
Open Research Online
The Open University’s repository of research publications
and other research outputs

Pyxel 1.0: an open source Python framework for
detector and end-to-end instrument simulation
Journal Item
How to cite:

Arko, Matej; Prod’homme, Thibaut; Lemmel, Frédéric; Serra, Benoit; George, Elizabeth; Kelman, Bradley;
Pichon, Thibault; Biancalani, Enrico and Gilbert, James (2022). Pyxel 1.0: an open source Python framework for
detector and end-to-end instrument simulation. Journal of Astronomical Telescopes, Instruments, and Systems, 8(04),
article no. 048002.

For guidance on citations see FAQs.

c© [not recorded]

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1117/1.JATIS.8.4.048002

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
https://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://dx.doi.org/doi:10.1117/1.JATIS.8.4.048002
http://oro.open.ac.uk/policies.html

Pyxel 1.0: an open source Python framework for
detector and end-to-end instrument simulation

Matej Arko ,a Thibaut Prod’homme,a,* Frédéric Lemmel,a Benoit Serra,b

Elizabeth George ,b Bradley Kelman,c Thibault Pichon ,d

Enrico Biancalani ,e and James Gilbert f

aEuropean Space Agency, ESTEC, Noordwijk, The Netherlands
bEuropean Southern Observatory, Garching bei München, Germany

cThe Open University, Milton Keynes, United Kingdom
dUniversité Paris-Saclay, CEA, CNRS, AIM, Gif-sur-Yvette, France

eLeiden University, Leiden, The Netherlands
fThe Australian National University, Canberra, Australian Capital Territory, Australia

Abstract. Detector modeling is becoming more and more critical for the development of new
instruments in scientific space missions and ground-based experiments. Modeling tools are often
developed from scratch by each individual project and not necessarily shared for reuse by a wider
community. To foster knowledge transfer, reusability, and reliability in the instrumentation
community, we developed Pyxel, a framework for the simulation of scientific detectors and
instruments. Pyxel is an open-source and collaborative project, based on Python, developed as
an easy-to-use tool that can host and pipeline any kind of detector effect model. Recently, Pyxel
has achieved a new milestone: the public release and launch of version 1.0, which simplified
third-party contributions and improved ease of use even further. Since its launch, Pyxel has been
experiencing a growing user community and is being used to simulate a variety of detectors. We
give a tour of Pyxel’s version 1.0 changes and new features, including a new interface, parallel
computing, and new detectors and models. We continue with an example of using Pyxel as a tool
for model optimization and calibration. Finally, we describe an example of how Pyxel and its
features can be used to develop a full-scale end-to-end instrument simulator. © 2022 Society of
Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JATIS.8.4.048002]

Keywords: detector simulation; instrument simulation; imaging sensors; modelling; Python;
charge-coupled device; complementary metal oxide semiconductor; calibration.

Paper 22084G received Sep. 2, 2022; accepted for publication Nov. 29, 2022; published online
Dec. 24, 2022.

1 Introduction

Pyxel, the collaborative detection simulation framework, was born in 2017, when a team of
physicists, detector experts, and software engineers from ESA’s Science Payload Validation
section decided to develop a Python-based detector simulation framework capable of hosting
and pipelining any detector effect models.

ESA’s Science payload validation section hosts a laboratory for detector characterisation.
The laboratory is used to determine the performance of detectors in a representative environment
(temperature, operating point, and radiation), validate the performance results obtained in other
facilities (laboratories and companies), and carry out very specific experimental tests tailored to
mission needs (e.g., scene1 and subpixel spot projection,2 irradiation at operating temperature,3–5

persistence,6 and electromagnetic compatibility). The interpretation of test results as well as the
transfer of knowledge from lab to mission performance very often requires modeling and sim-
ulations. Several detector effects models were born that way: charge transfer inefficiency in
charge-coupled devices (CCDs),7,8 brighter fatter effect,9,10 interpixel capacitance (IPC),11,12 and
persistence.13 Similar models had already been developed by the community (e.g., Refs. 7, 8, 14,

*Address all correspondence to Thibaut Prod’homme, thibaut.prodhomme@esa.int

2329-4124/2022/$28.00 © 2022 SPIE

J. Astron. Telesc. Instrum. Syst. 048002-1 Oct–Dec 2022 • Vol. 8(4)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 22 Mar 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

https://orcid.org/0000-0002-4824-216X
https://orcid.org/0000-0001-7874-0445
https://orcid.org/0000-0001-8858-3041
https://orcid.org/0000-0002-6137-0342
https://orcid.org/0000-0001-5065-2101
https://doi.org/10.1117/1.JATIS.8.4.048002
https://doi.org/10.1117/1.JATIS.8.4.048002
https://doi.org/10.1117/1.JATIS.8.4.048002
https://doi.org/10.1117/1.JATIS.8.4.048002
https://doi.org/10.1117/1.JATIS.8.4.048002
https://doi.org/10.1117/1.JATIS.8.4.048002
mailto:thibaut.prodhomme@esa.int
mailto:thibaut.prodhomme@esa.int
mailto:thibaut.prodhomme@esa.int

and 15), sometimes even at ESA. At the same time, Python became more and more popular for
simulations, data processing, and analysis among the lab team members and in the science
community as well. Due to its simplicity, flexibility, object-oriented capabilities, and an active
community, it was chosen as the main programming language. The idea of developing a Python
framework that could host and pipeline existing models from different contributors started to
take shape.

After several brainstorming sessions for a first conceptual architecture, the Pyxel team organ-
ized a survey internal to ESA among potential users (detector specialists, instrument and payload
system engineers, optical engineers, etc.). From the survey, a first set of requirements were
derived (summarized in the following). The positive feedback received fueled our motivation
to develop Pyxel and a prototype was already on the table by June 2018 when it was presented
at the SPIE astronomical telescopes and instrumentation conference in Austin, Texas.16

In 2019, a beta version was released and welcomed beta testers on the Pyxel Gitlab
repository.17 At that time, members of the European Southern Observatory detector group as
well as several other members from the larger astronomy instrumentation community joined
the Pyxel collaboration and helped us develop the tool further toward v1.0. Since 2020, the tool
is capable of simulating CCDs, CIS (complementary metal oxide semiconductor image sensors
or CMOS image sensors), hybridized mercury cadmium telluride (MCT) detector, and micro-
wave kinetic inductance detectors (MKIDs) and operates in several modes including a model
calibration mode, which can make use of laboratory test data to extract model parameters.

2021 has been a key year in the development of Pyxel toward v1.0, including milestones,
such as reaching almost a hundred users in the Pyxel Gitlab repository,17 the public release of
Pyxel under the permissive MIT license and the release of tutorials explaining Pyxel’s ins and
outs: how to install it, how to use it, how to add a model, etc. The year culminated with the
organization of a detector modeling workshop DeMo 2021 gathering several hundreds of detec-
tor and instrument simulation enthusiasts from the instrumentation community and demonstrat-
ing the potential of such a tool to foster knowledge transfer. Following the public release of
Pyxel, version 1.0 was released in February 2022 and a release event was held. Since then,
Pyxel is experiencing a rise in community engagement and has been even used for education
purposes.

In this paper, we give an overview of the features and differences in the release 1.0. We
continue with an explanation of the current state of the Pyxel architecture, such as configuration
files and the main elements. We present the newest addition to the example repository and
generic configuration files for realistic detectors. We calibrate such a pipeline using measure-
ment data of a known detector and build an end-to-end instrument simulator. Finally, we outline
a roadmap toward version 2.0.

2 Version 1.0

Pyxel is available for installation from either the Python Package Index, a software repository for
the Python programming language, or Conda, the open-source package management
system, under the name pyxel-sim. Pyxel runs on all of the three major operating systems:
Windows, Linux, and MacOS. Before the final release of version 1.0, all the included models
were internally reviewed and refactored. A more complete documentation and more code
validation tests were added during the process. Some of the models were also optimized
for speed.

The most significant change for the users came in the form of reorganization and simplifi-
cation of running modes: four running modes were replaced with three. Modes previously
known as single and dynamic were merged into one mode now called exposure. As its name
suggests, it simulates a single exposure with the possibility of multiple detector readouts. Both
nondestructive and destructive readout modes are possible. The former parametric mode was
renamed to observation, simulating multiple exposures while changing either detector or model
parameters. Using the dask18 library, the observation mode pipelines can be run in parallel for
faster computation either locally, on a grid or in a cluster of computers. Except for minor
improvements, no changes were made to calibration mode.

Arko et al.: Pyxel 1.0: an open source Python framework for detector and end-to-end instrument simulation

J. Astron. Telesc. Instrum. Syst. 048002-2 Oct–Dec 2022 • Vol. 8(4)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 22 Mar 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Another major simplification in the new release is the standardization of the outputs. Results
for all three running modes have the form of multidimensional datasets, provided by the Python
library xarray,19 which introduces labels in the form of dimensions, coordinates, and attributes on
top of raw multidimensional arrays. Datasets can store detector data at different readout times in
the case of exposure mode, detector data at a different model, or detector parameters in the case
of observation mode, and simulated data and calibrated model parameters in the case of cali-
bration mode. This new feature means a gain in efficiency for the user; tools developed to process
Pyxel output data for a given mode can easily be reused or adapted now for another mode.

Two new detector types were implemented with the versions 1.0 and 1.1: MKIDs and ava-
lanche photo diode (APD) arrays. Consequently, new models specific to the implemented detec-
tors were added, such as a dead time filter for MKIDs and APD gain and readout noise for APDs.
Some of the other models included in the new version are algorithm for charge transfer ineffi-
ciency correction,8 temperature-dependent dark current model,20 thermal (kTC) readout noise,
successive-approximation-register analog-to-digital converter noise, and nonlinearity models.21

A significant portion of changes is aimed at an improved user experience. The command line
interface was renewed, using the library click.22 New functions for interactive plotting of results
were added to be used in the Jupyter notebook interface,23 see an example of running Pyxel
simulation in Jupyter notebook interface in Fig. 1. Multiple examples, tutorials, and how-to
guides in the form of Jupyter notebooks were added to a separate gitlab repository called
Pyxel Data.24 Tutorials are the starting point for any new user trying out the framework.
The documentation25 got a fresh look and was filled with more information about the models,
architecture, and contribution guidelines. It is now easier than ever to develop new models and
contribute to the software.

3 Architecture Overview

The main user entry point for any Pyxel simulation is a configuration file. With the configuration
file, the three main elements in Pyxel are defined: the running mode, the detector, and the
detection pipeline. After summarizing the requirements that have guided the development of

Fig. 1 A snapshot of the Jupyter notebook interface after simulating an exposure with 3 readout
times, using the configuration file as shown in Fig. 2. The result is stored in a multidimensional
dataset, in this case, it has three dimensions: the readout time, and the sensor coordinates x and y
(essentially a collection of frames for different readouts).

Arko et al.: Pyxel 1.0: an open source Python framework for detector and end-to-end instrument simulation

J. Astron. Telesc. Instrum. Syst. 048002-3 Oct–Dec 2022 • Vol. 8(4)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 22 Mar 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Pyxel’s architecture, we give a brief overview of the main working principles behind Pyxel and
the state of its architecture as of version 1.0.

3.1 Requirements

At the origin of Pyxel, a user survey was performed to collect expectations among future poten-
tial users at ESA. From this exercise, a list of requirements has been derived to guide the design
process. The following list provides a summary of the main driving requirements.

• Pyxel shall be implemented primarily in Python and shall enable collaborative and open-
source development.

• Pyxel shall be user-friendly, well-documented, and runnable (with and without installation)
from the main operating systems or online.

• Pyxel shall make maximum reuse of existing and widely used (python) libraries.

• Pyxel shall implement unit, functional, and integration tests.

• Pyxel shall enable model parametric analysis and facilitate model validation against
test data.

• Pyxel shall be flexible enough to simulate any kind of (imaging) detectors and allow for
both fast less accurate and slow more accurate simulations.

• Pyxel shall enable rapid implementation of detector models (by users external to main
development team) and enable the pipelining of those models.

3.2 Configuration File

The configuration file is based on YAML, a user-friendly data serialization language.26 The file
consists of three separate parts, each representing a class in Pyxel architecture. They define
the running mode, the detector properties, and the pipeline—the models the user wants to
apply. When the YAML configuration file is loaded, the nested dictionaries, lists, numbers,
and strings are used to directly initialize the Pyxel classes, see examples of the three main
parts of the configuration file in Fig. 2. Despite the configuration file being human-readable
and easy to understand, it is still possible to make mistakes that result in errors during the
simulation. Therefore, a configuration file validation process based on JavaScript Object
Notation (JSON) schema27 is currently in development, which will further improve the user
experience.

Fig. 2 Examples of a Pyxel configuration file: definitions of (a) running mode, (b) detector, and
(c) simulation pipeline are the three main parts of the human-readable YAML configuration file in
Pyxel. These three parts represent classes inside the Pyxel architecture.

Arko et al.: Pyxel 1.0: an open source Python framework for detector and end-to-end instrument simulation

J. Astron. Telesc. Instrum. Syst. 048002-4 Oct–Dec 2022 • Vol. 8(4)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 22 Mar 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

3.3 Detector

The detector object is the main input of the detection pipeline. Therefore, it is a container for all
the data that the models need access to inside the pipeline. First are the properties of the detector
itself, falling in either of the following categories: geometry, characteristics, and environment,
as shown in Fig. 3. Those are the properties that are used by more than one model. They do
not change during a pipeline run and can vary depending on the detector used. Another
category of detector properties, material, was temporarily removed in version 1.0 due to nonuse.
Additionally, since version 1.0, properties were given user-friendly names with whole words
instead of symbols and abbreviations. The detector also holds data buckets storing the
simulated data, such as input photon distribution (photons), number of charge carriers generated
(carrier type), signal variation in pixels (voltage and phase), and digitised image value (ADU).
The data buckets are modified by the models in the pipeline and the state of the output detector at
the end of the pipeline is changed. Finally, the detector tracks absolute time during an exposure
and time since the last readout. Currently, implemented detectors inside Pyxel are CCD, hybrid
and monolithic CMOS, MKID, and APD, with a wide selection of various detector effect
models.

Fig. 3 Two of the main objects in Pyxel’s architecture are: (a) the detector object and (b) the pipe-
line. The detector contains detector properties, simulated data and temporal properties. It is the
main input to the pipeline. Models inside the pipeline are grouped into model groups representing
the working principles of the detection process; they modify the data inside the detector during
simulation. The architecture shown above is valid in the case of CCD, CMOS, or APD detectors
and changes slightly in the case of the MKID detector.

Arko et al.: Pyxel 1.0: an open source Python framework for detector and end-to-end instrument simulation

J. Astron. Telesc. Instrum. Syst. 048002-5 Oct–Dec 2022 • Vol. 8(4)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 22 Mar 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

3.4 Pipeline

During simulation, the detector object passes through the pipeline, where models are applied one
after the other (in the order defined in the configuration file), modifying the data stored inside the
detector. Each model describes a unique physical phenomenon. Those can be the conversion of
photons to photoelectrons, various noise sources, cosmic rays, etc. Models inside the pipeline are
grouped into model groups, resembling the working principles of the detectors. In the case of a
CMOS, these are photon generation, optics, charge generation, charge collection, charge meas-
urement, and readout electronics, as shown in Fig. 3. Users can change model parameters or
enable/disable them by interacting with the configuration file. It is also possible to add any
kind of new or already existing models to Pyxel using the model plug-in mechanism. The
instructions for adding models and the full list of already available models can be found in
the documentation25 including detailed explanations, literature references when available, and
examples of configuration.

3.5 Running Modes

As shown in Fig. 4, the three different running modes in version 1.0 are as follows.

• Exposure. Pipeline is run one or more times, depending on the number of configurable
readout times and useful for simple simulations, quick checks, and simulating time-
dependent effects. Exposure mode cannot be run in parallel.

• Observation. Multiple exposures looping over a range of model or detector parameters and
useful for parameter sensitivity analysis, checks of parameter space, simulating variable
astronomical sources, etc. Parallelization is possible in observation mode.

• Calibration. Optimization of model parameters so they reproduce target datasets and
useful for calibrating models, optimizing instrument performance, or retrieving detector
physical properties from measurements. The optimization algorithm and optimized figure
of merit are configurable. The built-in optimization algorithms are advanced genetic
algorithms based on the pygmo package:28 ideal for wide/degenerate parameter space and
nonlinear problems. It must be run in parallel since the number of pipelines that are run
each time is very high.

All three modes of operation share the same format of outputs that are a multidimensional
dataset.

Fig. 4 The three running modes of Pyxel: exposure, observation, and calibration. In all three
cases, the results are stored in a multidimensional dataset with the same data format. Both obser-
vation and calibration modes have the possibility to run with dask on a computer cluster or a grid of
computers.

Arko et al.: Pyxel 1.0: an open source Python framework for detector and end-to-end instrument simulation

J. Astron. Telesc. Instrum. Syst. 048002-6 Oct–Dec 2022 • Vol. 8(4)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 22 Mar 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

4 Examples

In this section, we present the newest addition to the collection of example notebooks in the
Pyxel Data repository:24 generic configuration files with realistic model and detector parameters
for different types of detectors. We show how the pipeline can be adjusted and calibrated for
a specific detector. Due to the availability of measurement data and models, we choose the
Teledyne H4RG infrared MCT-hybridized CMOS detector.29 We show how the calibrated
pipeline in Pyxel can be used in symbiosis with other simulation tools to create an end-to-end
simulation tool with a full set of detector effect models. We use Scopesim,30 a Pythonic
astronomical instrument simulator, to simulate photon flux on the MICADO detector plane.
MICADO,31 a first-generation Extremely Large Telescope (ELT) instrument, has a detector
plane consisting of nine Teledyne H4RG detectors, which makes it a good study case.

4.1 Generic Detector Pipelines

The Pyxel model library contains models for various types of detectors. Not all models can be
used with all of the detector types and some specific models are only to be used with a single type
of detector. Until the configuration file validation based on JSON schema is fully implemented,
the detector type validation is only performed inside the models during a simulation. For this
reason and to help new users and nonexperts, generic configuration file templates for different
detectors have been included in the Pyxel Data example repository, together with corresponding
Jupyter notebooks. They include detector properties and pipelines with detector-appropriate sets
of models, prefilled with realistic model argument values. They provide a good starting point for
simulations of specific detectors and later customization or iteration with detector engineers and
experts. The generic pipelines are now available for the following types of detectors: generic
CCD, generic CMOS, Teledyne HxRG, and APD array detector based on Leonardo’s Saphira
detector.32

4.2 Model Calibration

To calibrate the Pyxel generic H4RG pipeline for simulation of the MICADO instrument,
we use test data from ESO of an engineering grade H4RG-15 detector. The measurements33

were done on a detector for the MOONS project,34 but the detectors used for both projects
are the same, the only difference being operating temperature and antireflective coating.
The operating temperature for the MICADO detectors will be 80 K. Some basic detector
parameters include a pixel pitch of 15 μm, resolution of 4096 × 4096, and cutoff at 77 K of
2.48 μm.

In additon to detector temperature and geometry, another prerequisite for a realistic configu-
ration file is a correct set of detector characteristics that gives a correct system gain. We use a
measurement of photon transfer curve (PTC),35 as a baseline for calibration and comparison
between simulations and measurements. As shown in Fig. 5, the PTC is linear at mid-signal
levels where it is mainly influenced by shot noise and moves away from a linear slope due
to nonlinearity and saturation effects at higher signal levels. The variance starts to drop to 0
when the full well capacity is reached, at the point called Poissonian full well. The system gain
in e−∕ADU can be extracted with linear regression as the inverse of the PTC slope in the
region where the noise behaves in a Poissonian fashion. In our case, the measured system gain
is 2.28 e−∕ADU.

The known values for the detector are transimpedance gain (at the starvation level) of
5.93 μV∕e−, preamplifier gain of 6, and the gain of the analog to digital conversion of
78.125 μV∕ADU. From the latter, we can extract the ADC voltage range of 5.12 V for a
16-bit converter, which is used in the configuration file. The actual ADC range is �4.096 V,
but due to a gain of 1.6 in the ADC differential driver amplifier, the effective swing at the input is
�2.56 V. Using the transimpedance gain and charge of an electron, we can estimate the total
integrating capacitance at full depletion as 1.602 × 10−19 C∕5.93 μV ¼ 27 fF. System gain can
be calculated as

Arko et al.: Pyxel 1.0: an open source Python framework for detector and end-to-end instrument simulation

J. Astron. Telesc. Instrum. Syst. 048002-7 Oct–Dec 2022 • Vol. 8(4)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 22 Mar 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

EQ-TARGET;temp:intralink-;sec4.2;116;456

78.125 μV∕ADU
6 × 5.93 μV∕e−

¼ 2.196 e−∕ADU:

The theoretical value differs slightly from the measured one. The first reason is that the
reported transimpedance gain is quoted at starvation level, where depletion is at the maximum,
which is not the case when fitting the curve over a range of signal levels. The second effect is the
IPC,11,12 which exists due to an electric field between adjacent collection nodes, causing a spread
of signal to adjacent pixels. The effect can be modeled as an additional point spread function, a
convolution with an IPC kernel, which is extracted from measurements by observing an image of
a hot pixel. The model in Pyxel convolves the image with a 3 × 3 IPC kernel. Simulating the PTC
curve, we are able to recreate a system gain of 2.20 e−∕ADU without IPC and 2.34 e−∕ADU in
case IPC model is applied. Both numbers are the result of a linear regression of the PTC in the
region dominated by shot noise.

The second objective is recreating the effect of nonlinearity observed in the PTC. In a sim-
plified analytical detector nonlinearity model,21 which assumes that the detector is working far
from saturation, the current flowing in the diode is restricted to a photonic current:

EQ-TARGET;temp:intralink-;e001;116;264

dV
dt

¼ −Iph
C

: (1)

The integrating capacitance can be written as a sum of fixed capacitance Cf in the readout
integrated circuit and diode capacitance:

EQ-TARGET;temp:intralink-;e002;116;197C ¼ Cf þ
C0

1 − V
Vbi

: (2)

The diode capacitance at 0 bias C0 is36

EQ-TARGET;temp:intralink-;e003;116;137C0 ¼ A

ffi
eϵϵ0
2Vbi

�
1

Na
þ 1

Nd

�s
; (3)

where A is the area of the circularly shaped diode, e is the electron charge, ϵ is the dielectric
constant of the material, and Na and Nd are the acceptor and donor concentrations. Vbi is the

Fig. 5 Comparison between the measured PTC and the simulated one. Due to effects of non-
linearity, at high signal values the noise stops behaving in a Poissonian fashion and the variance
drops to 0. The analytical model of nonlinearity that does not simulate saturation fails to match the
measurement at high signal values but has good overlap at lower signal values. The notebook to
recreate the PTC curve is available in the /jatis folder on the Pyxel Data git repository.

Arko et al.: Pyxel 1.0: an open source Python framework for detector and end-to-end instrument simulation

J. Astron. Telesc. Instrum. Syst. 048002-8 Oct–Dec 2022 • Vol. 8(4)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 22 Mar 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

built-in diode potential and is a function of Na, Nd, temperature and intrinsic carrier concen-
tration. By inserting Eq. (2) into Eq. (1) and integrating, one can express voltage on the detector
after exposure as a solution of a quadratic equation. Different to the nonlinearity model presented
in Ref. 37, this model takes into account the additional fixed capacitance and simulates classical
nonlinearity as well as the gain nonlinearity38. Without the additional fixed capacitance, the
resulting node capacitance would be lower than what is observed in the standard H4RG detector.
Still the described model is not a complete physical model and does not simulate the saturation of
the detector. Additionally, it assumes a planar geometry of the diode instead of a cylindrical.

We use Pyxel’s calibration mode to estimate the physical parameters of the nonlinearity
model directly using the PTC measurement, namely: the donor density Nd, the diode diameter
d giving the diode area, and the fixed capacitance Cf. Since H4RG is a p-on-n technology, the
acceptor density has very little influence on the result and is fixed to 1018 atoms∕cm3. The detec-
tor voltage bias is 0.25 V. The target data for calibration are frames with known variance at
different signal levels, extracted from the PTC measurement. We perform the calibration using
library pygmo.28 Pygmo is a Python library for massively parallel optimization, offering a wide
range of bioinspired genetic and optimization algorithms. We use the built-in genetic optimi-
zation self-adaptive differential evolution. The final parameters, seen in Table 1, are the result of
running the algorithm on a population size of 30 for 200 generations on a local cluster with 10
workers. Similar parameters have been used in the IPC model in Ref. 12 and the donor con-
centration result corresponds to the typical values reported in Ref. 39. The diode diameter is
within the size of the pixel and fixed capacitance within the total integrating capacitance of 27 fF.

With the final parameters, a PTC curve can be generated using the observation mode by
iterating over the input photon signal level. A comparison between the measurement and the
generated PTC with the calibrated pipeline is shown in Fig. 5. The notebook to recreate the
PTC curve is available in the /jatis folder on the Pyxel Data git repository. The models applied
in the pipeline include the nonlinearity model with the arguments from Table 1 as well as the IPC
model. As expected, the analytical nonlinearity model used in the pipeline is not able to fully
replicate the data at high signal levels since it is not a complete physical model and does not
simulate saturation. Overlap is much better in the region where the total noise is dominated by
Poissonian shot noise. Therefore the configured pipeline can be used to reproduce detector
images with high fidelity for the lower end of the dynamic range.

4.3 Building an End-to-End Instrument Simulator

Even though the main purpose of Pyxel so far has been the simulation of detector effects on a
single detector, its flexible architecture also enables simulations on a much larger scale, such as
end-to-end simulations of an entire instrument or an array of detectors. One way to achieve this is
by making use of Pyxel’s modular structure and combining it with already existing simulation
frameworks. Pyxel can be easily implemented into another simulation tool as a library, adding
several detector effect models that might be missing inside another simulation pipeline. Another
approach is to wrap other simulation tools into models that can be used directly in the Pyxel
pipeline. Here we give an example of the latter approach and show how Pyxel can be used
together with ScopeSim,30 a Pythonic astronomical instrument simulator. The final aim for this
is a demonstration of how one can perform an end-to-end simulation of an instrument, in this
case, MICADO on the ELT, by expanding the complexity of the Pyxel pipeline.

Table 1 Final nonlinearity model parameters as estimated with Pyxel’s
calibration mode (not provided by the manufacturer). The values are
a result of calibrating the model parameters using lab data (PTC).

Parameter Value

Donor density Nd 2.9 × 1015 ðatoms∕cm3Þ

Diode diameter d 10.2 ðμmÞ

Fixed capacitance Cf 6.8 (fF)

Arko et al.: Pyxel 1.0: an open source Python framework for detector and end-to-end instrument simulation

J. Astron. Telesc. Instrum. Syst. 048002-9 Oct–Dec 2022 • Vol. 8(4)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 22 Mar 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Inside the ScopeSim ecosystem, there are tools for the creation of astronomical on-sky
targets, downloadable instrument data packages for the telescope (ELT), observing site
(Armazones), the relay optics (MICADO), and tool Anisocado for simulation of point spread
functions. We combine those into one model of photon generation, providing full photon flux of
an astronomical source in the detector plane. For demonstration purposes, we use for the source
a combination of a spiral galaxy with an extent of around 20 arcsec and a star cluster with
m ¼ 10;000M⊙ at a distance of 10 kpc. The MICADO detector plane consists of a 3 × 3 array
of near-infrared Teledyne H4RG detectors, each with a resolution of 4096 × 4096. The map of
the photon flux created by the Scopesim wrapper extents over all nine detectors. Exposure time
was set to 200 s and the applied filter is in the H band. We use Pyxel’s observation mode to
split the simulation of detector effects into nine pipelines, separated for each of the predefined
detector windows. This way each detector in the array is assigned an index and corresponds to
a pipeline independent of other detectors. The pipeline used is the calibrated H4RG pipeline
including, the calibrated nonlinearity model, IPC model, dark current, readout noise, and cosmic
rays. The final image simulated using Pyxel can be seen in Fig. 6. It shows the full focal plane
composed of nine H4RG detectors. Note that for computational speed purpose, we used a field-
constant point spread function. A field-varying PSF is also possible inside the ScopeSim frame-
work. In such case, using parallelization in the observation mode is necessary.

5 Conclusion

Detector and instrument simulation tools are crucial in all of the stages of the mission design.
To avoid duplication of work, promote knowledge transfer, and provide reusable and reliable
tool, we developed a collaborative tool Pyxel, an open source Python framework for detector and
end-to-end instrument simulation. In this contribution, we presented the new features and gave
an overview of architecture in the latest public release of Pyxel: version 1.0. One of the new
features are generic configuration files for realistic detectors. Using such a generic configuration
file for the case of the H4RG detector, we calibrated models using measurement data and ulti-
mately used the calibrated pipeline to simulate the MICADO instrument focal plane comprising
9 H4RG sensors.

Fig. 6 Simulation of a single observation of 200 s in H band with the MICADO instrument.
ScopeSim framework with a dedicated MICADO instrument package is used to simulate the image
plane—the photon distribution on the nine detectors. The observation mode in Pyxel is used to
split the simulation in nine pipelines, adding detector effects to each of the detectors separately.

Arko et al.: Pyxel 1.0: an open source Python framework for detector and end-to-end instrument simulation

J. Astron. Telesc. Instrum. Syst. 048002-10 Oct–Dec 2022 • Vol. 8(4)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 22 Mar 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

With a growing number of users, features and domain of applications, large validated set of
models, a simplified architecture, and improved user experience, Pyxel has fulfilled the initial set
of requirements and is showing to be a versatile and flexible tool that can simulate both single
detectors as well as an entire instrument. Looking toward the future version 2.0, we would like to
improve the speed of simulating large detectors, multichannel detectors, and arrays of detectors,
either using multiprocessor computation or graphics processing unit. Other features often
requested by users are a scene generator and multiwavelength simulations. For this reason, two
new model groups called scene generation and photon collection are currently being imple-
mented. We encourage users to join the Pyxel community, to contribute with their own models,
and to collaboratively further expand the capability of the Pyxel pipeline.

Acknowledgments

We would like to acknowledge ESO for providing detector measurement data and Naidu
Bezawada for valuable advice and proofreading. We would also like to acknowledge Kieran
Leschinski and the team of ScopeSim for support while trying to close the gap between the
frameworks. Finally, we would like to thank Dávid Lucsányi, Hans Smit, and all past Pyxel
developers that have massively contributed toward the release of Pyxel version 1.0.

References

1. T. Prod’homme et al., “A smartphone-based arbitrary scene projector for detector testing
and instrument performance evaluation,” Proc. SPIE 11454, 1145426 (2020).

2. P. Verhoeve et al., “Optical and dark characterization of the PLATO CCD at ESA,” Proc.
SPIE 9915, 99150Z (2016).

3. T. Prod’homme et al., “Comparative study of cryogenic versus room-temperature proton
irradiation of N-channel CCDs and subsequent annealing,” IEEE Trans. Nucl. Sci. 66,
134–139 (2019).

4. P. E. Crouzet et al., “Impact of proton radiation on the Ariel AIRS CH1 HAWAII-1RG
MWIR detector,” Proc. SPIE 11454, 114540A (2020).

5. P. Verhoeve et al., “Proton induced damage after laboratory cold irradiation in CCD47-20
CCDs for CHEOPS,” Proc. SPIE 12191, 121910B (2022).

6. P.-E. Crouzet et al., “Comparison of persistence in spot versus flat field illumination and
single pixel response on a Euclid HAWAII-2RG at ESTEC,” Proc. SPIE 9915, 99151E
(2016).

7. A. Short et al., “An analytical model of radiation-induced charge transfer inefficiency for
CCD detectors,” Mon. Not. R. Astron. Soc. 430(4), 3078–3085 (2013).

8. J. Kegerreis, R. Massey, and J. Nightingale, “Algorithm for charge transfer inefficiency
(CTI) correction,” 2022, https://github.com/jkeger/arctic.

9. P. Antilogus et al., “The brighter-fatter effect and pixel correlations in CCD sensors,”
J. Instrum. 9, C03048 (2014).

10. A. A. Plazas et al., “Laboratory measurement of the brighter-fatter effect in an H2RG
infrared detector,” Publ. Astron. Soc. Pac. 130, 065004 (2018).

11. A. Kannawadi et al., “The impact of interpixel capacitance in CMOS detectors on PSF
shapes and implications for WFIRST,” Publ. Astron. Soc. Pac. 128, 095001 (2016).

12. K. Donlon et al., “Modeling of hybridized infrared arrays for characterization of interpixel
capacitive coupling,” Opt. Eng. 56, 024103 (2017).

13. S. Tulloch, E. George, and ESO Detector Systems Group, “Predictive model of persistence
in H2RG detectors,” J. Astron. Telesc. Instrum. Syst. 5, 036004 (2019).

14. J. Skottfelt et al., “C3TM: CEI CCD charge transfer model for radiation damage analysis
and testing,” Proc. SPIE 10709, 1070918 (2018).

15. T. Prod’homme et al., “Electrode level Monte Carlo model of radiation damage effects on
astronomical CCDs,” Mon. Not. R. Astron. Soc. 414, 2215–2228 (2011).

16. D. Lucsanyi et al., “Pyxel: a novel and multi-purpose Python-based framework for imaging
detector simulation,” Proc. SPIE 10709, 107091A (2018).

Arko et al.: Pyxel 1.0: an open source Python framework for detector and end-to-end instrument simulation

J. Astron. Telesc. Instrum. Syst. 048002-11 Oct–Dec 2022 • Vol. 8(4)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 22 Mar 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

https://doi.org/10.1117/12.2561760
https://doi.org/10.1117/12.2232336
https://doi.org/10.1117/12.2232336
https://doi.org/10.1109/TNS.2018.2886029
https://doi.org/10.1117/12.2561267
https://doi.org/10.1117/12.2629353
https://doi.org/10.1117/12.2230836
https://doi.org/10.1093/mnras/stt114
https://github.com/jkeger/arctic
https://github.com/jkeger/arctic
https://doi.org/10.1088/1748-0221/9/03/C03048
https://doi.org/10.1088/1538-3873/aab820
https://doi.org/10.1088/1538-3873/128/967/095001
https://doi.org/10.1117/1.OE.56.2.024103
https://doi.org/10.1117/1.JATIS.5.3.036004
https://doi.org/10.1117/12.2309944
https://doi.org/10.1111/j.1365-2966.2011.18537.x
https://doi.org/10.1117/12.2314047

17. Pyxel Development Team, “Pyxel: The collaborative detection simulation framework,”
GitLab repository, GitLab (2022).

18. M. Rocklin, “Dask: parallel computation with blocked algorithms and task scheduling,” in
Proc. 14th Python in Science Conf. , pp. 130–136 (2015).

19. S. Hoyer and J. Hamman, “xarray: N-D labeled arrays and datasets in Python,” J. Open Res.
Softw. 5(1) (2017).

20. M. Konnik and J. Welsh, “High-level numerical simulations of noise in CCD and CMOS
photosensors: review and tutorial,” https://doi.org/10.48550/arXiv.1412.4031 (2014).

21. O. B. T. Pichon and T. Le Goff, “Pyxel: CMOS detector non-linearities,” personal
communication.

22. “Click: Python package for creating beautiful command line interfaces,” https://click
.palletsprojects.com/en/8.1.x/

23. T. Kluyver et al., “Jupyter Notebooks – a publishing format for reproducible computational
workflows,” Positioning and Power in Academic Publishing: Players, Agents and Agenda,
F. Loizides and B. Schmidt, Ed., pp. 87–90, IOS Press (2016).

24. Pyxel Development Team, “Pyxel data: example notebook repository for pyxel,” GitLab
repository, GitLab (2022).

25. Pyxel Development Team, “Pyxel documentation,” https://esa.gitlab.io/pyxel/doc/stable/
index.html (2022).

26. O. Ben-Kiki, C. Evans, and I. döt Net, “YAML 1.2,” http://yaml.org (2021).
27. F. Pezoa et al., “Foundations of JSON schema,” in Proc. 25th Int. Conf. World Wide Web,

pp. 263–273, International World Wide Web Conferences Steering Committee (2016)
28. F. Biscani and D. Izzo, “A parallel global multiobjective framework for optimization: pagmo,”

J. Open Source Softw. 5(53), 2338 (2020).
29. R. Blank et al., “The HxRG Family of High Performance Image Sensors for Astronomy,” in

Solar Polarization 6, J. R. Kuhn et al., Eds., Astronomical Society of the Pacific Conference
Series, Vol. 437, pp. 383, Astronomical Society of the Pacific (2011).

30. K. Leschinski et al., “ScopeSim: a flexible general purpose astronomical instrument data
simulation framework in Python,” Proc. SPIE 11452, 114521Z (2020).

31. R. W. Davies et al., “The MICADO first light imager for the ELT: overview, operation,
simulation,” Proc. SPIE 10702, 107021S (2018).

32. I. Baker et al., “Linear-mode avalanche photodiode arrays in HgCdTe at Leonardo, UK:
the current status,” Proc. SPIE 10980, 109800K (2019).

33. D. J. Ives et al., “Characterisation, performance and operational aspects of the H4RG-15
near infrared detectors for the MOONS instrument,” Proc. SPIE 11454, 114541N (2020).

34. M. Cirasuolo et al., “MOONS: the new multi-object spectrograph for the VLT,” Messenger
180, 10–17 (2020).

35. J. R. Janesick, “Photon transfer curve,” in Photon Transfer, pp. 49–78, SPIE Press,
Bellingham, Washington (2007).

36. S. Sze and K. K. Ng, Eds., “p-n Junctions,” in Physics of Semiconductor Devices (2006).
37. A. Plazas et al., “Nonlinearity and pixel shifting effects in HXRG infrared detectors,”

J. Instrum. 12, C04009 (2017).
38. N. Bezawada, D. Ives, and D. Atkinson, “Conversion gain non-linearity and its correction

in hybridised near infrared detectors,” Proc. SPIE 6690, 669005 (2007).
39. C. Cervera et al., “Ultra-low dark current hgcdte detector in swir for space applications,”

J. Electron. Mater. 46, 6142–6149 (2016).

Matej Arko received his master’s degree in technical physics and photonics from the University
of Ljubljana, Slovenia. During his two years at the European Space Agency as a young graduate
trainee, he has been involved in the open source project Pyxel as the lead developer and
maintainer of the simulation framework. Currently, he is working as an instrument scientist
and performance engineer at SRON Netherlands Institute for Space Research, supporting the
SpexONE instrument calibration and detector characterization for the ESA CO2M mission.

Thibaut Prod’homme received his engineering degree in materials and nanotechnologies
from Rennes’ National Institute for Applied Sciences, France, his master’s degree in physics

Arko et al.: Pyxel 1.0: an open source Python framework for detector and end-to-end instrument simulation

J. Astron. Telesc. Instrum. Syst. 048002-12 Oct–Dec 2022 • Vol. 8(4)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 22 Mar 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

https://doi.org/10.5334/jors.148
https://doi.org/10.5334/jors.148
https://doi.org/10.48550/arXiv.1412.4031
https://doi.org/10.48550/arXiv.1412.4031
https://doi.org/10.48550/arXiv.1412.4031
https://doi.org/10.48550/arXiv.1412.4031
https://doi.org/10.48550/arXiv.1412.4031
https://click.palletsprojects.com/en/8.1.x/
https://click.palletsprojects.com/en/8.1.x/
https://click.palletsprojects.com/en/8.1.x/
https://click.palletsprojects.com/en/8.1.x/
https://click.palletsprojects.com/en/8.1.x/
https://esa.gitlab.io/pyxel/doc/stable/index.html
https://esa.gitlab.io/pyxel/doc/stable/index.html
https://esa.gitlab.io/pyxel/doc/stable/index.html
https://esa.gitlab.io/pyxel/doc/stable/index.html
https://esa.gitlab.io/pyxel/doc/stable/index.html
http://yaml.org
http://yaml.org
https://doi.org/10.21105/joss.02338
https://doi.org/10.1117/12.2559784
https://doi.org/10.1117/12.2311483
https://doi.org/10.1117/12.2519830
https://doi.org/10.1117/12.2562408
https://doi.org/10.1088/1748-0221/12/04/C04009
https://doi.org/10.1117/12.732454
https://doi.org/10.1007/s11664-016-4936-0

from Rennes University, France, and his PhD in astronomy from Leiden University, The
Netherlands, in 2011. He is a physicist at the European Space Agency (Payload Technology
Validation Section, Future Mission Department, Science Directorate, ESTEC). Besides his role
as payload manager for ESA’s science missions in early phases, his work is mostly dedicated to
technology development in the field of detectors: managing technology development activities in
collaboration with the European industry, as well as carrying out both experimental and model-
ing works. He has been leading the Pyxel project since its very beginning.

Frédéric Lemmel received his MSc degree in computer engineering from Delft University of
Technology. He has been working at the SCI/FIV Payload Technology and Validation Section at
ESA. His main interests are software and hardware development on microcontrollers, FPGAs,
and computers applied to CCD/CMOS detectors.

Benoit Serra is a detector engineer at ESO working on a first light instrument (METIS) for the
ELT. He is mostly working with IR detectors, such as the HxRG and SAPHIRA. In the context of
a collaboration between ESA and ESO, he has been involved in the development of Pyxel since
the first beta release.

Elizabeth George received her PhD in physics from the UC Berkeley and is now a detector
engineer at the European Southern Observatory. She is currently working on optical and infrared
detector systems, including modeling and characterization, for the very and extremely large
telescopes.

Bradley Kelman is a PhD student at the Open University studying the correction of charge
transfer inefficiency (CTI) through the use of the Pyxel framework and the ArCTIC CTI model.

Thibault Pichon received his engineering degree in physics from Grenoble INP-Phelma in 2017
and his PhD from Université Paris-Saclay in 2020. During his PhD, he has been working
on radiation effects in IR detectors. He is a physicist in the Astrophysics Department of
CEA-Saclay. He is now working on infrared detectors based on HgCdTe technology for R&D
programs and as the detector scientist of one of the instrument of the ARIEL space mission.

Enrico Biancalani is a master’s student in astronomy and instrumentation at Leiden University
and at TU Delft and a support astronomer at the Nordic Optical Telescope. His scientific research
focuses on the technologies and on the techniques tailored for the direct imaging and spectrog-
raphy of exoplanets in order to detect and characterize Earth analogues.

James Gilbert is a program manager at RocketLab, responsible for the delivery of avionics
hardware, flight software, radio communications, and GNC for the Neutron reusable launch
vehicle. His previous work at Australian National University included the development of
infrared avalanche photodiode (APD) payloads for Earth observation.

Arko et al.: Pyxel 1.0: an open source Python framework for detector and end-to-end instrument simulation

J. Astron. Telesc. Instrum. Syst. 048002-13 Oct–Dec 2022 • Vol. 8(4)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 22 Mar 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

