34 research outputs found

    Computational Complexity of interacting electrons and fundamental limitations of Density Functional Theory

    Get PDF
    One of the central problems in quantum mechanics is to determine the ground state properties of a system of electrons interacting via the Coulomb potential. Since its introduction by Hohenberg, Kohn, and Sham, Density Functional Theory (DFT) has become the most widely used and successful method for simulating systems of interacting electrons, making their original work one of the most cited in physics. In this letter, we show that the field of computational complexity imposes fundamental limitations on DFT, as an efficient description of the associated universal functional would allow to solve any problem in the class QMA (the quantum version of NP) and thus particularly any problem in NP in polynomial time. This follows from the fact that finding the ground state energy of the Hubbard model in an external magnetic field is a hard problem even for a quantum computer, while given the universal functional it can be computed efficiently using DFT. This provides a clear illustration how the field of quantum computing is useful even if quantum computers would never be built.Comment: 8 pages, 3 figures. v2: Version accepted at Nature Physics; differs significantly from v1 (including new title). Includes an extra appendix (not contained in the journal version) on the NP-completeness of Hartree-Fock, which is taken from v

    Decoherence induced deformation of the ground state in adiabatic quantum computation

    Full text link
    Despite more than a decade of research on adiabatic quantum computation (AQC), its decoherence properties are still poorly understood. Many theoretical works have suggested that AQC is more robust against decoherence, but a quantitative relation between its performance and the qubits' coherence properties, such as decoherence time, is still lacking. While the thermal excitations are known to be important sources of errors, they are predominantly dependent on temperature but rather insensitive to the qubits' coherence. Less understood is the role of virtual excitations, which can also reduce the ground state probability even at zero temperature. Here, we introduce normalized ground state fidelity as a measure of the decoherence-induced deformation of the ground state due to virtual transitions. We calculate the normalized fidelity perturbatively at finite temperatures and discuss its relation to the qubits' relaxation and dephasing times, as well as its projected scaling properties.Comment: 10 pages, 3 figure

    Solving Quantum Ground-State Problems with Nuclear Magnetic Resonance

    Get PDF
    Quantum ground-state problems are computationally hard problems; for general many-body Hamiltonians, there is no classical or quantum algorithm known to be able to solve them efficiently. Nevertheless, if a trial wavefunction approximating the ground state is available, as often happens for many problems in physics and chemistry, a quantum computer could employ this trial wavefunction to project the ground state by means of the phase estimation algorithm (PEA). We performed an experimental realization of this idea by implementing a variational-wavefunction approach to solve the ground-state problem of the Heisenberg spin model with an NMR quantum simulator. Our iterative phase estimation procedure yields a high accuracy for the eigenenergies (to the 10^-5 decimal digit). The ground-state fidelity was distilled to be more than 80%, and the singlet-to-triplet switching near the critical field is reliably captured. This result shows that quantum simulators can better leverage classical trial wavefunctions than classical computers.Comment: 11 pages, 13 figure

    Quantum adiabatic machine learning

    Full text link
    We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the training and testing phases are executed via quantum adiabatic evolution. We apply and illustrate this approach in detail to the problem of software verification and validation.Comment: 21 pages, 9 figure

    Entanglement scaling in quantum advantage benchmarks

    Full text link
    A contemporary technological milestone is to build a quantum device performing a computational task beyond the capability of any classical computer, an achievement known as quantum adversarial advantage. In what ways can the entanglement realized in such a demonstration be quantified? Inspired by the area law of tensor networks, we derive an upper bound for the minimum random circuit depth needed to generate the maximal bipartite entanglement correlations between all problem variables (qubits). This bound is (i) lattice geometry dependent and (ii) makes explicit a nuance implicit in other proposals with physical consequence. The hardware itself should be able to support super-logarithmic ebits of entanglement across some poly(nn) number of qubit-bipartitions, otherwise the quantum state itself will not possess volumetric entanglement scaling and full-lattice-range correlations. Hence, as we present a connection between quantum advantage protocols and quantum entanglement, the entanglement implicitly generated by such protocols can be tested separately to further ascertain the validity of any quantum advantage claim

    Reachability Deficits in Quantum Approximate Optimization.

    Full text link
    The quantum approximate optimization algorithm (QAOA) has rapidly become a cornerstone of contemporary quantum algorithm development. Despite a growing range of applications, only a few results have been developed towards understanding the algorithm's ultimate limitations. Here we report that QAOA exhibits a strong dependence on a problem instances constraint to variable ratio-this problem density places a limiting restriction on the algorithms capacity to minimize a corresponding objective function (and hence solve optimization problem instances). Such reachability deficits persist even in the absence of barren plateaus and are outside of the recently reported level-1 QAOA limitations. These findings are among the first to determine strong limitations on variational quantum approximate optimization

    Community Detection in Quantum Complex Networks

    No full text
    Determining community structure is a central topic in the study of complex networks, be it technological, social, biological or chemical, in static or interacting systems. In this paper, we extend the concept of community detection from classical to quantum systems---a crucial missing component of a theory of complex networks based on quantum mechanics. We demonstrate that certain quantum mechanical effects cannot be captured using current classical complex network tools and provide new methods that overcome these problems. Our approaches are based on defining closeness measures between nodes, and then maximizing modularity with hierarchical clustering. Our closeness functions are based on quantum transport probability and state fidelity, two important quantities in quantum information theory. To illustrate the effectiveness of our approach in detecting community structure in quantum systems, we provide several examples, including a naturally occurring light-harvesting complex, LHCII. The prediction of our simplest algorithm, semiclassical in nature, mostly agrees with a proposed partitioning for the LHCII found in quantum chemistry literature, whereas our fully quantum treatment of the problem uncovers a new, consistent, and appropriately quantum community structure

    Divide, perturb and conquer

    No full text

    Chiral Quantum Walks

    No full text
    Wigner separated the possible types of symmetries in quantum theory into those symmetries that are unitary and those that are antiunitary. Unitary symmetries have been well studied whereas antiunitary symmetries and the physical implications associated with time-reversal symmetry breaking have had little influence on quantum information science. Here we develop a quantum circuits version of time-reversal symmetry theory, classifying time-symmetric and time-asymmetric Hamiltonians and circuits in terms of their underlying network elements and geometric structures. These results reveal that many of the typical quantum circuit networks found across the field of quantum information science exhibit time-asymmetry. We then experimentally implement the most fundamental time-reversal asymmetric process, applying local gates in an otherwise time-symmetric circuit to induce time-reversal asymmetry and thereby achieve (i) directional biasing in the transition probability between basis states, (ii) the enhancement of and (iii) the suppression of these transport probabilities. Our results imply that the physical effect of time-symmetry breaking plays an essential role in coherent transport and its control represents an omnipresent yet essentially untapped resource in quantum transport science
    corecore