21 research outputs found

    A Common Variant in CLDN14 is Associated with Primary Biliary Cirrhosis and Bone Mineral Density.

    Get PDF
    Primary biliary cirrhosis (PBC), a chronic autoimmune liver disease, has been associated with increased incidence of osteoporosis. Intriguingly, two PBC susceptibility loci identified through genome-wide association studies are also involved in bone mineral density (BMD). These observations led us to investigate the genetic variants shared between PBC and BMD. We evaluated 72 genome-wide significant BMD SNPs for association with PBC using two European GWAS data sets (n = 8392), with replication of significant findings in a Chinese cohort (685 cases, 1152 controls). Our analysis identified a novel variant in the intron of the CLDN14 gene (rs170183, Pfdr = 0.015) after multiple testing correction. The three associated variants were followed-up in the Chinese cohort; one SNP rs170183 demonstrated consistent evidence of association in diverse ethnic populations (Pcombined = 2.43 × 10(-5)). Notably, expression quantitative trait loci (eQTL) data revealed that rs170183 was correlated with a decline in CLDN14 expression in both lymphoblastoid cell lines and T cells (Padj = 0.003 and 0.016, respectively). In conclusion, our study identified a novel PBC susceptibility variant that has been shown to be strongly associated with BMD, highlighting the potential of pleiotropy to improve gene discovery

    Mucosal-Associated Invariant T Cells Improve Nonalcoholic Fatty Liver Disease Through Regulating Macrophage Polarization

    Get PDF
    Mucosal-associated invariant T (MAIT) cells, a novel population of innate-like lymphocytes, have been involved in various inflammatory and autoimmune diseases. However, their role in the development of nonalcoholic fatty liver disease (NAFLD) remains unclear. In this study, we investigated the alterations of phenotype and immunological function of MAIT cells in NAFLD. Analysis of PBMCs in 60 patients with NAFLD and 48 healthy controls (HC) revealed that circulating MAIT cell frequency decreased in NAFLD, especially in the patients with higher serum levels of γ-glutamyl transferase or total triglyceride. Functional alterations of circulating MAIT cells were also detected in NAFLD patients, such as the increased production of IL-4 whereas the decreased production of IFN-γ and TNF-α. Furthermore, elevated expression of CXCR6 was observed in circulating MAIT cells of patients. Meanwhile, we found an increased number of MAIT cells in the livers of NAFLD, and the number was even greater in patients with higher NAFLD activity score. Moreover, activated MAIT cells induced monocytes/macrophages differentiation into M2 phenotype in vitro. Additionally, MAIT cells were enriched and displayed Th2 type cytokines profile in livers of wild type mice fed with methionine and choline deficient diet (MCD). Notably, mice deficient of MAIT cells exhibited more severe hepatic steatosis and inflammation upon MCD, accompanied with more CD11c+ proinflammatory macrophages (M1) and less CD206+ anti-inflammatory macrophages (M2) in livers. Our results indicate that MAIT cells protect against inflammation in NAFLD through producing regulatory cytokines and inducing anti-inflammatory macrophage polarization, which may provide novel therapeutic strategies for NAFLD

    Circular RNA YAP1 inhibits the proliferation and invasion of gastric cancer cells by regulating the miR-367-5p/p27 Kip1 axis

    No full text
    Abstract Background Circular RNAs (circRNAs) are a new type of non-coding RNAs and their functions in gastric cancer (GC) remain unclear. Recent studies have revealed that circRNAs play an important role in cancer development and certain types of pathological responses, acting as microRNA (miRNA) sponges to regulate gene expression. Methods CircNet was used to screen potential circRNAs and validated circYAP1 expression levels in 17 GC tissues by quantitative real-time PCR (qRT-PCR) and another 80 paired GC tissues by FISH. CircYAP1 overexpression and knockdown experiments were conducted to assess the effects of circYAP1 in vitro and in vivo, and its molecular mechanism was demonstrated by RNA in vivo precipitation assays, western blotting, luciferase assay and rescue experiments. Results CircYAP1 expression level was significantly lower in GC tissues than the adjacent normal tissues, and GC patients with circYAP1 low expression had shorter survival times as compared with those with circYAP1 high expression. Functionally, circYAP1 overexpression inhibited cell growth and invasion in vitro and in vivo, but its knockdown reversed these effects. Further analysis showed that circYAP1 sponged miR-367-5p to inhibit p27 Kip1 expression and GC progression. Conclusion Our findings demonstrate that circYAP1 functions as a tumor suppressor in GC cells by targeting the miR-367-5p/p27 Kip1 axis and may provide a prognostic indicator of survival in GC patients

    Circular RNA hsa_circ_0051040 Promotes Hepatocellular Carcinoma Progression by Sponging miR-569 and Regulating ITGAV Expression

    No full text
    Accumulating evidence has demonstrated the roles of circular RNAs (circRNAs) in hepatocellular carcinoma (HCC); however, their roles in HCC need to be further studied. Through high-throughput human circRNA microarray analysis of HCC and adjacent normal tissues, we identified hsa_circ_0051040 as a novel candidate circRNA for the diagnosis and treatment of HCC. In this study, we found that hsa_circ_0051040 was overexpressed in HCC tissues and cell lines and that its expression was correlated with poor prognosis. Knockdown of hsa_circ_0051040 inhibited the migration, invasion, and proliferation of HCC cells in vitro and in vivo, whereas overexpression of hsa_circ_0051040 had the opposite effects. Moreover, our data demonstrated that hsa_circ_0051040 acted as a sponge for miR-569 to regulate ITGAV expression and induce EMT progression. Our findings indicated that hsa_circ_0051040 promotes HCC development and progression by sponging miR-569 to increase ITGAV expression. Thus, hsa_circ_0051040 is a good candidate as a therapeutic target

    Quantitation of the Rank-Rankl Axis in Primary Biliary Cholangitis

    No full text
    <div><p>There is substantial data that suggests an abnormality of innate immunity in patients with primary biliary cholangitis (PBC) which includes the transcription factor nuclear factor-kB (NF-kB) and well as downstream inflammatory signaling pathways. In addition, ImmunoChip analysis has identified a novel PBC-associated locus near the receptor activator of NF-kB ligand (RANKL) gene. Based on these observations, we investigated the role of the RANKL axis in the liver of patients with PBC compared to controls. We used immunohistochemistry to quantitate liver expression of RANKL, its receptor (RANK), and importantly the decoy receptor osteoprotegerin (OPG), including a total of 122 liver samples (PBC = 37, primary sclerosing cholangitis = 20, autoimmune hepatitis = 26, chronic hepatitis B = 32 and unaffected controls = 7). In addition, we studied RANKL-RANK-OPG co-localization in CD4 and CD8 T cells, B cells, dendritic cells, macrophages, NK, NKT cells, hepatocytes, and cholangiocytes. We report herein that RANK is constitutively expressed by cholangiocytes in both unaffected and diseased liver. However, cholangiocytes from PBC express significantly higher levers of RANK than either the unaffected controls or liver diseased controls. CD4, CD8 and CD19 cells with in the portal areas around bile ducts in PBC express significantly higher levels of RANKL compared to controls. Importantly, the overall hepatic RANKL level and the ratio of hepatic RANKL/OPG correlated with disease severity in PBC. In conclusion, our data indicate a role of RANK-RANKL axis in the innate immune activation in PBC and we hypothesize that the damaged cholangiocytes, which express high levels of RANK, lead to the recruitment of RANKL positive cells and ultimately the classic portal tract infiltrates.</p></div
    corecore