120 research outputs found

    Decay of geodesic acoustic modes due to the combined action of phase mixing and Landau damping

    Full text link
    Geodesic acoustic modes (GAMs) are oscillations of the electric field whose importance in tokamak plasmas is due to their role in the regulation of turbulence. The linear collisionless damping of GAMs is investigated here by means of analytical theory and numerical simulations with the global gyrokinetic particle-in-cell code ORB5. The combined effect of the phase mixing and Landau damping is found to quickly redistribute the GAM energy in phase-space, due to the synergy of the finite orbit width of the passing ions and the cascade in wave number given by the phase mixing. When plasma parameters characteristic of realistic tokamak profiles are considered, the GAM decay time is found to be an order of magnitude lower than the decay due to the Landau damping alone, and in some cases of the same order of magnitude of the characteristic GAM drive time due to the nonlinear interaction with an ITG mode. In particular, the radial mode structure evolution in time is investigated here and reproduced quantitatively by means of a dedicated initial value code and diagnostics.Comment: Submitted to Phys. Plasma

    Nonlinear interplay of Alfven instabilities and energetic particles in tokamaks

    Full text link
    The confinement of energetic particles (EP) is crucial for an efficient heating of tokamak plasmas. Plasma instabilities such as Alfven Eigenmodes (AE) can redistribute the EP population making the plasma heating less effective, and leading to additional loads on the walls. The nonlinear dynamics of toroidicity induced AE (TAE) is investigated by means of the global gyrokinetic particle-in-cell code ORB5, within the NEMORB project. The nonperturbative nonlinear interplay of TAEs and EP due to the wave-particle nonlinearity is studied. In particular, we focus on the nonlinear modification of the frequency, growth rate and radial structure of the TAE, depending on the evolution of the EP distribution in phase space. For the ITPA benchmark case, we find that the frequency increases when the growth rate decreases, and the mode shrinks radially. This nonlinear evolution is found to be correctly reproduced by means of a quasilinear model, namely a model where the linear effects of the nonlinearly modified EP distribution function are retained.Comment: Submitted to Plasma Phys. Control. Fusio

    ORB5: a global electromagnetic gyrokinetic code using the PIC approach in toroidal geometry

    Get PDF
    This paper presents the current state of the global gyrokinetic code ORB5 as an update of the previous reference [Jolliet et al., Comp. Phys. Commun. 177 409 (2007)]. The ORB5 code solves the electromagnetic Vlasov-Maxwell system of equations using a PIC scheme and also includes collisions and strong flows. The code assumes multiple gyrokinetic ion species at all wavelengths for the polarization density and drift-kinetic electrons. Variants of the physical model can be selected for electrons such as assuming an adiabatic response or a ``hybrid'' model in which passing electrons are assumed adiabatic and trapped electrons are drift-kinetic. A Fourier filter as well as various control variates and noise reduction techniques enable simulations with good signal-to-noise ratios at a limited numerical cost. They are completed with different momentum and zonal flow-conserving heat sources allowing for temperature-gradient and flux-driven simulations. The code, which runs on both CPUs and GPUs, is well benchmarked against other similar codes and analytical predictions, and shows good scalability up to thousands of nodes

    Growth-induced breaking and unbreaking of ergodicity in fully-connected spin systems

    Get PDF
    Two canonical models of statistical mechanics, the fully-connected voter and Glauber-Ising models, are modified to incorporate growth via the addition or replication of spins. The resulting behaviour is examined in a regime where the timescale of expansion cannot be separated from that of the internal dynamics. Depending on the model specification, growth radically alters the long-time dynamical behaviour by breaking or unbreaking ergodicity.Comment: 10 pages, 3 figures, 1 tabl

    Pediatric nurses in pediatricians' offices: a survey for primary care pediatricians

    Get PDF
    Background: The role played by nurses in caring for children in pediatricians' officies in the community is crucial to ensure integrated care. In Italy, pediatricians are responsible for the health of children aged 0-14 years living in the community. This study aimed to describe Italian primary care pediatricians' opinions about the usefulness of several nursing activities that pediatric nurses could perform in pediatricians' offices. Methods: An online survey with pediatricians working in primary care in Italy was conducted between April-December 2018. A 40-item questionnaire was used to assess four types of nursing activities: clinical care, healthcare education, disease prevention, and organizational activities. The answers ranged from 1 (not useful at all) to 6 (very useful). Moreover, three open-ended questions completed the questionnaire. Results: Overall, 707 pediatricians completed the online survey. Participants were mainly female (63%), with a mean age of 57.74 (SD = 6.42). The presence of a pediatric nurse within the pediatrician's office was considered very useful, especially for healthcare education (Mean 4.90; SD 1.12) and disease prevention (Mean 4.82; SD 1.11). Multivariate analysis confirmed that pediatricians 'with less working experience', 'having their office in a small town', and 'collaborating with a secretary and other workers in the office' rated the nurse's activities significantly more useful. Conclusions: A pediatric nurse in the pediatrician's office can significantly contribute to many activities for children and their families in the community. These activities include clinical care, healthcare education, disease prevention, and the organizational processes of the office. Synergic professional activity between pediatricians and pediatric nurses could ensure higher health care standards in the primary care setting

    Stepwise-edited, human melanoma models reveal mutations' effect on tumor and microenvironment.

    Get PDF
    Establishing causal relationships between genetic alterations of human cancers and specific phenotypes of malignancy remains a challenge. We sequentially introduced mutations into healthy human melanocytes in up to five genes spanning six commonly disrupted melanoma pathways, forming nine genetically distinct cellular models of melanoma. We connected mutant melanocyte genotypes to malignant cell expression programs in vitro and in vivo, replicative immortality, malignancy, rapid tumor growth, pigmentation, metastasis, and histopathology. Mutations in malignant cells also affected tumor microenvironment composition and cell states. Our melanoma models shared genotype-associated expression programs with patient melanomas, and a deep learning model showed that these models partially recapitulated genotype-associated histopathological features as well. Thus, a progressive series of genome-edited human cancer models can causally connect genotypes carrying multiple mutations to phenotype
    • …
    corecore