pm ≡ ~q−~p is the missing momentum (in PWIA, the missing

momentum pm coincides with the initial nucleon momentum k), where ~q is the momentum

transfer from the electron to the target and ~p is the momentum of the detected proton.

The angle between ~pm and ~q is denoted by θ.

In the calculation of the experimentally measured (e,e’p) coincidence distribution one

must include FSI distortions,

W (~pm) =
∑
n

∣∣∣〈Ψn|e
i~pm~rS(1, ...A)|ΨA〉

∣∣∣2 , (2)

where the operator S(1, ...A) describes interactions between the struck proton and the

remaining (A-1) spectator nucleons. In the diffractive regime, the Glauber model gives

S(1, ...A) =
A∏
n=2

{
1− Γ(~b−~bn)θ(zn − z)

}
. (3)

Here we decompose ~ri = (~bi, zi), taking the z axis along ~q. The profile function of the pN

interaction, Γ(~b), is usually parameterized as

Γ(~b) =
σtot(1− iρ)

4πb2
o

exp
(
−
~b2

2b2
o

)
. (4)

Here ρ is the Re/Im ratio for the forward elastic pN scattering amplitude, b2
o is the

diffraction slope. In the GeV energy range, σtot ≈ 40 mb, ρ ≈ 0.3÷0.4, bo ≈ 0.5 fm [8, 9].

For the deuteron target, the FSI distortion factor takes on the particularly simple form

S(~r) = 1 − Γ(~b)θ(−z). (5)

Here ~r is the proton-neutron separation. Eq. (5) illustrates basic features of FSI at high

energy and momentum transfer as reflected in the Glauber formalism: (i) The θ(−z)

tells that FSI is possible only provided that the spectator nucleon was in the forward
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hemisphere with respect to the struck proton. (ii) The form of Γ(~b) tells that the struck

proton wave is distorted only at small |~b| ∼< bo. (iii) Because ρ is small, Γ(~b) is dominated

by the imaginary part of the p-n elastic scattering amplitude and the distortion factor

S(~r) predominantly gives an absorption of the struck proton wave at small ~b. At lower

energies, the term ”inelastic event” indicates that the target nucleus breaks up, whereas at

the considered high four-momentum transfer (e, e′p) experiments, ”inelastic” means that

the proton breaks up when undergoing FSI with the residual nucleus. The fact that ρ is

small and σel < σin means that those inelastic events are dominating at GeV energies.

In contrast to FSI at low energies, which is S-wave dominated and therefore isotropic,

the above basic properties of FSI at high energies demonstrate that the transverse and

longitudinal directions, and the forward and backward hemisphere, have different roles,

with the phenomenological consequences of a marked angular anisotropy, and forward-

backward asymmetry.

In the Glauber model the FSI factor has no free parameters, it is fully specified in

terms of the free nucleon scattering amplitude. At the energies which are relevant for this

work, the Glauber model description of hadron-nucleus scattering is well tested [10, 11].

The above expression has been used for calculating the longitudinal response in (e,e’p)

on deuteron [6], with realistic Bonn [12] and Paris [13] wave functions. For the 4He target,

one must use a wave function with realistic Jastrow-type correlations:

Ψ =
∏
i<j

(1− Fij)Ψo. (6)

Here Ψo = exp{−(r2
1 +r2

2+r2
3+r2

4)/2R
2
o} is a harmonic oscillator mean field wave function,

and 1− Fij = 1− Co exp(−r2
ij/2r

2
c ) is a correlation operator expressing hard (Co=1) or

soft (Co < 1) core repulsion when two nucleon centers are within a distance rc (the prac-

tical calculations are done in Jacobi coordinates). This function contains the dominating

features of the 4He ground state, with two exceptions, namely 3-body and d-wave correla-

tions (see e.g. [4]). However, we show that the sensitivity towards those corrections tends

to be lost when FSI are included. In the Jastrow-type correlation Fij, we take a standard

value of rc = 0.5 fm. Then, the choiceRo = 1.29 fm correctly reproduces the experimental
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charge radius (taking into account the finite nucleon size [14]). The qualitative agreement

of our PWIA distribution with the results of the Monte Carlo calculation of [4] and the

parametrization given by [15] is satisfactory. An extensive discussion of the results of the

full calculation of the distribution (2) with the wave function (6) is presented elsewhere

[16]. Here we only wish to compare certain common features of the deuteron and 4He

(e,e’p) distributions at large pm.

A new insight into FSI effects is needed in the regime of diffractive N-N scattering.

At lower energies, FSI act like a correlated response of the full residual nucleus to the

passage of the ejectile. The characteristic parameter of FSI is the nuclear radius. In the

GeV energy range, the wavelength of the struck proton is short and the crucial parameter

is the radius of diffractive pN scattering, which is much smaller than the nuclear radii,

b0 � RA, and approximately equal to the correlation radius, b0 ≈ rc. For this reason

one can expect a large FSI contribution at large pm ∼ 1/b0 ≈ 1/rc. For instance, for

transverse pm, the FSI factor (4) gives rise to a large Fourier transform in (2) and to a

large pm⊥ tail of the missing momentum distribution W (~pm):

W (~pm) ∝
∣∣∣∣∫ d2~bΓ(~b) exp(i~p⊥~b)

∣∣∣∣2 = 4π
dσel

dp2
⊥

=
1

4
σ2
tot(1 + ρ2) exp(−b2

op
2
⊥) . (7)

This contribution to W (~pm) can be attributed to elastic rescattering of the struck proton

on spectator nucleons. To a crude approximation, the pm⊥ dependence in (7) does not

depend on the target nucleus, as b2
o << R2

A. In the absence of FSI, both in deuteron

and in larger nuclei the large pm tail of the single particle distribution would have been

dominated by short-distance nucleon-nucleon interactions in the nuclear ground state.

However our results [5, 6] show that this is not the case when FSI are included.

In Fig. 1a we show the PWIA and the full transverse momentum distribution W (~pm)

including FSI for the deuteron wave functions calculated from the Bonn and Paris mod-

els. The well known smaller D-wave content of the Bonn model makes the corresponding

PWIA much smaller than in the Paris model at large pm. This difference gives an es-

timate of the uncertainties in the predictions of modern theories of the NN interaction

at large pm ∼> 1.5fm−1. However, when FSI are included the differences between the
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two distributions disappear: FSI, which distort the struck proton’s wave function only at

small distances |~b| ∼< bo, are hardly sensitive to the deuteron D-wave (where the centrifu-

gal barrier keeps nucleons apart). In Fig. 1b we show how the distribution W (~pm) for

the 4He(e, e′p) reaction is changed for different types of correlations, going from Co = 0

(pure mean field) to Co = 1 (hard core). For transverse kinematics, the FSI-dominated

distributions are not very sensitive to such drastic changes in the ground state wave func-

tion. From Fig. 1 we learn that in the leading order the FSI are not too sensitive to

the large-k components of the nuclear ground state ΨA. In transverse kinematics, the

FSI redistribute strength from small and intermediate momenta to the large pm tail of

W (~pm), and therefore the transverse missing momentum distribution including FSI effects

is mainly sensitive to the bulk of the nuclear ground state (in deuteron the S-wave, in

complex nuclei the mean-field orbitals).

In Fig. 2, we come to the main point: in transverse and parallel kinematics (both

forward and backward) we show the distributions (including FSI) for 4He and for the

deuteron. The latter is multiplied by 3 to take into account that in 4He we have 3 FSI

scatterers. The similarity between the FSI-inclusive distributions for 4He and deuteron at

pm larger than 1.5 fm−1 is impressing, especially in transverse kinematics. It is even more

striking if one compares the transverse and longitudinal distributions corresponding to

one and the same nucleus (either deuteron or 4He). They are equal in the fully isotropic

PWIA prediction. On the contrary, at large pm the full distributions W (~pm) differ by one

order of magnitude, attesting the FSI dominance. So, at last, universality appears, but

it is driven by FSI rather than by an intrinsic feature of the nuclear ground state wave

function.

In transverse kinematics, the PWIA curve is overwhelmed by the FSI effect by orders

of magnitude. There is no hope to find direct quasi-deuteron effects in experiments

performed in transverse kinematics. Even more confusion can arise from experiments

in which events which are taken at different angles θ of the missing momentum ~pm are

put together as a function of |~pm| and are not presented in separate distributions. In

transverse kinematics the FSI dominance is so marked that it seems difficult to think that
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a more refined 4He ground state can modify this situation, especially as the transverse

missing momentum distribution for the D(e, e′p) reaction calculated with realistic wave

functions is also dominated by FSI and as the FSI effects in 4He should be stronger than

in the rather dilute deuteron.

In longitudinal kinematics, the situation seems more interesting. There, our results

suggest that PWIA and FSI effects are in competition, and a quantitative understanding

of their interplay can become decisive. At these kinematics, at large pm,z, FSI effects

are mainly due to the θ(−z) factor in (5). The related discontinuity introduces high-

momentum longitudinal components. This is again a universal property of the FSI, the

presence of which does not depend on the specific target nucleus, although there is a slight

sensitivity to the form of the correlation function.

Apart from this large pm,z tail, the interference between the PWIA amplitude and

the ∝ ρ component of the FSI amplitude, leads to a forward-backward (F/B onwards)

asymmetry, shown in Figs. 3a,b for 4He and D. The mere presence of a large F/B

asymmetry suggests strong FSI effects, and again its pm dependence for deuteron and

4He with soft core/hard core correlations included is qualitatively similar. The realistic

deuteron wave functions do already include effects of the short range NN interaction.

However, as the F/B asymmetry is a PWIA-FSI interference effect, it also contains some

information on the nuclear ground state, as was shown in detail in [17] for the special case

of polarized deuteron, and therefore and due to the different values of ρ for D and 4He

the similarity is less pronounced than in transverse kinematics.

Concluding, we have shown that FSI create strong similarity patterns in the energy-

integrated momentum distributions for (e,e’p) on 4He and deuteron at large missing

momenta. This will allow for detailed studies of universal features of nuclear FSI in the

diffractive regime, but even make testing short range structures in the nuclear ground state

much more difficult. In particular, in transverse kinematics this task seems hopeless. It

has to be stressed that FSI effects cannot be described by a simple overall renormalization

factor as they depend strongly on the specific kinematics. A further analysis of the

situation in longitudinal kinematics requires more sophisticated models for the 4He, due
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to the complex interplay of FSI and PWIA effects there.
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Figure Captions

Figure 1: a) The PWIA missing momentum distribution N(pm) in the D(e, e′p) reaction

calculated with the Bonn wave function [12] (dashed line) and with the Paris wave function

[13] (dotted line) and the full missing momentum distribution W (~pm) including FSI in

the D(e, e′p) reaction at θ = 90o calculated with the Bonn wave function (solid line) and

the Paris wave function (dash-dotted line). b) The full missing momentum distribution

W (~pm) including FSI in the 4He(e, e′p) reaction for hard core correlations Co = 1 (solid

line), soft core correlations Co = 0.5 (dashed line), and pure mean field, Co = 0 (dotted

line).

Figure 2: The full missing momentum distribution W (~pm) for the 4He(e, e′p) reaction

(solid line) and for the D(e, e′p) reaction (dashed line) multiplied with a factor of 3 to

account for the higher number of FSI scatterers in 4He. For comparison, the PWIA

missing momentum distribution N(pm) for 4He is also shown (dotted line). On top, we

show transverse kinematics, θ = 90o, and in the middle and the lower panel we show

parallel and antiparallel kinematics, θ = 0o and θ = 180o.

Figure 3: The forward-backward asymmetry AFB = W (θ=0o;pm)−W (θ=180o;pm)
W (θ=0o;pm)+W (θ=180o;pm)

is shown for

the reaction D(e, e′p) in a) and for the reaction 4He(e, e′p) in b). For 4He, different

correlations were used: hard core, Co = 1, (solid line), soft core, Co = 0.5, (dashed line),

and pure mean field, Co = 0 (dotted line).
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