8 research outputs found

    Towards a novel concept of imaging spectrograph

    Get PDF
    L'obiettivo della presente tesi è di introdurre una nuova concezione di fotorivelatore astrofisico, in grado di analizzare immediatamente la composizione spettrale di immagini bidimensionali. Prima di tutto, la sua innovativa tecnologia, che si basa sull'effetto superconduttivo dell'induttanza cinetica, è confrontata con lo standard dei dispositivi semiconduttivi ad accoppiamento di carica. Essi contano sull'effetto fotoelettrico e possono solo percepire l'intensità della luce su un periodo d'esposizione, di per sé, senza elementi dispersivi o filtri monocromatici dinnanzi. In questo contesto, riporto il risultato della mia collaborazione con l'Università di Oxford, dov'è in via di sviluppo uno spettrografo a campo integrale chiamato KIDSpec, operativo nella banda elettromagnetica che va dall'ultravioletto al vicino infrarosso. Sarà il primo strumento di tal sorta ad essere costruito al di fuori degli Stati Uniti d'America. Il mio compito consisteva nell'assemblare uno spettrometro ottico destinato ad uno studio di fattibilità di questo apparato. Quindi, le carenze del sistema ottico sono discusse in breve, in vista della sua implementazione. A seguire, le indagini ottiche attraverso cui esaminai la prestazione dello spettrometro, quanto alle sue risposte in fatto di diffrazione, a varî angoli d'uscita e lunghezze d'onda in ingresso. In aggiunta, si fornisce un'eziologia dei motivi circolari causati dalla fibra ottica ivi impiegata. Infine, sono esaminate alcune possibili applicazioni astrofisiche del nuovo tipo di rivelatore: particolare attenzione è data all'emergente frontiera della caratterizzazione esoplanetaria diretta

    Resolving Power of Visible to Near-Infrared Hybrid β\beta-Ta/NbTiN Kinetic Inductance Detectors

    Full text link
    Kinetic Inductance Detectors (KIDs) are superconducting energy-resolving detectors, sensitive to single photons from the near-infrared to ultraviolet. We study a hybrid KID design consisting of a beta phase tantalum (β\beta-Ta) inductor and a NbTiN interdigitated capacitor (IDC). The devices show an average intrinsic quality factor QiQ_i of 4.3×105\times10^5 ±\pm 1.3 ×105\times10^5. To increase the power captured by the light sensitive inductor, we 3D-print an array of 150×\times150 μ\mum resin micro lenses on the backside of the sapphire substrate. The shape deviation between design and printed lenses is smaller than 1μ\mum, and the alignment accuracy of this process is δx=+5.8±0.5\delta_x = +5.8 \pm 0.5 μ\mum and δy=+8.3±3.3\delta_y = +8.3 \pm 3.3 μ\mum. We measure a resolving power for 1545-402 nm that is limited to 4.9 by saturation in the KID's phase response. We can model the saturation in the phase response with the evolution of the number of quasiparticles generated by a photon event. An alternative coordinate system that has a linear response raises the resolving power to 5.9 at 402 nm. We verify the measured resolving power with a two-line measurement using a laser source and a monochromator. We discuss several improvements that can be made to the devices on a route towards KID arrays with high resolving powers.Comment: 11 pages, 9 Figues, Journal Pape

    Pyxel: the collaborative detection simulation framework

    Full text link
    Pyxel is a novel python tool for end-to-end detection chain simulation i.e. from detector optical effects to readout electronics effects. It is an easy-to-use framework to host and pipeline any detector effect model. It is suited for simulating both Charge-Coupled Devices, CMOS Image Sensors and Mercury Cadmium Telluride hybridized arrays. It is conceived as a collaborative tool to promote reusability, knowledge transfer, and reliability in the instrumentation community. We provide a demonstration of Pyxel's basic principles, describe newly added capabilities, and give examples of more advanced applications

    Resolving Power of Visible-To-Near-Infrared Hybrid β-Ta/Nb-Ti- N Kinetic Inductance Detectors

    No full text
    Kinetic inductance detectors (KIDs) are superconducting energy-resolving detectors, sensitive to single photons from the near-infrared to ultraviolet. We study a hybrid KID design consisting of a β-phase tantalum (β-Ta) inductor and a Nb-Ti-N interdigitated capacitor. The devices show an average intrinsic quality factor Qi of 4.3×105±1.3×105. To increase the power captured by the light-sensitive inductor, we 3D print an array of 150×150μm resin microlenses on the backside of the sapphire substrate. The shape deviation between design and printed lenses is smaller than 1μm, and the alignment accuracy of this process is δx=+5.8±0.5μm and δy=+8.3±3.3μm. We measure a resolving power for 1545-402 nm that is limited to 4.9 by saturation in the KID's phase response. We can model the saturation in the phase response with the evolution of the number of quasiparticles generated by a photon event. An alternative coordinate system that has a linear response raises the resolving power to 5.9 at 402 nm. We verify the measured resolving power with a two-line measurement using a laser source and a monochromator. We discuss several improvements that can be made to the devices on a route towards KID arrays with high resolving powers. </p

    The Second International Asteroid Warning Network Timing Campaign: 2005 LW3

    Get PDF
    The Earth close approach of near-Earth asteroid 2005 LW3 on 2022 November 23 represented a good opportunity for a second observing campaign to test the timing accuracy of astrometric observation. With 82 participating stations, the International Asteroid Warning Network collected 1046 observations of 2005 LW3 around the time of the close approach. Compared to the previous timing campaign targeting 2019 XS, some individual observers were able to significantly improve the accuracy of their reported observation times. In particular, U.S. surveys achieved good timing performance. However, no broad, systematic improvement was achieved compared to the previous campaign, with an overall negative bias persisting among the different observers. The calibration of observing times and the mitigation of timing errors should be important future considerations for observers and orbit computers, respectively.Funder: Institute of Cosmos SciencesUniversity of Barcelona (CEX2019-000918-M); European Union (PID2021-122842OB-C21);Full text license: CC BY</p
    corecore