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1. Introduction

The dynamical behaviour of growing physical systems often involves an interplay

between internal dynamics, arising from the interaction rules between the constituent

parts, and the mechanism of growth, such as addition, adsorption or replication.

Illustrative examples of such systems include the formation of stars and galaxies [1, 2],

the growth of cancerous tumours [3, 4] and the ecology of bacterial outbreaks [5].

Existing theoretical work on the subject of growth is, however, largely separated into

two specific sub-areas: pure-growth processes, concerned with the time dependence of

shape and form, such as directed percolation, diffusion limited aggregation, and Pólya-

urn random reinforcement models [6, 7, 8, 9]; and, phase-ordering kinetics, focusing on

the scaling of internal dynamical behaviour such as relaxation or coarsening [10, 11, 12].

Neither of these branches fully capture the broad range of dynamical behaviours possible

when the timescales of growth and internal dynamics cannot be separated. Such systems

comprise a third important class of models, where growth drives the internal dynamics

of the system.

In order to better characterise this broad class, we concentrate on highly-idealised,

fully-connected, spin-1⁄2 systems; specifically, the voter [13] and Glauber-Ising models

[14]. Aside from the fact that these systems are amenable to analytical treatment,

the benefit of such an approach is to demonstrate the effects of growth on models

whose behaviour at fixed system size is very well understood. Indeed, incorporating

a mechanism for the addition or replication of spins strongly affects the long-time

behaviour of the magnetization: changing the ergodicity characteristics and the statistics

of polarization flips. Under the addition of random spins, the voter model becomes

ergodic, with the long-time distribution depending on the rate of growth. Under spin

replication dynamics, however, the voter model remains non-ergodic with the statistics

of the final state again depending on the rate of growth. By contrast, it appears that

growth of any type is sufficient to break ergodicity in the Glauber-Ising model, as the

potential wells always become absorbing at long times.

2. Setup

To start, consider a generic fully-connected spin system. In the absence of growth such

systems comprise a fixed number N of spins σ1, . . . , σN ∈ {−1,+1}, that interact via

probabilistic rules for spin ‘flips’. In a typical protocol, spins are updated one at a time,

with one unit of time corresponding to N spin updates (one ‘Monte-Carlo sweep’). The

probability P ({σi}, t) that the system is in a given state at time t, evolves according to

a master equation [15]. For fully-connected systems, spin flip rates depend only on the

magnetization x =
∑N

i σi/N , and the description of the system is reduced to a stochastic

jump process in x, with jumps of size 2/N . For growing systems however, N = N(t) is

itself an increasing function of time and therefore the number of spin updates per unit

time also increases. The relevant scaling parameter (which must independent of time) is
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then the initial system size N0 ≡ N(t = 0), which provides a lower bound on N(t). With

this in mind, such growing systems can be formally examined by expanding the relevant

master equation— now modified for the effects of growth— in powers of 1/N0. The point

being that O(1) contributions in the resulting expansion describe deterministic internal

dynamics for which growth is negligible (i.e., corresponding to the limit N0 →∞) and

higher order terms give corrections that characterise the dominant effects of growth.

For simplicity, we define our growing systems in continuous time. Spins are updated

independently, with an average of one update per spin per unit time, in correspondence

with the usual Monte-Carlo time in non-growing simulations. The shorthand fu (fv)

is used for the probability that an up (down) spin is flipped, once chosen. At rate λ,

new spins are picked from a reservoir and added to the system. New spins are up with

probability gu, or otherwise down with probability gv = 1 − gu. The probabilities fu,

fv, gu and gv may depend on the magnetization, while the growth rate λ is generally a

function of the system size. The regime of interest is when the timescales of growth and

spin flips cannot be separated: that is, when newly added spins interact— but do not

equilibrate— with existing spins, before more are added. For this reason, λ is required

to scale like Nα with exponent α ∈ (−1, 1).

Before writing down the master equation, it should be remarked that to specify the

state of a (fully-connected) growing system requires two order parameters, rather than

one. The magnetization x and the system size N comprise one possible choice; here,

the pair (u, v) is used instead, where uN0 and vN0 are the total number of up and down

spins, respectively. These variables have the advantage that their change is measured in

constant steps of 1/N0, unlike magnetization, whose step-size gets smaller as the system

gets larger. The master equation is

d

dt
P (u, v, t) =

[
N0

(
E−1/N0
u E+1/N0

v − 1
)
vfv +N0

(
E+1/N0
u E−1/N0

v − 1
)
ufu

+
(
E−1/N0
u − 1

)
λgu +

(
E−1/N0
v − 1

)
λgv

]
P (u, v, t), (1)

where we have made use of step operators E with action ErpF (p, q) = F (p + r, q), for

a generic function F . For small values of the step increment r, this action is well-

approximated by Taylor series, since F (p + r, q) ≈ F (p, q) + rFp(p, q) + r2Fpp(p, q)/2.

This allows for the expansion of the master equation for large N0 in a standard way

[15]. Neglecting O(N−20 ) terms, a Fokker-Planck equation is obtained from (1) that is

equivalent to the following Langevin pair:

du

dt
= (vfv − ufu) +

λ

N0

gu +

√
ufu + vfv

N0

η(t), (2)

dv

dt
= (ufu − vfv) +

λ

N0

gv −
√
ufu + vfv

N0

η(t), (3)

where η(t) is a single source of standard Gaussian white noise, understood in the Itō

sense. Note: whilst Langevin equations are preferred for clarity of discussion, we make

repeated use of the fact that a stochastic variable obeying the (Itō) Langevin equation
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dx/dt = a(x) + b(x)η(t) has probability density obeying for the Fokker-Planck equation

∂tP (x, t) = −∂x[a(x)P (x, t)] + 1
2
∂xx[b(x)2P (x, t)], see [20] for proof.

Equations (2) and (3) underpin the main results of this paper, describing the

evolution of a fully-connected spin-system growing from an initial size N0 � 1. Their

key aspects can be better understood by first transforming to a description in terms of

the scale s = N/N0 = u + v and magnetization x = (u− v)/s. The spin flip and noise

terms in (2) and (3) cancel to produce deterministic dynamics for scale,

ds

dt
=

λ

N0

, (4)

while the magnetization remains stochastic,

dx

dt
=

1

s

(
du

dt
+

dv

dt

)
−
(
u+ v

s2

)
ds

dt

= (1− x)fv − (1 + x)fu +
λ

sN0

(gu − gv − x) +

√
2(1− x)fv + 2(1 + x)fu

sN0

η(t) . (5)

We now see that growth modifies the dynamics of magnetization by i) introducing a

weak deterministic pull towards the magnetization of the reservoir, and ii) continually

reducing the magnitude of the stochastic fluctuations. These apparently minor

modifications can have a profound impact on the dynamics, as illustrated by two classic

examples of interacting spin-systems: the voter and Glauber-Ising models.

3. Growing voter model

Attractive as a theoretical tool because of its lack of free-parameters, the surprisingly

rich dynamics of the voter model arise from a simple update mechanism in which spins

copy the state of a randomly selected neighbour. In the fully-connected case, the flip

probabilities are fu = v/s = (1 − x)/2 and fv = u/s = (1 + x)/2, which leads to the

cancellation of the first two terms in (5). For non-growing systems (λ = 0, s = 1)

the dynamical behaviour is then straightforward: the possible states are explored by a

random walk in x, which halts when one of the two absorbing polarized states (x = ±1)

are reached. This model system is non-ergodic; the time average of a single realisation

will concentrate on just one of the polarized states, whereas the ensemble average will

sample both with equal probability.

Things are very different when the effects of growth are included. For example,

suppose the system is coupled to an unmagnetized reservoir (gu = gv = 1/2) from which

spins are added at a constant rate λ = 1. With no deterministic contribution, the

equation for magnetization (5) can be decoupled from s by introducing a rescaled time

τ satisfying

dτ

dt
=

1

s
. (6)
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Figure 1. (Colour online) Power law tail in the distribution of first-passage time T ,

for polarisation switches in a growing voter model. Black histogram: simulation results

from 104 samples with initial size N0 = 1 (λ = 1, gu = gv = 1/2). Blue line: decay

with exponent -5/4 as predicted from series expansion of Eq. (9). This result should

be contrasted with the non-growing case, where fully polarized states are absorbing,

and T =∞.

Under constant growth Eq. (4) gives s = 1 + t/N0, which implies τ = N0 log(1 + t/N0).

In rescaled time (5) becomes

dx

dτ
= − x

N0

+

√
2(1− x2)

N0

η(τ) . (7)

The behaviour described by this equation is that of noise-induced bistability (that is,

the addition of noise changes the dynamics from mono- to bistable, see e.g., [16, 17]).

The noise is largest at x = 0 when the deterministic pull is zero and vice-versa at

the boundaries x = ±1. In the long-time limit, the probability distribution of the

magnetization converges to the stationary solution of the corresponding Fokker-Planck

equation. In this case,

0 = −∂x[xP∞(x)] + ∂xx[(1− x2)P∞(x)] =⇒ P∞(x) = π−1(1− x2)−1/2 . (8)

Although the distribution diverges at x = ±1, these are no longer absorbing states, but

have instead become metastable in the sense that transitions between them are rare.

To quantify this observation, we examine the statistics of the first-passage time T taken

to move from one polarized state to the other. Here, the probability distribution f(T )

of first-passage time obeys the backward Fokker-Planck equation corresponding to (7),

but with a reflecting barrier placed at the start point and an absorbing barrier at the

destination [20]. It was shown in [18] that the process defined by (7) has the first-

passage time distribution f(τ) = θ′1(0, e
−τ/N0)/2πN0, where θ′1 denotes the derivative

of the elliptic theta function of the first kind [19] with respect to the first argument.

Undoing the time rescaling, we find

f(T ) =
1

2π(N0 + T )
θ′1

(
0,

N0

N0 + T

)
. (9)

In particular, although T is almost surely finite, it has infinite mean, and series expansion

(see [19]) reveals a tail that decays as a power law f(T ) ∼ T−5/4. This prediction is

verified in continuous-time Monte-Carlo (Gillespie algorithm) simulations of the fully-

connected voter model growing due to accretion of random spins, see Fig. 1.
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Figure 2. (Colour online) Simulation results for a growing disc (λ =
√
sN0). Left

two panels: the effects of rescaling time. In growing systems, fluctuations in the

magnetization x due to finite-size effects diminish as a function of time t. In rescaled

time τ [see Eq. (11)], the system behaves like the non-growing case, performing a

random walk in x. Right panel: freezing in the Voter model at large times. The

cumulative distribution function for magnetization as measured from 104 samples of

the the growing system at long times (black line) and the non-growing system at time

τ∗, in both cases with N0 = 64.

In the above example, the constant accretion of spins with random sign turned the

voter model into an ergodic system by destroying its absorbing states. However, this

behaviour is not shared by another natural mechanism for system growth: replication.

For example, suppose that the sign of newly added spins is determined by sampling

from the existing system, so that gu = u/s = (1 + x)/2 and gv = v/s = (1 − x)/2. In

this case, the same time-rescaling as before can be applied [Eq. (6)], resulting in the

autonomous equation

dx

dτ
=

√
2(1− x2)

N0

η(τ), (10)

which recovers the known dynamics of a voter model of fixed size N0. According to this

equation, the system will eventually become trapped in one of the two absorbing states

x = ±1. Thus the growing system remains non-ergodic, in contrast to the case of growth

due to the accretion of randomly aligned spins. If the initial magnetization is zero then

both possible final states are equally likely, and P∞(x) = δ(x− 1)/2 + δ(x+ 1)/2.

The treatment of growing voter models may be further generalised to cases where

N is not only increasing, but accelerating. Within our framework, this is realised by a

growth rate λ = Nα, where 0 < α < 1. Such situations arise, for example, in the case

where growth is proportional to some surface area, e.g., imagine a growing d-dimensional

ball of spins, so that α = 1−1/d. (Note that regardless of spatial organisation the present

analysis is still restricted to infinite range systems, i.e., those that are fully-connected).

If the sign of the incoming spins is random, the result it trivial: the deterministic pull

towards the magnetization of the reservoir is stronger than the noise [since λ ∼ sα in

Eq. (5)], and the system becomes a deterministic reflection of the reservoir in the t→∞
limit. However, for the case of replicating spins, the third term of (5) vanishes and the

time-rescaling (4) can be used once again. Here, solving (4) for s, substituting into the
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Table 1. (Colour online) Long-time behaviours of the growing voter model, depending

on the choice of growth rate and spin addition rule. Figures show the limiting

distribution P∞(x), with arrows representing Dirac delta functions.

Accretion (gu = gv = 1/2) Replication (gu = u/s, gv = v/s)

Constant growth -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

(α = 0) ergodic non-ergodic

Accelerating growth -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

(0 < α < 1) deterministic non-ergodic

right-hand side of (6) and integrating, gives

τ =
1

α

{
Nα

0 −
[
(1− α) t+Nα−1

0

] α
α−1

}
, (11)

which has a finite limit τ ∗ = Nα
0 /α, as t → ∞. This means that the dynamics of

the accelerating voter model (with replication) slow asymptotically to a halt, and the

probability distribution of final states is given by the corresponding autonomous (fixed

size, rescaled-time) system, frozen at time τ = τ ∗. Indeed, the autonomous system in

this case is precisely that described by (7), i.e., the non-growing counterpart (of size N0)

of the accelerating system. Monte-Carlo simulations presented in Fig. 2 show example

results for a growing disc (d = 2) with replicating surface-spins. Table 1 contains a

summary of the four different possible growing voter model regimes.

4. Growing Glauber-Ising model

The symmetries of the voter model make it somewhat special in that its dynamics

are driven entirely by stochastic fluctuations. What are the effects of growth in more

general systems described by motion in a potential? To answer this question we analyse

another canonical model of interacting spins, the fully-connected Glauber-Ising model

[14] (equivalently, the Curie-Weiss model with Glauber dynamics). Here, the statistical

weight assigned to each state is proportional to e−βH(x) where β is inverse temperature

and H(x) = −J
2

(Nx2 − 1) − Nhx specifies the Hamiltonian, with coupling strength

J and external magnetic field h. Under Glauber dynamics, the flip rates are given

by fu = 1
2

[1− tanh β (Jx+ h)] and fv = 1
2

[1 + tanh β (Jx+ h)] [14], such that the

dynamics of finite, non-growing, systems are described by stochastic motion in the

potential

Φ(x) = x2/2− (1/βJ) log cosh β (Jx+ h) , (12)
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Figure 3. (Colour online) The probability P (T ≥ t) for a Glauber-Ising system to stay

stuck in the less attractive potential well up to time t, with parameters J = 1, β = 1.2

and h = 0.002. For a growing system (λ = 0.005), analytical [blue line and Eq. (21)]

and simulation (black line) results confirm that P (T ≥ t) converges to a constant at

large times. For the non-growing system [analytics (yellow line) and simulation (black

dashed line)] the probability of remaining in the starting well decays to zero.

with multiplicative noise specified by state-dependent diffusion

D(x) = N−10 [1− x tanh β(Jx+ h)] . (13)

In particular, the N0 →∞ limit of Eq. (5) describes the deterministic dynamics

dx

dt
= tanh β (Jx+ h)− x . (14)

This contrasts with the voter model, which has a flat potential and therefore no O(1)

contribution to the dynamics. The presence of a non-flat potential rules out decoupling x

and s by rescaling time. Nevertheless, it is still possible to calculate statistical properties

of system trajectories.

The non-growing Glauber-Ising model does not possess any absorbing states (in long

times it samples the equilibrium distribution), however, below the critical temperature

a pair of metastable states develop with opposite polarization, corresponding to minima

of the potential Φ(x). This prompts an investigation of these states in the growing

system, focusing again on the first-passage time T to move from one potential well to

the other. Inspired by Kramer’s method [20], a separation of timescales between two

types of phase-space trajectory may be exploited; trajectories that travel between points

within the same potential well are considered much more frequent than those which

cross the potential barrier. Under this assumption, it is then reasonable to introduce

a size-dependent instantaneous escape rate κ(s), found as the reciprocal of the mean

first-passage time for fixed system size sN0. This quantity can be computed via steepest

descent.

Writing x0 for the location of the starting well (without loss of generality we choose

the left-hand well) and x1 for the location of the potential maximum between wells, we

have

x0 < x1 , Φ′(x0) = Φ′(x1) = 0 , Φ′′(x0) > 0 , Φ′′(x1) < 0 . (15)

We erect a reflecting barrier at −1 and an absorbing barrier at some b > x1. Introducing

ϕ(x) =

∫ x

−1

Φ′(ξ)

D(ξ)
dξ , (16)



Growth-induced breaking and unbreaking of ergodicity in fully-connected spin systems 9

the mean first-passage time T̃ (s) from x0 to b with fixed s is given by [20]

T̃ (s) = sN0

∫ b

x0

esN0ϕ(y)

(∫ y

−1

e−sN0ϕ(z)

D(z)
dz

)
dy . (17)

For large N0, the inner integral here is dominated by behaviour near x0 and the outer

by behaviour near x1. By Laplace’s method we may approximate

T̃ (s) ≈ sN0

√
2π

sN0|ϕ′′(x1)|
esN0ϕ(x1)

(
1

D(x0)

√
2π

sN0ϕ′′(x0)
e−sN0ϕ(x0)

)
.(18)

From the definition (16) we compute ϕ′′(x) = Φ′′(x)/D(x)− Φ′(x)D′(x)/D(x)2, but x0
and x1 are both turning points of Φ, so the second term vanishes there. Under the

assumption that the dynamics are approximately memoryless, the instantaneous escape

rate is given by the reciprocal of the mean first-passage time at fixed size. From the

above calculation we obtain

κ(s) =

√
Φ′′(x0)|Φ′′(x1)|D(x0)

4π2D(x1)
exp

{
−s
∫ x1

x0

Φ′(ξ)

D(ξ)
dξ

}
. (19)

The statistics of the first-passage time T of the growing system are captured by the

survivor function, giving the probability that the system has not escaped the starting

well before time t, which is expressed in terms of κ by

P (T ≥ t) = exp

{
−
∫ t

0

κ[s(t′)] dt′
}
. (20)

For the case of constant growth s = 1 +λt/N0, which, when substituted into (20), gives

P (T ≥ t) = exp

{
AN0

Bλ
eB
(
1− eBλt/N0

)}
, (21)

where A = κ(0) and B = κ′(0)/κ(0) < 0 are constants depending on N0. In particular,

we find a finite probability that the growing system may never leave the starting well:

P (T = ∞) > 0. This is in contrast to the non-growing case, which always escapes

eventually. Figure 3 contains a numerical demonstration of this dichotomy. Moreover,

even if the growing system succeeds in switching wells once, the probability of switching

back is even smaller (this can be seen by repeating the analysis with N1 as the system

size after the first switch). Eventually, the growing Glauber-Ising model is sure to

become stuck in one well, thus breaking ergodicity.

5. Discussion

In summary, our theoretical analysis demonstrates that the interplay between growth

and relaxation can dramatically change the behaviour of even the simplest of systems.

We have seen how the canonical fully-connected voter and Glauber-Ising models respond

quite differently to growth due to constant accretion of random spins. The fully polarized

states of the voter model cease to be absorbing, while the metastable minima of the

Glauber-Ising model eventually become absorbing as time goes on. A third type of



Growth-induced breaking and unbreaking of ergodicity in fully-connected spin systems10

behaviour was found in the voter model undergoing surface growth due to replication,

where the system state converges to that of a non-growing system frozen at a finite

time. These results make clear the power of growth as a mechanism for driving systems

away from equilibrium. Looking forward, one particularly interesting area of application

lies in the field of population genetics. The fully-connected voter model is very closely

related to the Wright-Fisher [21, 22] and Moran [23] models of genetic drift, in which

case Table 1 describes the possible long-time genetic profiles of growing populations.

Finally, we have focused here on models with infinite magnetic interaction range.

The next step in the development of this new field will be the treatment of finite-range

spatially heterogeneous systems (such as that found in recent experimental studies [24]

of growing Bacterial colonies), where we can expect to uncover further novel phenomena

driven by growth.
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