

Edinburgh Research Explorer

Verification of Quantum Computation: An Overview of Existing
Approaches

Citation for published version:
Gheorghiu, A, Kapourniotis, T & Kashefi, E 2018, 'Verification of Quantum Computation: An Overview of
Existing Approaches', Theory of Computing Systems, pp. 1-94. https://doi.org/10.1007/s00224-018-9872-3

Digital Object Identifier (DOI):
10.1007/s00224-018-9872-3

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Theory of Computing Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 11. May. 2020

https://www.research.ed.ac.uk/portal/en/persons/alexandru-gheorghiu(f7faf591-15ad-4ac4-a5b4-c94671eed872).html
https://www.research.ed.ac.uk/portal/en/persons/elham-kashefi(c7b2c9cf-958c-4978-ab9f-b6298dcd3835).html
https://www.research.ed.ac.uk/portal/en/publications/verification-of-quantum-computation-an-overview-of-existing-approaches(04e7096f-f864-4237-ba24-3ac592ad0762).html
https://www.research.ed.ac.uk/portal/en/publications/verification-of-quantum-computation-an-overview-of-existing-approaches(04e7096f-f864-4237-ba24-3ac592ad0762).html
https://doi.org/10.1007/s00224-018-9872-3
https://doi.org/10.1007/s00224-018-9872-3
https://www.research.ed.ac.uk/portal/en/publications/verification-of-quantum-computation-an-overview-of-existing-approaches(04e7096f-f864-4237-ba24-3ac592ad0762).html

Theory Comput Syst
https://doi.org/10.1007/s00224-018-9872-3

Verification of Quantum Computation: An Overview
of Existing Approaches

Alexandru Gheorghiu1 ·
Theodoros Kapourniotis2 ·Elham Kashefi1,3

© The Author(s) 2018

Abstract Quantum computers promise to efficiently solve not only problems
believed to be intractable for classical computers, but also problems for which verify-
ing the solution is also considered intractable. This raises the question of how one can
check whether quantum computers are indeed producing correct results. This task,
known as quantum verification, has been highlighted as a significant challenge on
the road to scalable quantum computing technology. We review the most significant
approaches to quantum verification and compare them in terms of structure, complex-
ity and required resources. We also comment on the use of cryptographic techniques
which, for many of the presented protocols, has proven extremely useful in perform-
ing verification. Finally, we discuss issues related to fault tolerance, experimental
implementations and the outlook for future protocols.

Keywords Verification of quantum computation · Delegated quantum
computation · Quantum cryptography · Blind quantum computing

This article is part of the Topical Collection on Computer Science Symposium in Russia

� Alexandru Gheorghiu
a.gheorghiu@sms.ed.ac.uk

1 School of Informatics, University of Edinburgh, Edinburgh, UK

2 Department of Physics, University of Warwick, Coventry, UK

3 CNRS LIP6, Université Pierre et Marie Curie, Paris, France

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-018-9872-3&domain=pdf
http://orcid.org/0000-0001-6225-7168
mailto: a.gheorghiu@sms.ed.ac.uk

Theory Comput Syst

1 Introduction

Quantum computation is the subject of intense research due to the potential of quan-
tum computers to efficiently solve problems which are believed to be intractable
for classical computers. The current focus of experiments, aiming to realize scal-
able quantum computation, is to demonstrate a quantum computational advantage.
In other words, this means performing a quantum computation in order to solve a
problem which is proven to be classically intractable, based on plausible complexity-
theoretic assumptions. Examples of such problems, suitable for near-term experi-
ments, include boson sampling [1], instantaneous quantum polynomial time (IQP)
computations [2] and others [3–5]. The prospect of achieving these tasks has ignited a
flurry of experimental efforts [6–9]. However, while demonstrating a quantum com-
putational advantage is an important milestone towards scalable quantum computing,
it also raises a significant challenge:

If a quantum experiment solves a problem which is proven to be intractable for
classical computers, how can one verify the outcome of the experiment?

The first researcher who formalised the above “paradox” as a complexity theoretic
question was Gottesman, in a 2004 conference [10]. It was then promoted, in 2007,
as a complexity challenge by Aaronson who asked: “If a quantum computer can effi-
ciently solve a problem, can it also efficiently convince an observer that the solution
is correct? More formally, does every language in the class of quantumly tractable
problems (BQP) admit an interactive proof where the prover is in BQP and the ver-
ifier is in the class of classically tractable problems (BPP)?” [10]. Vazirani, then
emphasized the importance of this question, not only from the perspective of com-
plexity theory, but from a philosophical point of view [11]. In 2007, he raised the
question of whether quantum mechanics is a falsifiable theory, and suggested that a
computational approach could answer this question. This perspective was explored
in depth by Aharonov and Vazirani in [12]. They argued that although many of the
predictions of quantum mechanics have been experimentally verified to a remark-
able precision, all of them involved systems of low complexity. In other words, they
involved few particles or few degrees of freedom for the quantum mechanical system.
But the same technique of “predict and verify” would quickly become infeasible for
systems of even a few hundred interacting particles due to the exponential overhead in
classically simulating quantum systems. And so what if, they ask, the predictions of
quantum mechanics start to differ significantly from the real world in the high com-
plexity regime? How would we be able to check this? Thus, the fundamental question
is whether there exists a verification procedure for quantum mechanical predictions
which is efficient for arbitrarily large systems.

In trying to answer this question we return to complexity theory. The primary
complexity class that we are interested in is BQP, which, as mentioned above, is
the class of problems that can be solved efficiently by a quantum computer. The
analogous class for classical computers, with randomness, is denoted BPP. Finally,
concerning verification, we have the class MA, which stands for Merlin-Arthur. This
consists of problems whose solutions can be verified by a BPP machine when given

Theory Comput Syst

Fig. 1 Suspected relationship between BQP and MA

a proof string, called a witness.1 BPP is contained in BQP, since any problem which
can be solved efficiently on a classical computer can also be solved efficiently on
a quantum computer. Additionally BPP is contained in MA since any BPP problem
admits a trivial empty witness. Both of these containments are believed to be strict,
though this is still unproven.

What about the relationship between BQP and MA? Problems are known that are
contained in both classes and are believed to be outside of BPP. One such example is
factoring. Shor’s polynomial-time quantum algorithm for factoring demonstrates that
the problem is in BQP [14]. Additionally, for any number to be factored, the witness
simply consists of a list of its prime factors, thus showing that the problem is also in
MA. In general, however, it is believed that BQP is not contained in MA [15, 16]. The
conjectured relationship between these complexity classes is illustrated in Fig. 1.

What this tells us is that, very likely, there do not exist witnesses certifying the
outcomes of general quantum experiments.2 We therefore turn to a generalization of
MA known as an interactive-proof system. This consists of two entities: a verifier and
a prover. The verifier is a BPP machine, whereas the prover has unbounded com-
putational power. Given a problem for which the verifier wants to check a reported
solution, the verifier and the prover interact for a number of rounds which is polyno-
mial in the size of the input to the problem. At the end of this interaction, the verifier
should accept a valid solution with high probability and reject, with high probabil-
ity, otherwise. The class of problems which admit such a protocol is denoted IP.3 In
contrast to MA, instead of having a single proof string for each problem, one has a
transcript of back-and-forth communication between the verifier and the prover.

If we are willing to allow our notion of verification to include such interactive
protocols, then one would like to know whether BQP is contained in IP. Unlike
the relation between BQP and MA, it is, in fact, the case that BQP ⊆ IP, which
means that every problem which can be efficiently solved by a quantum computer
admits an interactive-proof system. One would be tempted to think that this solves

1BPP and MA are simply the probabilistic versions of the more familiar classes P and MA. Under plausible
derandomization assumptions, BPP = P and MA = MA [13].
2Even if this were the case, i.e. BQP ⊆ MA, for this to be useful in practice one would require that
computing the witness can also be done in BQP. In fact, there are candidate problems known to be in both
BQP and MA, for which computing the witness is believed to not be in BQP (a conjectured example is [17]).
3MA can be viewed as an interactive-proof system where only one message is sent from the prover (Merlin)
to the verifier (Arthur).

Theory Comput Syst

Fig. 2 Models for verifiable quantum computation

the question of verification, however, the situation is more subtle. Recall that in IP,
the prover is computationally unbounded, whereas for our purposes we would require
the prover to be restricted to BQP computations. Hence, the question that we would
like answered and, arguably, the main open problem concerning quantum verification
is the following:

Problem 1 (Verifiability of BQP computations) Does every problem in BQP admit
an interactive-proof system in which the prover is restricted to BQP computations?

As mentioned, this complexity theoretic formulation of the problem was consid-
ered by Gottesman et al. [10, 11] and, in fact, Aaronson has offered a 25$ prize for
its resolution [10]. While, as of yet, the question remains open, one does arrive at
a positive answer through slight alterations of the interactive-proof system. Specifi-
cally, if the verifier interacts with two or more BQP-restricted provers, instead of one,
and the provers are not allowed to communicate with each other during the protocol,
then it is possible to efficiently verify arbitrary BQP computations [18–24]. Alter-
natively, in the single-prover setting, if we allow the verifier to have a constant-size
quantum computer and the ability to send/receive quantum states to/from the prover
then it is again possible to verify all polynomial-time quantum computations [25–33].
Note that in this case, while the verifier is no longer fully “classical”, its computa-
tional capability is still restricted to BPP since simulating a constant-size quantum
computer can be done in constant time. These scenarios are depicted in Fig. 2.

The primary technique that has been employed in most, thought not all, of these
settings, to achieve verification, is known as blindness. This entails delegating a com-
putation to the provers in such a way that they cannot distinguish this computation
from any other of the same size, unconditionally.4 Intuitively, verification then fol-
lows by having most of these computations be tests or traps which the verifier can
check. If the provers attempt to deviate they will have a high chance of triggering
these traps and prompt the verifier to reject.

4In other words, the provers would not be able to differentiate among the different computations even if
they had unbounded computational power.

Theory Comput Syst

In this paper, we review all of these approaches to verification. We broadly classify
the protocols as follows:

1. Single-prover prepare-and-send. These are protocols in which the verifier has
the ability to prepare quantum states and send them to the prover. They are
covered in Section 2.

2. Single-prover receive-and-measure. In this case, the verifier receives quantum
states from the prover and has the ability to measure them. These protocols are
presented in Section 3.

3. Multi-prover entanglement-based. In this case, the verifier is fully classical,
however it interacts with more than one prover. The provers are not allowed to
communicate during the protocol. Section 4 is devoted to these protocols.

From the complexity-theoretic perspective, the protocols from the first two sections
are classified as QPIP (quantum prover interactive proofs) protocols, or protocols
in which the verifier has a minimal quantum device and can send or receive quan-
tum states. Conversely, the entanglement-based protocols are classified as MIP∗
(multi prover interactive proofs with entanglement) protocols, in which the verifier
is classical and interacting with provers that share entanglement.5

After reviewing the major approaches to verification, in Section 5, we address a
number of related topics. In particular, while all of the protocols from Sections 2–
4 are concerned with the verification of general BQP computations, in Section 5.1
we mention sub-universal protocols, designed to verify only a particular subclass of
quantum computations. Next, in Section 5.2 we discuss an important practical aspect
concerning verification, which is fault tolerance. We comment on the possibility of
making protocols resistant to noise which could affect any of the involved quantum
devices. This is an important consideration for any realistic implementation of a veri-
fication protocol. Finally, in Section 5.3 we outline some of the existing experimental
implementations of these protocols.

Throughout the review, we are assuming familiarity with the basics of quantum
information theory and some elements of complexity theory. However, we provide
a brief overview of these topics as well as other notions that are used in this review
(such as measurement-based quantum computing) in the appendix, Section 1. Note
also, that we will be referencing complexity classes such as BQP, QMA, QPIP and
MIP∗. Definitions for all of these are provided in Section 1 of the appendix. We begin
with a short overview of blind quantum computing.

1.1 Blind Quantum Computing

The concept of blind computing is highly relevant to quantum verification. Here,
we simply give a succinct outline of the subject. For more details, see this review
of blind quantum computing protocols by Fitzsimons [34] as well as [35–39]. Note
that, while the review of Fitzsimons covers all of the material presented in this
section (and more), we restate the main ideas, so that our review is self-consistent

5The definitions of these classes can be found in Section 1.

Theory Comput Syst

and also in order to establish some of the notation that is used throughout the rest of
the paper.

Blindness is related to the idea of computing on encrypted data [40]. Suppose a
client has some input x and would like to compute a function f of that input, however,
evaluating the function directly is computationally infeasible for the client. Luckily,
the client has access to a server with the ability to evaluate f (x). The problem is that
the client does not trust the server with the input x, since it might involve private
or secret information (e.g. medical records, military secrets, proprietary information
etc). The client does, however, have the ability to encrypt x, using some encryption
procedure E , to a ciphertext y ← E(x). As long as this encryption procedure hides x

sufficiently well, the client can send y to the server and receive in return (potentially
after some interaction with the server) a string z which decrypts to f (x). In other
words, f (x) ← D(z), where D is a decryption procedure that can be performed
efficiently by the client.6 The encryption procedure can, roughly, provide two types
of security: computational or information-theoretic. Computational security means
that the protocol is secure as long as certain computational assumptions are true (for
instance that the server is unable to invert one-way functions). Information-theoretic
security (sometimes referred to as unconditional security), on the other hand, guar-
antees that the protocol is secure even against a server of unbounded computational
power. See [45] for more details on these topics.

In the quantum setting, the situation is similar to that of QPIP protocols: the
client is restricted to BPP computations, but has some limited quantum capabili-
ties, whereas the server is a BQP machine. Thus, the client would like to delegate
BQP functions to the server, while keeping the input and the output hidden. The
first solution to this problem was provided by Childs [35]. His protocol achieves
information-theoretic security but also requires the client and the server to exchange
quantum messages for a number of rounds that is proportional to the size of the
computation. This was later improved in a protocol by Broadbent et al. [36], known
as universal blind quantum computing (UBQC), which maintained information-
theoretic security but reduced the quantum communication to a single message from
the client to the server. UBQC still requires the client and the server to have a total
communication which is proportional to the size of the computation, however, apart
from the first quantum message, the interaction is purely classical. Let us now state
the definition of perfect, or information-theoretic, blindness from [36]:

Definition 1 (Blindness) Let P be a delegated quantum computation protocol
involving a client and a server. The client draws the input from the random variable
X. Let L(X) be any function of this random variable. We say that the protocol is
blind while leaking at most L(X) if, on the client’s input X, for any l ∈ Range(L),
the following two hold when given l ← L(X):

6In the classical setting, computing on encrypted data culminated with the development of fully homomor-
phic encryption (FHE), which is considered the “holly grail” of the field [41–44]. Using FHE, a client can
delegate the evaluation of any polynomial-size classical circuit to a server, such that the input and output
of the circuit are kept hidden from the server, based on reasonable computational assumptions. Moreover,
the protocol involves only one round of back-and-forth interaction between client and server.

Theory Comput Syst

1. The distribution of the classical information obtained by the server in P is
independent of X.

2. Given the distribution of classical information described in 1, the state of the
quantum system obtained by the server in P is fixed and independent of X.

The definition is essentially saying that the server’s “view” of the protocol should
be independent of the input, when given the length of the input. This view consists,
on the one hand, of the classical information he receives, which is independent of X,
given L(X). On the other hand, for any fixed choice of this classical information, his
quantum state should also be independent of X, given L(X). Note that the definition
can be extended to the case of multiple servers as well. To provide intuition for how
a protocol can achieve blindness, we will briefly recap the main ideas from [35, 36].
We start by considering the quantum one-time pad.

Quantum One-Time Pad Suppose we have two parties, Alice and Bob, and Alice
wishes to send one qubit, ρ, to Bob such that all information about ρ is kept hidden
from a potential eavesdropper, Eve. For this to work, we will assume that Alice and
Bob share two classical random bits, denoted b1 and b2, that are known only to them.
Alice will then apply the operation Xb1Zb2 (the quantum one-time pad) to ρ, resulting
in the state Xb1Zb2ρZb2Xb1 , and send this state to Bob. If Bob then also applies Xb1Zb2

to the state he received, he will recover ρ. What happens if Eve intercepts the state
that Alice sends to Bob? Because Eve does not know the random bits b1 and b2, the
state that she will intercept will be:

1

4

∑

b1,b2∈{0,1}
Xb1Zb2ρZb2Xb1 (1)

However, it can be shown that for any single-qubit state ρ:

1

4

∑

b1,b2∈{0,1}
Xb1Zb2ρZb2Xb1 = I/2 (2)

In other words, the state that Eve intercepts is the totally mixed state, irrespective of
the original state ρ. But the totally mixed state is, by definition, the state of maximal
uncertainty. Hence, Eve cannot recover any information about ρ, regardless of her
computational power. Note, that for this argument to work, and in particular for (2)
to be true, Alice and Bob’s shared bits must be uniformly random. If Alice wishes to
send n qubits to Bob, then as long as Alice and Bob share 2n random bits, they can
simply perform the same procedure for each of the n qubits. Equation (2) generalizes
for the multi-qubit case so that for an n-qubit state ρ we have:

1

4n

∑

b1,b2∈{0,1}n
X(b1)Z(b2)ρZ(b2)X(b1) = I/2n (3)

Here, b1 and b2 are n-bit vectors, X(b) =
n⊗

i=1
Xb(i), Z(b) =

n⊗
i=1

Zb(i) and I is the

2n-dimensional identity matrix.

Theory Comput Syst

Childs’ Protocol for Blind Computation Now suppose Alice has some n-qubit
state ρ and wants a quantum circuit C to be applied to this state and the output to
be measured in the computational basis. However, she only has the ability to store n

qubits, prepare qubits in the |0〉 state, swap any two qubits, or apply a Pauli X or Z
to any of the n qubits. So in general, she will not be able to apply a general quan-
tum circuit C, or perform measurements. Bob, on the other hand, does not have these
limitations as he is a BQP machine and thus able to perform universal quantum com-
putations. How can Alice delegate the application of C to her state without revealing
any information about it, apart from its size, to Bob? The answer is provided by
Childs’ protocol [35]. Before presenting the protocol, recall that any quantum circuit,
C, can be expressed as a combination of Clifford operations and T gates. Addition-
ally, Clifford operations normalise Pauli gates. All of these notions are defined in the
appendix, Section 1.

First, Alice will one-time pad her state and send the padded state to Bob. As men-
tioned, this will reveal no information to Bob about ρ. Next, Alice instructs Bob to
start applying the gates in C to the padded state. Apart from the T gates, all other
operations in C will be Clifford operations, which normalise the Pauli gates.7 Thus, if
Alice’s padded state is X(b1)Z(b2)ρZ(b2)X(b1) and Bob applies the Clifford unitary
UC , the resulting state will be:

UCX(b1)Z(b2)ρZ(b2)X(b1)U
†
C = X(b′

1)Z(b′
2)UCρU

†
CZ(b′

2)X(b′
1) (4)

Here, b′
1 and b′

2 are linearly related to b1 and b2, meaning that Alice can compute
them using only xor operations. This gives her an updated pad for her state. If C
consisted exclusively of Clifford operations then Alice would only need to keep track
of the updated pad (also referred to as the Pauli frame) after each gate. Once Bob
returns the state, she simply undoes the one-time pad using the updated key, that she
computed, and recovers CρC†. Of course, this will not work if C contains T gates,
since, up to an overall phase, we have that:

TXa = XaSaT (5)

where S = T2 and is not a Pauli gate. In other words, if we try to commute the T
operation with the one-time pad we will get an unwanted S gate applied to the state.
Worse, the S will have a dependency on one of the secret pad bits for that particular
qubit. This means that if Alice asks Bob to apply an Sa operation she will reveal one
of her pad bits. Fortunately, as explained in [35], there is a simple way to remedy
this problem. After each T gate, Alice asks Bob to return the quantum state to her.
Suppose that Bob had to apply a T on qubit j . Alice then applies a new one-time pad
on that qubit. If the previous pad had no X gate applied to j , she will swap this qubit
with a dummy state that does not take part in the computation,8 otherwise she leaves
the state unchanged. She then returns the state to Bob and asks him to apply an S
gate to qubit j . Since this operation will always be applied, after a T gate, it does not

7In other words, for all Pauli operators P and all Clifford operators C, there exists a Pauli operator Q such
that CP = QC.
8For instance, her initial state ρ could contain a number of |0〉 qubits that is equal to the number of T gates
in the circuit.

Theory Comput Syst

reveal any information about Alice’s pad. Bob’s operation will therefore cancel the
unwanted S gate when this appears and otherwise it will act on a qubit which does
not take part in the computation. The state should then be sent back to Alice so that
she can undo the swap operation if it was performed. Once all the gates in C have
been applied, Bob is instructed to measure the resulting state in the computational
basis and return the classical outcomes to Alice. Since the quantum output was one-
time padded, the classical outcomes will also be one-time padded. Alice will then
undo the pad an recover her desired output.

While Childs’ protocol provides an elegant solution to the problem of quantum
computing on encrypted data, it has significant requirements in terms of Alice’s
quantum capabilities. If Alice’s input is fully classical, i.e. some state |x〉, where
x ∈ {0, 1}n, then Alice would only require a constant-size quantum memory. Even
so, the protocol requires Alice and Bob to exchange multiple quantum messages.
This, however, is not the case with UBQC which limits the quantum communication
to one quantum message sent from Alice to Bob at the beginning of the protocol. Let
us now briefly state the main ideas of that protocol.

Universal Blind Quantum Computation (UBQC) In UBQC the objective is to not
only hide the input (and output) from Bob, but also the circuit which will act on that
input9 [36]. As in the previous case, Alice would like to delegate to Bob the applica-
tion of some circuit C on her input (which, for simplicity, we will assume is classical).
This time, however, we view C as an MBQC computation.10 By considering some
universal graph state, |G〉, such as the brickwork state (see Fig. 17), Alice can convert
C into a description of |G〉 (the graph G) along with the appropriate measurement
angles for the qubits in the graph state. By the property of the universal graph state,
the graph G would be the same for all circuits C′ having the same number of gates
as C. Hence, if she were to send this description to Bob, it would not reveal to him
the circuit C, merely an upper bound on its size. It is, in fact, the measurement angles
and the ordering of the measurements (known as flow) that uniquely characterise C
[46]. But the measurement angles are chosen assuming all qubits in the graph state
were initially prepared in the |+〉 state. Since these are XY-plane measurements, as
explained in Section 1, the probabilities, for the two possible outcomes, depend only
on the difference between the measurement angle and the preparation angle of the
state, which is 0, in this case.11 Suppose instead that each qubit, indexed i, in the
cluster state, were instead prepared in the state

∣∣+θi

〉
. Then, if the original measure-

ment angle for qubit i was φi , to preserve the relative angles, the new value would
be φi + θi . If the values for θi are chosen at random, then they effectively act as a
one-time pad for the original measurement angles φi . This means that if Bob does
not know the preparation angles of the qubits and were instructed to measure them
at the updated angles φi + θi , to him, these angles would be indistinguishable from

9This is also possible in Childs’ protocol by simply encoding the description of the circuit C in the input
and asking Bob to run a universal quantum circuit. The one-time padded input that is sent to Bob would
then comprise of both the description of C as well as x, the input for C.
10For a brief overview of MBQC see Section 1.
11This remains true even if the qubits have been entangled with the CZ operation.

Theory Comput Syst

random, irrespective of the values of φi . He would, however, learn the measurement
outcomes of the MBQC computation. But there is a simple way to hide this infor-
mation as well. One can flip the probabilities of the measurement outcomes for a
particular state by performing a π rotation around Z axis. In other words, the updated
measurement angles will be δi = φi + θi + riπ , where ri is sampled randomly from
{0, 1}.

To recap, UBQC works as follows:

(1) Alice chooses an input x and a quantum computation C that she would like Bob
to perform on |x〉.

(2) She converts x and C into a pair (G, {φi}i), where |G〉 is an N-qubit universal
graph state (with an established ordering for measuring the qubits), N = O(|C|)
and {φi}i is the set of computation angles allowing for the MBQC computation
of C |x〉.

(3) She picks, uniformly at random, values θi , with i going from 1 to N , from the
set {0, π/4, 2π/4, ...7π/4} as well as values ri from the set {0, 1}.

(4) She then prepares the states
∣∣+θi

〉
and sends them to Bob, who is instructed to

entangle them, using CZ operations, according to the graph structure G.
(5) Alice then asks Bob to measure the qubits at the angles δi = φ′

i + θi + riπ and
return the measurement outcomes to her. Here, φ′

i is an updated version of φi

that incorporates corrections resulting from previous measurements, as in the
description of MBQC given in Section 1.

(6) After all the measurements have been performed, Alice undoes the ri one-time
padding of the measurement outcomes, thus recovering the true outcome of the
computation.

The protocol is illustrated schematically in Fig. 3, reproduced from [47] (the variables
b1, b2, b3 indicate measurement outcomes).

We can see that as long as Bob does not know the values of the θi and ri variables,
the measurements he is asked to perform, as well as their outcomes, will appear
totally random to him. The reason why Bob cannot learn the values of θi and ri from
the qubits prepared by Alice is due to the limitation, in quantum mechanics, that
one cannot distinguish between non-orthogonal states. In fact, a subsequent paper

Fig. 3 Universal blind quantum computation

Theory Comput Syst

by Dunjko and Kashefi shows that Alice can utilize any two non-overlapping, non-
orthogonal states in order to perform UBQC [48].

2 Prepare-and-Send Protocols

We start by reviewing QPIP protocols in which the only quantum capability of the
verifier is to prepare and send constant-size quantum states to the prover (no mea-
surement). The verifier must use this capability in order to delegate the application
of some BQP circuit, C, on an input |ψ〉.12 Through interaction with the prover, the
verifier will attempt to certify that the correct circuit was indeed applied on her input,
with high probability, aborting the protocol otherwise.

There are three major approaches that fit this description and we devote a
subsection to each of them:

1. Section 2.1: two protocols based on quantum authentication, developed by
Aharonov et al. [25, 26].

2. Section 2.2: a trap-based protocol, developed by Fitzsimons and Kashefi [27].
3. Section 2.3: a scheme based on repeating indistinguishable runs of tests and

computations, developed by Broadbent [28].

In the context of prepare-and-send protocols, it is useful to provide more refined
notions of completeness and soundness than the ones in the definition of a QPIP
protocol. This is because, apart from knowing that the verifier wishes to delegate a
BQP computation to the prover, we also know that it prepares a particular quantum
state and sends it to the prover to act with some unitary operation on it (corresponding
to the quantum circuit associated with the BQP computation). This extra information
allows us to define δ-correctness and ε-verifiability. We start with the latter:

Definition 2 (ε-verifiability) Consider a delegated quantum computation protocol
between a verifier and a prover and let the verifier’s quantum state be |ψ〉 |f lag〉,
where |ψ〉 is the input state to the protocol and |f lag〉 is a flag state denoting whether
the verifier accepts (|f lag〉 = |acc〉) or rejects (|f lag〉 = |rej 〉) at the end of the
protocol. Consider also the quantum channel Encs (encoding), acting on the veri-
fier’s state, where s denotes a private random string, sampled by the verifier from
some distribution p(s). Let Phonest denote the CPTP map corresponding to the hon-
est action of the prover in the protocol (i.e. following the instructions of the verifier)
acting on the verifier’s state. Additionally, define:

P s
incorrect = (I − ∣∣	s

out

〉〈
	s

out

∣∣) ⊗ ∣∣accs
〉〈
accs

∣∣ (6)

as a projection onto the orthogonal complement of the correct output:
∣∣	s

out

〉〈
	s

out

∣∣ = T rf lag(Phonest (Encs(|ψ〉 〈ψ | ⊗ |acc〉 〈acc〉))) (7)

12This input can be a classical bit string |x〉, though it can also be more general.

Theory Comput Syst

and on acceptance for the flag state:
∣∣accs

〉〈
accs

∣∣ = T rinput (Phonest (Encs(〈ψ〉 〈ψ | ⊗ 〈acc〉 〈acc〉))) (8)

We say that such a protocol is ε-verifiable (with 0 ≤ ε ≤ 1), if for any action P ,
of the prover, we have that:13

T r

(
∑

s

p(s)P s
incorrectP(Encs(|ψ〉〈ψ | ⊗ |acc〉〈acc|))

)
≤ ε (9)

Essentially, this definition says that the probability for the output of the proto-
col to be incorrect and the verifier accepting, should be bounded by ε. As a simple
mathematical statement we would write this as the joint distribution:

Pr(incorrect, accept) ≤ ε (10)

One could also ask whether Pr(incorrect |accept) should also be upper bounded.
Indeed, it would seem like this conditional distribution is a better match for our
intuition regarding the “probability of accepting an incorrect outcome”. However,
giving a sensible upper bound for the conditional distribution can be problematic. To
understand why, note that we can express the conditional distribution as:

Pr(incorrect |accept) = Pr(incorrect, accept)

P r(accept)
(11)

Now, it is true that if Pr(accept) is close to 1 and the joint distribution is upper
bounded, then the conditional distribution will also be upper bounded. Suppose how-
ever that Pr(accept) = 2−O(|C|). In other words, the probability of acceptance
is exponentially small in the size of the delegated computation.14 In this case, to
upper bound the conditional distribution, it must be that the joint probability is also
inverse exponential in the size of the computation. But this is a highly unusual con-
dition, for it would mean that the prover is more likely to deceive the verifier for
smaller computations, rather than for larger ones. Moreover, as we will see with
the presented protocols, it is typical for the joint probability to be upper bounded
by a quantity that is independent of the size of the computation. For this reason,
approaches to verification will either bound Pr(incorrect, accept), or provide a
bound for Pr(incorrect |accept) conditioned on the fact that Pr(accept) is close to
1 (see [18] for an example of this).

We now define δ-correctness:

13An alternative to (9) is: T D(ρout , p
∣∣	s

out

〉〈
	s

out

∣∣ ⊗ |accs〉〈accs | + (1 − p)ρ ⊗ |rej s〉 〈rej s〉) ≤ ε, for
some 0 ≤ p ≤ 1 and some density matrix ρ, where T D denotes trace distance. In other words, the
output state of the protocol, ρout , is close to a state which is a mixture of the correct output state with
acceptance and an arbitrary state and rejection. This definition can be more useful when one is interested in
a quantum output for the protocol (i.e. the prover returns a quantum state to the verifier). Such a situation
is particularly useful when composing verification protocols [19, 49–51].
14One could imagine this happening if, for instance, the prover provides random responses to the verifier
instead of performing the desired computation C.

Theory Comput Syst

Definition 3 (δ-correctness) Consider a delegated quantum computation protocol
between a verifier and a prover. Using the notation from Definition 2, and letting:

P s
correct = ∣∣	s

out

〉〈
	s

out

∣∣⊗ ∣∣accs
〉〈
accs

∣∣ (12)

be the projection onto the correct output and on acceptance for the flag state, we say
that such a protocol is δ-correct (with 0 ≤ δ ≤ 1), if for all strings s we have that:

T r
(
P s

correctPhonest (Encs(|ψ〉〈ψ | ⊗ |acc〉〈acc|))) ≥ δ (13)

This definition says that when the prover behaves honestly, the verifier obtains
the correct outcome, with high probability, for any possible choice of its secret
parameters.

If a prepare-and-send protocol has both δ-correctness and ε-verifiability, for some
δ > 0, ε < 1, it will also have completeness δ(1/2 + 1/poly(n)) and soundness ε

as a QPIP protocol, where n is the size of the input. The reason for the asymmetry
in completeness and soundness is that in the definition of δ-correctness we require
that the output quantum state of the protocol is δ-close to the output quantum state of
the desired computation. But the computation outcome is dictated by a measurement
of this state, which succeeds with probability at least 1/2 + 1/poly(n), from the
definition of BQP. Combining these facts leads to δ(1/2+1/poly(n)) completeness.
It follows that for this to be a valid QPIP protocol it must be that δ(1/2+1/poly(n))−
ε ≥ 1/poly(n), for all inputs. For simplicity, we will instead require δ/2 − ε ≥
1/poly(n), which implies the previous inequality. As we will see, for all prepare-
and-send protocols δ = 1. This condition is easy to achieve by simply designing
the protocol so that the honest behaviour of the prover leads to the correct unitary
being applied to the verifier’s quantum state. Therefore, the main challenge with these
protocols will be to show that ε ≤ 1/2 − 1/poly(n).

2.1 Quantum Authentication-Based Verification

This subsection is dedicated to the two protocols presented in [25, 26] by Aharonov
et al. These protocols are extensions of Quantum Authentication Schemes (QAS), a
security primitive introduced in [52] by Barnum et al. A QAS is a scheme for trans-
mitting a quantum state over an insecure quantum channel and being able to indicate
whether the state was corrupted or not. More precisely, a QAS involves a sender and
a receiver. The sender has some quantum state |ψ〉|f lag〉 that it would like to send
to the receiver over an insecure channel. The state |ψ〉 is the one to be authenticated,
while |f lag〉 is an indicator state used to check whether the authentication was per-
formed successfully. We will assume that |f lag〉 starts in the state |acc〉. It is also
assumed that the sender and the receiver share some classical key k, drawn from a
probability distribution p(k). To be able to detect the effects of the insecure channel
on the state, the sender will first apply some encoding procedure Enck thus obtain-
ing ρ = ∑

k p(k)Enck(|ψ〉|acc〉). This state is then sent over the quantum channel
where it can be tampered with by an eavesdropper resulting in a new state ρ ′. The
receiver, will then apply a decoding procedure to this state, resulting in Deck(ρ

′)

Theory Comput Syst

and decide whether to accept or reject by measuring the flag subsystem.15 Similar to
verification, this protocol must satisfy two properties:

1. δ-correctness. Intuitively this says that if the state sent through the channel was
not tampered with, then the receiver should accept with high probability (at least
δ), irrespective of the used keys. More formally, for 0 ≤ δ ≤ 1, let:

Pcorrect = |ψ〉〈ψ | ⊗ |acc〉〈acc|
be the projector onto the correct state |ψ〉 and on acceptance for the flag state.
Then, it must be the case that for all keys k:

T r (PcorrectDeck(Enck(|ψ〉〈ψ | ⊗ |acc〉〈acc|))) ≥ δ

2. ε-security. This property states that for any deviation that the eavesdropper
applies on the sent state, the probability that the resulting state is far from ideal
and the receiver accepts is small. Formally, for 0 ≤ ε ≤ 1, let:

Pincorrect = (I − |ψ〉〈ψ |) ⊗ |acc〉〈acc|
be the projector onto the orthogonal complement of the correct state |ψ〉, and on
acceptance, for the flag state. Then, it must be the case that for any CPTP action,
E , of the eavesdropper, we have:

T r

(
Pincorrect

∑

k

p(k)Deck(E(Enck(|ψ〉〈ψ | ⊗ |acc〉〈acc|)))
)

≤ ε

To make the similarities between QAS and prepare-and-send protocols more
explicit, suppose that, in the above scheme, the receiver were trying to authenticate
the state U |ψ〉 instead of |ψ〉, for some unitary U . In that case, we could view the
sender as the verifier at the beginning of the protocol, the eavesdropper as the prover
and the receiver as the verifier at the end of the protocol. This is illustrated in Fig. 4,
reproduced from [47]. If one could therefore augment a QAS scheme with the abil-
ity of applying a quantum circuit on the state, while keeping it authenticated, then
one would essentially have a prepare-and-send verification protocol. This is what is
achieved by the two protocols of Aharonov et al. (Fig. 4).

Clifford-QAS VQC The first protocol, named Clifford QAS-based Verifiable Quan-
tum Computing (Clifford-QAS VQC) is based on a QAS which uses Clifford
operations in order to perform the encoding procedure. Strictly speaking, this proto-
col is not a prepare-and-send protocol, since, as we will see, it involves the verifier
performing measurements as well. However, it is a precursor to the second protocol

15The projectors for the measurement are assumed to be Pacc = |acc〉〈acc|, for acceptance and Prej =
I − |acc〉〈acc| for rejection.

Theory Comput Syst

Fig. 4 QAS-based verification

from [25, 26], which is a prepare-and-send protocol. Hence, why we review the
Clifford-QAS VQC protocol here.

Let us start by explaining the authentication scheme first. As before, let |ψ〉 |f lag〉
be the state that the sender wishes to send to the receiver and k be their shared random
key. We will assume that |ψ〉 is an n-qubit state, while |f lag〉 is an m-qubit state.
Let t = n + m and Ct be the set of t-qubit Clifford operations16 We also assume that
each possible key, k, can specify a unique t-qubit Clifford operation, denoted Ck .17

The QAS works as follows:

(1) The sender performs the encoding procedure Enck . This consists of applying
the Clifford operation Ck to the state |ψ〉|acc〉.

(2) The state is sent through the quantum channel.
(3) The receiver applies the decoding procedure Deck which consists of applying

C
†
k to the received state.

(4) The receiver measures the f lag subsystem and accepts if it is in the |acc〉 state.

We can see that this protocol has correctness δ = 1, since, the sender and receiver’s
operations are exact inverses of each other and, when there is no intervention from
the eavesdropper, they will perfectly cancel out. It is also not too difficult to show
that the protocol achieves security ε = 2−m. We will include a sketch proof of this
result as all other proofs of security, for prepare-and-send protocols, rely on similar
ideas. Aharonov et al start by using the following lemma:

16Note that:
Ct = {U ∈ U(2t)|σ ∈ Pt =⇒ UσU† ∈ Pt } (14)

where:
Pt = {α σ1 ⊗ ... ⊗ σt |α ∈ {+1,−1,+i,−i}, σi ∈ {I,X,Y, Z}} (15)

is the t-qubit Pauli group. See Section 1 for more details.
17Hence |k| = O(log(|Ct |)).

Theory Comput Syst

Lemma 1 (Clifford twirl) Let P1, P2 be two operators from the n-qubit Pauli group,
such that P1 = P2.18 For any n-qubit density matrix ρ it is the case that:

∑

C∈Cn

C†P1CρC†P2C = 0 (16)

To see how this lemma is applied, recall that any CPTP map admits a Kraus
decomposition, so we can express the eavesdropper’s action as:

E(ρ) =
∑

i

KiρK
†
i (17)

where, {Ki}i is the set of Kraus operators, satisfying:
∑

i

K
†
i Ki = I (18)

Additionally, recall that the n-qubit Pauli group is a basis for all 2n × 2n matrices,
which means that we can express each Kraus operator as:

Ki =
∑

j

αijPj (19)

where j ranges over all indices for n-qubit Pauli operators and {αij }i,j is a set of
complex numbers such that: ∑

ij

αijα
∗
ij = 1 (20)

For simplicity, assume that the phase information of each Pauli operator, i.e. whether
it is +1, −1, +i or −i, is absorbed in the αij terms. One can then re-express the
eavesdropper’s deviation as:

E(ρ) =
∑

ijk

αijα
∗
ikPjρPk (21)

We would now like to use Lemma 1 to see how this deviation affects the encoded
state. Given that the encoding procedure involves applying a random Clifford opera-
tion to the initial state, which we will denote |	in〉 = |ψ〉 |acc〉, the state received by
the eavesdropper will be:

ρ = 1

|Ct |
∑

l

Cl |	in〉〈	in|C†
l (22)

Acting with E on this state and using (21) yields:

E(ρ) = 1

|Ct |
∑

ijkl

αij α
∗
ikPjCl |	in〉〈	in|C†

l Pk (23)

18Technically, what is required here is that |P1| = |P2|, since global phases are ignored.

Theory Comput Syst

The receiver takes this state and applies the decoding operation, which involves
inverting the Clifford that was applied by the sender. This will produce the state:

1

|Ct |
∑

ijkl

αijα
∗
ikC

†
l PjCl |	in〉〈	in|C†

l PkCl (24)

Finally, using Lemma 1 we can see that all terms which act with different Pauli
operations on both sides (i.e. j = k) will vanish, resulting in:

σ = 1

|Ct |
∑

ij l

αijα
∗
ijC

†
l PjCl |	in〉〈	in|C†

l PjCl (25)

Let us take a step back and understand what happened. We saw that any general
map can be expressed as a combination of Pauli operators acting on both sides of the
target state, ρ. Importantly, the Pauli operators on both sides needed not be equal.
However, if the target state is an equal mixture of Clifford terms acting on some other
state (in our case |	in〉 〈	in〉), which are then “undone” by the decoding procedure,
the Clifford twirl lemma makes all non-equal Pauli terms vanish. In the resulting
state, σ , we notice that each Pauli term is conjugated by Clifford operators from the
set Ct . We know that conjugating a Pauli matrix by a Clifford operator results in a
new Pauli matrix. Moreover, we know that for all j it is the case that:

∑

l

C
†
l PjCl =

∑

P∈Pt

P (26)

In other words, averaging over the Clifford group results in an equal mixture of
all Pauli operations. From this and since αijα

∗
ij = |αij |2 is a positive real number

and
∑

ij αijα
∗
ij = 1, the resulting state is a uniform convex combination of Pauli

operators acting on the initial state. Mathematically, this means:

σ = β |	in〉 〈	in〉 + 1 − β

4t − 1

∑

i,Pi =I

Pi |	in〉〈	in|Pi (27)

where 0 ≤ β ≤ 1.
The last element in the proof is to compute T r(Pincorrectσ). Since the first term

in the mixture is the ideal state, we will be left with:

T r(Pincorrectσ) = 1 − β

4t − 1

∑

i,Pi =I

T r(PincorrectPi |	in〉〈	in|Pi) (28)

The terms in the summation will be non-zero whenever Pi acts as identity on the flag
subsystem. The number of such terms can be computed to be exactly 4n2m − 1 and
using the fact that t = m + n and 1 − β ≤ 1, we have:

T r(Pincorrectσ) ≤ (1 − β)
4n2m − 1

4m+n
≤ 1

2m
(29)

concluding the proof.
As mentioned, in all prepare-and-send protocols we assume that the verifier will

prepare some state |ψ〉 on which it wants to apply a quantum circuit denoted C. Since
we are assuming that the verifier has a constant-size quantum device, the state |ψ〉

Theory Comput Syst

will be a product state, i.e. |ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ ... ⊗ |ψn〉. For simplicity, assume
each |ψi〉 is one qubit, though any constant number of qubits is allowed. In Clifford-
QAS VQC the verifier will use the prover as an untrusted quantum storage device.
Specifically, each |ψi〉, from |ψ〉, will be paired with a constant-size flag system in
the accept state, |acc〉, resulting in a block of the form |blocki〉 = |ψi〉|acc〉. Each
block will be encoded, by having a random Clifford operation applied on top of it.
The verifier prepares these blocks, one at a time, for all i ∈ {1, ...n}, and sends them
to the prover. The prover is then asked to return pairs of blocks to the verifier so that
she may apply gates from C on them (after undoing the Clifford operations). The
verifier then applies new random Clifford operations on the blocks and sends them
back to the prover. The process continues until all gates in C have been applied.

But what if the prover corrupts the state or deviates in some way? This is where the
QAS enters the picture. Since each block has a random Clifford operation applied, the
idea is to have the verifier use the Clifford QAS scheme to ensure that the quantum
state remains authenticated after each gate in the quantum circuit is applied. In other
words, if the prover attempts to deviate at any point resulting in a corrupted state,
this should be detected by the authentication scheme. Putting everything together, the
protocol works as follows:

(1) Suppose the input state that the verifier intends to prepare is |ψ〉 = |ψ1〉 ⊗
|ψ2〉 ⊗ ... ⊗ |ψn〉, where each |ψi〉 is a one qubit state.19 Also let C be quantum
circuit that the verifier wishes to apply on |ψ〉. The verifier prepares (one block
at a time) the state |ψ〉 |f lag〉 = |block1〉 ⊗ |block2〉 ⊗ ... ⊗ |blockn〉, where
|blocki〉 = |ψi〉 |acc〉 and each |acc〉 state consists of a constant number m of
qubits. Additionally let the size of each block be t = m + 1.

(2) The verifier applies a random Clifford operation, from the set Ct on each block
and sends it to the prover.

(3) The verifier requests a pair of blocks, (|blocki〉,
∣∣blockj

〉
), from the prover, in

order to apply a gate from C on the corresponding qubits, (|ψi〉 ,
∣∣ψj)

〉
. Once

the blocks have been received, the verifier undoes the random Clifford opera-
tions and measures the flag registers, aborting if these are not in the |acc〉 state.
Otherwise, the verifier performs the gate from C, applies new random Clifford
operations on each block and sends them back to the prover. This step repeats
until all gates in C have been performed.

(4) Once all gates have been performed, the verifier requests all the blocks (one by
one) in order to measure the output. As in the previous step, the verifier will
undo the Clifford operations first and measure the flag registers, aborting if any
of them are not in the |acc〉 state.

We can see that the security of this protocol reduces to the security of the Clifford
QAS. Moreover, it is also clear that if the prover behaves honestly, then the verifier
will obtain the correct output state exactly. Hence:

19This can simply be the state |x〉, if the verifier wishes to apply C on the classical input x. However, the
state can be more general which is why we are not restricting it to be |x〉.

Theory Comput Syst

Theorem 1 For a fixed constant m > 0, Clifford-QAS VQC is a prepare-and-send
QPIP protocol having correctness δ = 1 and verifiability ε = 2−m.

Poly-QAS VQC The second protocol in [25, 26], is referred to as Polynomial
QAS-based Verifiable Quantum Computing (Poly-QAS VQC). It improves upon the
previous protocol by removing the interactive quantum communication between the
verifier and the prover, reducing it to a single round of quantum messages sent at the
beginning of the protocol. To encode the input, this protocol uses a specific type of
quantum error correcting code known as a polynomial CSS code [53]. We will not
elaborate on the technical details of these codes as that is beyond the scope of this
review. We only mention a few basic characteristics which are necessary in order
to understand the Poly-QAS VQC protocol. The polynomial CSS codes operate on
qudits instead of qubits. A q-qudit is simply a quantum state in a q-dimensional
Hilbert space. The generalized computational basis for this space is given by {|i〉}i≤q .
The code takes a q-qudit, |i〉, as well as |0〉 states, and encodes them into a state of
t = 2d + 1 qudits as follows:

E|i〉|0〉⊗t−1 =
∑

p,deg(p)≤d,p(i)=0

|p(α1)〉|p(α2)〉...|p(αt)〉 (30)

where E is the encoding unitary, p ranges over polynomials of degree less than d

over the field Fq of integers mod q, and {αj }j≤t is a fixed set of m non-zero values
from Fq (it is assumed that q > t). The code can detect errors on at most d qudits
and can correct errors on up to � d

2 � qudits (hence � d
2 � is the weight of the code).

Importantly, the code is transversal for Clifford operations. Aharonov et al consider
a slight variation of this scheme called a signed polynomial code, which allows one
to randomize over different polynomial codes. The idea is to have the encoding (and
decoding) procedure also depend on a key k ∈ {−1, +1}t as follows:

Ek|i〉|0〉⊗t−1 =
∑

p,deg(p)≤d,p(i)=0

|k1p(α1)〉|k2p(α2)〉...|ktp(αt)〉 (31)

The signed polynomial CSS code can be used to create a simple authentication
scheme having security ε = 2−d . This works by having the sender encode the state
|	in〉 = |ψ〉|0〉⊗t−1, where |ψ〉 is a qudit to be authenticated, in the signed code and
then one-time padding the encoded state. Note that the |0〉⊗t−1 part of the state is
acting as a flag system. We are assuming that the sender and the receiver share both
the sign key of the code and the key for the one-time padding. The one-time padded
state is then sent over the insecure channel. The receiver undoes the pad and applies
the inverse of the encoding operation. It then measures the last t −1 qudits, accepting
if and only if they are all in the |0〉 state. Proving security is similar to the Clifford
QAS and relies on two results:

Theory Comput Syst

Lemma 2 (Pauli twirl) Let P1, P2 be two operators from the n-qudit Pauli group,
denoted Pn, such that P1 = P2. For any n-qudit density matrix ρ it is the case that:

∑

Q∈Pn

Q†P1QρQ†P2Q = 0 (32)

This result is identical to the Clifford twirl lemma, except the Clifford operations
are replaced with Pauli operators.20 The result is also valid for qubits.

Lemma 3 (Signed polynomial code security) Let ρ = |ψ〉〈ψ | ⊗ |0〉〈0|⊗t−1, be a
state which will be encoded in the signed polynomial code, P = (I − |ψ〉〈ψ |) ⊗
|0〉 〈0〉⊗t−1, be a projector onto the orthogonal complement of |ψ〉 and on |0〉t−1, and
Q ∈ Pt\{I } be a non-identity Pauli operation on t qudits. Then it is the case that:

1

2t

∑

k∈{−1,+1}t
T r
(
P E

†
kQEk ρ E

†
kQEk

)
≤ 1

2t−1
(33)

Using these two results, and the ideas from the Clifford QAS scheme, it is not dif-
ficult to prove the security of the above described authentication scheme. As before,
the eavesdropper’s map is decomposed into Kraus operators which are then expanded
into Pauli operations. Since the sender’s state is one-time padded (and the receiver
will undo the one-time pad), the Pauli twirl lemma will turn the eavesdropper’s
deviation into a convex combination of Pauli deviations:

1

2t

∑

k∈{−1,+1}t

∑

Q∈Pt

βQ QEk|	in〉〈	in|E†
kQ

† (34)

which can be split into the identity and non-identity Pauli terms:

1

2t

∑

k∈{−1,+1}t

⎛

⎝βIEk|	in〉〈	in|E†
k +

∑

Q∈Pt\{I }
βQ QEk |	in〉 〈	in〉 E

†
kQ

†

⎞

⎠ (35)

where βQ are positive real coefficients satisfying:
∑

Q∈Pn

βQ = 1 (36)

The receiver takes this state and applies the inverse encoding operation, resulting in:

ρ = 1

2t

∑

k∈{−1,+1}t

⎛

⎝βI |	in〉〈	in| +
∑

Q∈Pt\{I }
βQ QEk|	in〉〈	in|E†

kQ
†

⎞

⎠ (37)

20Note that by abuse of notation we assume Pn refers to the group of generalized Pauli operations over
qudits, whereas, typically, one uses this notation to refer to the Pauli group of qubits.

Theory Comput Syst

But now we know that ε = T r(Pincorrectρ), and using Lemma 3 together with the
facts that T r(Pincorrect |	in〉〈	in|) = 0 and that the βQ coefficients sum to 1 we end
up with:

ε ≤ 1

2t−1
≤ 1

2d
(38)

There are two more aspects to be mentioned before giving the steps of the
Poly-QAS VQC protocol. The first is that the encoding procedure for the signed
polynomial code is implemented using the following interpolation operation:

Dk|i〉|k2p(α2)〉...|kd+1p(αd+1)〉|0〉⊗d = |k1p(α1)〉...|ktp(αt)〉 (39)

The inverse operation D
†
k can be though of as a decoding of one term from the super-

position in (31). Akin to Lemma 3, the signed polynomial code has the property that,
when averaging over all sign keys, k, if such a term had a non-identity Pauli applied
to it, when decoding it with D

†
k , the probability that its last d qudits are not |0〉 states

is upper bounded by 2−d .
The second aspect is that, as mentioned, the signed polynomial code is transver-

sal for Clifford operations. However, in order to apply non-Clifford operations it is
necessary to measure encoded states together with so-called magic states (which will
also be encoded). This manner of performing gates is known as gate teleportation
[54]. The target state, on which we want to apply a non-Clifford operation, and the
magic state are first entangled using a Clifford operation and then the magic state is
measured in the computational basis. The effect of the measurement is to have a non-
Clifford operation applied on the target state, along with Pauli errors which depend
on the measurement outcome. For the non-Clifford operations, Aharonov et al use
Toffoli gates.21

Given all of these, the Poly-QAS VQC protocol works as follows:

(1) Suppose the input state that the verifier intends to prepare is |ψ〉 = |ψ1〉⊗|ψ2〉⊗
... ⊗ |ψn〉, where each |ψi〉 is a q-qudit. Also suppose that the verifier wishes
to apply the quantum circuit C on |ψ〉, which contains L Toffoli gates. The
verifier prepares the state |	in〉 = |ψ1〉 |0〉t−1⊗|ψ2〉 |0〉t−1⊗...⊗|ψn〉 |0〉t−1 ⊗
|M1〉 |0〉3t−3 ⊗ ... ⊗ |ML〉 |0〉3t−3, where t = 2d + 1 and each |Mi〉 is a 3-qudit
magic state, used for performing Toffoli gates. Groups of t qubits will comprise
a block as follows. The first n blocks are simply |blocki〉 = |ψi〉 |0〉t−1, with
i ∈ {1, ..., n}. Next, we have the states of the form |Mi〉 |0〉3t−3 which consist of
3 blocks, each. Each block, from such a state, will comprise of one qudit from
|Mi〉 and a |0〉t−1 state. Note that we can no longer represent these blocks as
pure states, since the 3 qudits of a |Mi〉 state are entangled. So, to summarize,
each block contains one qudit from either the state |ψ〉 or a magic state |Mi〉,
together with a flag system, |0〉t−1.

(2) The verifier encodes each block in a signed polynomial code with a randomly
chosen key k ∈ {−1, +1}t (the same key for each block) and then quantum
one-time pads each block (using different keys for the padding of each block).

21See Section 1 for the definition of the Toffoli gate.

Theory Comput Syst

Fig. 5 Poly-QAS VQC

The blocks are prepared and encoded in sequence (the verifier has the ability to
process 3 blocks, or 3t qudits, at a time) and then sent to the prover.

(3) When applying Clifford operations, the verifier simply asks the prover to apply
the gates in a transversal fashion. Since Clifford operations normalise Pauli
operators, the verifier then updates the one-time pad keys similar to Childs’
protocol (see Section 1.1).

(4) When applying a Toffoli gate, the verifier asks the prover to measure 3 blocks,
comprising a magic state, in the computational basis and report the measure-
ment outcomes. It is assumed that the magic state was entangled, using a
Clifford operation, with 3 target blocks on which the Toffoli gate is to be
applied. The verifier undoes the (classical) one-time padding of the measure-
ment outcomes and expects each of the 3 groups of measurement outcomes
(associated with each of the 3 blocks) to be of the form [k1p(α1), ..., ktp(αt)].
The verifier then takes these classical strings and turns them into states of the
form |φ〉 = |k1p(α1)〉 ... |ktp(αt)〉 (using her constant-sized quantum com-
puter).22 She then applies D

†
k on each of these |φ〉 states and checks that the last

d qudits, of each state, are |0〉, aborting otherwise. Assuming not-abort, the ver-
ifier instructs the prover to perform the appropriate Pauli corrections resulting
from the gate teleportation.

(5) Once all gates have been performed, the verifier instructs the prover to measure
all blocks in the computational basis. As in step 4, the verifier will then de-one-
time pad the outcomes, apply D

†
k to each state of the form |φ〉 (prepared from

these outcomes), and check that the last d qudits are |0〉, aborting otherwise.

The protocol is schematically illustrated in Fig. 5.

22Note that no actual quantum state was returned to the verifier by the prover. Instead, she locally prepared
a quantum state from the classical outcomes reported by the prover.

Theory Comput Syst

As with the previous protocol, the security is based on the security of the authenti-
cation scheme. However, there is a significant difference. In the Clifford-QAS VQC
protocol, one could always assume that the state received by the verifier was the cor-
rectly encoded state with a deviation on top that was independent of this encoding.
However, in the Poly-QAS VQC protocol, the quantum state is never returned to
the verifier and, moreover, the prover’s instructed actions on this state are adaptive
based on the responses of the verifier. Since the prover is free to deviate at any point
throughout the protocol, if we try to commute all of his deviations to the end (i.e.
view the output state as the correct state resulting from an honest run of the protocol,
with a deviation on top that is independent of the secret parameters), we find that the
output state will have a deviation on top which depends on the verifier’s responses.
Since the verifier’s responses depend on the secret keys, we cannot directly use the
security of the authentication scheme to prove that the protocol is 2−d -verifiable.

The solution, as explained in [26], is to consider the state of the entire protocol
comprising of the prover’s system, the verifier’s system and the transcript of all clas-
sical messages exchanged during the protocol. For a fixed interaction transcript, the
prover’s attacks can be commuted to the end of the protocol. This is because, if the
transcript is fixed, there is no dependency of the prover’s operations on the verifier’s
messages. We simply view all of his operations as unitaries acting on the joint sys-
tem of his private memory, the input quantum state and the transcript. One can then
use Lemma 2 and Lemma 3 to bound the projection of this state onto the incorrect
subspace with acceptance. The whole state, however, will be a mixture of all possi-
ble interaction transcripts, but since each term is bounded and the probabilities of the
terms in the mixture must add up to one, it follows that the protocol is 2−d -verifiable:

Theorem 2 For a fixed constant d > 0, Poly-QAS VQC is a prepare-and-send QPIP
protocol having correctness δ = 1 and verifiability ε = 2−d .

Let us briefly summarize the two protocols in terms of the verifier’s resources.
In both protocols, if one fixes the security parameter, ε, the verifier must have a
O(log(1/ε))-size quantum computer. Additionally, both protocols are interactive
with the total amount of communication (number of messages times the size of each
message) being upper bounded by O(|C| · log(1/ε)), where C is the quantum circuit
to be performed.23 However, in Clifford-QAS VQC, this communication is quantum
whereas in Poly-QAS VQC only one quantum message is sent at the beginning of
the protocol and the rest of the interaction is classical.

Before ending this subsection, we also mention the result of Broadbent et al.
from [55]. This result generalises the use of quantum authentication codes for
achieving verification of delegated quantum computation (not limited to decision
problems). Moreover, the authors prove the security of these schemes in the universal
composability framework, which allows for secure composition of cryptographic
protocols and primitives [56].

23To be precise, the communication in the Poly-QAS VQC scheme is O((n + L) · log(1/ε)), where n is
the size of the input and L is the number of Toffoli gates in C.

Theory Comput Syst

2.2 Trap-Based Verification

In this subsection we discuss Verifiable Universal Blind Quantum Computing
(VUBQC), which was developed by Fitzsimons and Kashefi in [27]. The protocol
is written in the language of MBQC and relies on two essential ideas. The first is
that an MBQC computation can be performed blindly, using UBQC, as described in
Section 1.1. The second is the idea of embedding checks or traps in a computation
in order to verify that it was performed correctly. Blindness will ensure that these
checks remain hidden and so any deviation by the prover will have a high chance
of triggering a trap. Notice that this is similar to the QAS-based approaches where
the input state has a flag subsystem appended to it in order to detect deviations and
the whole state has been encoded in some way so as to hide the input and the flag
subsystem. This will lead to a similar proof of security. However, as we will see, the
differences arising from using MBQC and UBQC lead to a reduction in the quan-
tum resources of the verifier. In particular, in VUBQC the verifier requires only the
ability to prepare single qubit states, which will be sent to the prover, in contrast to
the QAS-based protocols which required the verifier to have a constant-size quantum
computer.

Recall the main steps for performing UBQC. The client, Alice, sends qubits
of the form

∣∣+θi

〉
to Bob, the server, and instructs him to entangle them accord-

ing to a graph structure, G, corresponding to some universal graph state. She then
asks him to measure qubits in this graph state at angles δi = φ′

i + θi + riπ ,
where φ′

i is the corrected computation angle and riπ acts a random Z operation
which flips the measurement outcome. Alice will use the measurement outcomes,
denoted bi , provided by Bob to update the computation angles for future measure-
ments. Throughout the protocol, Bob’s perspective is that the states, measurements
and measurement outcomes are indistinguishable from random. Once all measure-
ments have been performed, Alice will undo the ri padding of the final outcomes
and recover her output. Of course, UBQC does not provide any guarantee that
the output she gets is the correct one, since Bob could have deviated from her
instructions.

Transitioning to VUBQC, we will identify Alice as the verifier and Bob as the
prover. To augment UBQC with the ability to detect malicious behaviour on the
prover’s part, the verifier will introduce traps in the computation. How will she do
this? Recall that the qubits which will comprise |G〉 need to be entangled with the CZ
operation. Of course, for XY-plane states CZ does indeed entangle the states. How-
ever, if either qubit, on which CZ acts, is |0〉 or |1〉, then no entanglement is created.
So suppose that we have a |+θ 〉 qubit whose neighbours, according to G, are com-
putational basis states. Then, this qubit will remain disentangled from the rest of the
qubits in |G〉. This means that if the qubit is measured at its preparation angle, the
outcome will be deterministic. The verifier can exploit this fact to certify that the
prover is performing the correct measurements. Such states are referred to as trap
qubits, whereas the |0〉, |1〉 neighbours are referred to as dummy qubits. Importantly,

Theory Comput Syst

as long as G’s structure remains that of a universal graph state24 and as long as the
dummy qubits and the traps are chosen at random, adding these extra states as part of
the UBQC computation will not affect the blindness of the protocol. The implication
of this is that the prover will be completely unaware of the positions of the traps and
dummies. The traps effectively play a role that is similar to that of the flag subsys-
tem in the authentication-based protocols. The dummies, on the other hand, are there
to ensure that the traps do not get entangled with the rest of qubits in the graph state.
They also serve another purpose. When a dummy is in a |1〉 state, and a CZ acts on it
and a trap qubit, in the state |+θ 〉, the effect is to “flip” the trap to |−θ 〉 (alternatively
|−θ 〉 would have been flipped to |+θ 〉). This means that if the trap is measured at its
preparation angle, θ , the measurement outcome will also be flipped, with respect to
the initial preparation. Conversely, if the dummy was initially in the state |0〉, then
no flip occurs. Traps and dummies, therefore, serve to also certify that the prover is
performing the CZ operations correctly. Thus, by using the traps (and the dummies),
the verifier can check both the prover’s measurements and his entangling operations
and hence verify his MBQC computation.

We are now ready to present the steps of VUBQC:

(1) The verifier chooses an input x and a quantum computation C that she would
like the prover to perform on |x〉.25

(2) She converts x and C into a pair (G, {φi}i), where |G〉 is an N-qubit univer-
sal graph state (with an established ordering for measuring the qubits), which
admits an embedding of T traps and D dummies. We therefore have that
N = T +D +Q, where Q = O(|C|) is the number of computation qubits used
for performing C and {φi}i≤Q is the associated set of computation angles.26

(3) Alice picks, uniformly at random, values θi , with i going from 1 to T +Q, from
the set {0, π/4, 2π/4, ...7π/4} as well as values ri from the set {0, 1} for the
trap and computation qubits.

(4) She then prepares the T + Q states
∣∣+θi

〉
, as well as D dummy qubits which

are states chosen at random from {|0〉, |1〉}. All these states are sent to Bob,
who is instructed to entangle them, using CZ operations, according to the graph
structure G.

(5) Alice then asks Bob to measure the qubits as follows: computation qubits will
be measured at δi = φ′

i + θi + riπ , where φ′
i is an updated version of φi that

incorporates corrections resulting from previous measurements; trap qubits will

24Note that adding dummy qubits into the graph will have the effect of disconnecting qubits that would oth-
erwise have been connected. It is therefore important that the chosen graph state allows for the embedding
of traps and dummies so that the desired computation can still be performed. For instance, the brickwork
state from Section 1 allows for only one trap qubit to be embedded, whereas other graph states allows for
multiple traps. See [27, 57] for more details.
25As in the previous protocols, this need not be a classical input and the verifier could prepare an input of
the form |ψ〉 = |ψ1〉 ⊗ ... ⊗ |ψn〉.
26Note that the number of traps, T , and the number of dummies, D, are related, since each trap should
have only dummy neighbours in |G〉.

Theory Comput Syst

Fig. 6 Verifiable universal blind quantum computing

be measured at δi = θi + riπ ; dummy qubits are measured at randomly chosen
angles from {0, π/4, 2π/4, ...7π/4}. This step is interactive as Alice needs to
update the angles of future measurements based on past outcomes. The number
of rounds of interaction is proportional to the depth of C. If any of the trap
measurements produce incorrect outcomes, Alice will abort upon completion
of the protocol.

(6) Assuming all trap measurements succeeded, after all the measurements have
been performed, Alice undoes the ri one-time padding of the measurement
outcomes, thus recovering the outcome of the computation.

The protocol is illustrated schematically in Fig. 6, where all the parameters have
been labelled by their position, (i, j), in a rectangular cluster state.

One can see that VUBQC has correctness δ = 1, since if the prover behaves hon-
estly then all trap measurements will produce the correct result and the computation
will have been performed correctly. What about verifiability? We will first answer
this question for the case where there is a single trap qubit (T = 1) at a uniformly
random position in |G〉, denoted

∣∣+θt

〉
. Adopting a similar notation to that from [27],

we let:
Bj (ν) =

∑

s

pν,j (s)|s〉〈s| ⊗ ρs
ν,j (40)

denote the outcome density operator of all classical and quantum messages
exchanged between the verifier and the prover throughout the protocol, excluding
the last round of measurements (which corresponds to measuring the output of the
computation). Additionally, ν denotes the set of secret parameters of Alice (i.e. the
positions of the traps and dummies as well as the sets {φi}i , {θi}i and {ri}i); j

ranges over the possible strategies of the prover27 with j = 0 corresponding to the

27Since the prover is unbounded and is free to choose any of the uncountably many CPTP strategies, j

should be thought more of as a symbolic parameter indicating that there is a dependence on the prover’s
strategy and whether or not this strategy is the ideal one.

Theory Comput Syst

honest strategy; s is a binary vector which ranges over all possible corrected val-
ues of the measurement outcomes sent by the prover; lastly, ρs

ν,j is the state of the
unmeasured qubits, representing the output state of the computation (prior to the final
measurement). To match Definition 2, one also considers:

P ν
incorrect = (I − C|x〉〈x|C†) ⊗ ∣∣+ν

θt

〉〈+ν
θt

∣∣ (41)

to be the projection onto the orthogonal complement of the correct output together
with the trap state being projected onto acceptance. The dependence on ν, for the trap
qubit, arises because the acceptance outcome depends on the states of the dummy
neighbors for that qubit. This is because if one of the dummies is |1〉, the CZ operation
has the effect of flipping

∣∣+θt

〉
to
∣∣−θt

〉
. Additionally, ν also encodes the position of

this trap, in the graph state, as well as the Z flip specified by the ri parameter, for
i = t . One then needs to find an ε such that:

T r

(
∑

ν

p(ν)P ν
incorrectBj (ν)

)
≤ ε (42)

This is done in a manner similar to the proof of security for the Poly-QAS VQC
scheme of the previous section.28 Specifically, one fixes the interaction transcript for
the protocol. This just means fixing the measurement angles δi , and then consider-
ing all possible transcripts compatible with the fixed angles. One can do this because
UBQC guarantees that the prover learns nothing from the interaction except for, at
most, an upper bound on |C|. This means that there will be multiple transcripts com-
patible with the same values for the δi angles. It also means that any deviation that
the prover performs is independent of the secret parameters of the verifier (though it
can depend on the δi angles) and can therefore be commuted to the end of the proto-
col. The outcome density operator Bj (ν) can then be expressed as the ideal outcome
with a CPTP deviation, Ej , on top, that is independent of ν:

Bj (ν) = Ej (B0(ν)) (43)

The deviation Ej is then decomposed into Kraus operators which, in turn, are
decomposed into Pauli operators leading to:

Bj (ν) =
∑

k,l,m

αkl(j)α∗
km(j) PlB0(ν)Pm (44)

where αkl(j) (and their conjugates) are the complex coefficients for the Pauli oper-
ators. This summation can be split into the terms that act as identity on B0(ν) and

28Note that the security proof for Poly-QAS VQC was in fact inspired from that of the VUBQC protocol,
as mentioned in [26].

Theory Comput Syst

those that do not. Suppose the terms that act trivially have weight 0 ≤ β ≤ 1, we
then have:

Bj (ν) = βB0(ν) + (1 − β)
∑

k,l,m

αkl(j)α∗
km(j) PlB0(ν)Pm (45)

where the second term is summing over Pauli operators that act non-trivially. We
use this to compute the probability of accepting an incorrect outcome, noting that
P ν

incorrectB0(ν) = 0:

T r

(
∑

ν

p(ν)P ν
incorrectBj (ν)

)

= (1 − β)T r

⎛

⎝
∑

ν

∑

k,l,m

p(ν)P ν
incorrect (αkl(j)α∗

km(j) PlB0(ν)Pm)

⎞

⎠ (46)

We now use the fact that P ν
incorrect = (I −C|x〉〈x|C†)⊗

∣∣∣+ν
θt

〉〈
+ν

θt

∣∣∣ and keep only the

projection onto the trap qubit. The projection onto the space orthogonal to the correct
state is a trace decreasing operation and also (1 − β) ≤ 1 hence:

T r

(
∑

ν

p(ν)P ν
incorrectBj (ν)

)

≤ T r

⎛

⎝
∑

ν

p(ν)
∣∣+ν

θt

〉〈+ν
θt

∣∣ ∑

k,l,m

αkl(j)α∗
km(j) PlB0(ν)Pm

⎞

⎠ (47)

The summation over ν can be broken into two summations: one over the position of
the trap (and the dummies) and one over the remaining parameters. This latter sum
makes the reduced state appear totally mixed to the prover (a fact which is ensured
by UBQC). The above expression then becomes:

T r

⎛

⎝
∑

νt

p(νt)

∣∣∣+νt

θt

〉〈
+νt

θt

∣∣∣
∑

k,l,m

αkl(j)α∗
km(j) Pl(

∣∣∣+νt

θt

〉 〈
+νt

θt

〉
⊗ (I/T r(I)))Pm

⎞

⎠

(48)
where νt denotes the secret parameters for the trap qubit and consists of θt , rt and
the position of the trap in the graph. But notice that, on the identity system, the terms
in which l = m will have no contribution to the summation. This is because at least
one of the Pauli terms (either Pl or Pm) will act on the identity system. Since Pauli
operators are traceless, when taking the trace these terms will be zero. For the trap
system we will have:

T r

(
∑

νt

p(νt)

∣∣∣+νt

θt

〉〈
+νt

θt

∣∣∣ Pl

∣∣∣+νt

θt

〉〈
+νt

θt

∣∣∣Pm

)
=
∑

νt

p(νt)
〈
+νt

θt

∣∣∣Pl

∣∣∣+νt

θt

〉〈
+νt

θt

∣∣∣Pm

∣∣∣+νt

θt

〉

(49)
Note that we are taking p(νt) to be the uniform distribution over these parameters.
By summing over θt and rt , the above expression becomes zero, whenever l = m.

Theory Comput Syst

This is a result of the Pauli twirl Lemma 2. Thus, only terms in which l = m will
remain. Substituting this back into expression (48) leads to:

T r

⎛

⎝
∑

νt

p(νt)

∣∣∣+νt

θt

〉〈
+νt

θt

∣∣∣
∑

k,l

|αkl(j)|2 Pl(

∣∣∣+νt

θt

〉〈
+νt

θt

∣∣∣⊗ (I/T r(I)))Pl

⎞

⎠ (50)

In other words, the resulting state is a convex combination of Pauli deviations. The
position of the trap is completely randomised so that it is equally likely that any of
the N qubits is the trap. Therefore, in the above summation, there will be N terms
(corresponding to the N possible positions of the trap), one of which will be zero (the
one in which the non-trivial Pauli deviations act on the trap qubit). Hence:

T r

(
∑

ν

p(ν)P ν
incorrectBj (ν)

)
≤ N − 1

N
= 1 − 1

N
(51)

We have found that for the case of a single trap qubit, out of the total N qubits, one
has ε = 1 − 1

N
.

If however, there are multiple trap states, the bound improves. Specifically, for a
type of resource state called dotted-triple graph, the number of traps can be a con-
stant fraction of the total number of qubits, yielding ε = 8/9. If the protocol is then
repeated a constant number of times, d, with the verifier aborting if any of these runs
gives incorrect trap outcomes, it can be shown that ε = (8/9)d [57]. Alternatively, if
the input state and computation are encoded in an error correcting code of distance
d, then one again obtains ε = (8/9)d . This is useful if one is interested in a quantum
output, or a classical bit string output. If, instead, one would only like a single bit out-
put (i.e. the outcome of the decision problem) then sequential repetition and taking
the majority outcome is sufficient. The fault tolerant encoding need not be done by
the verifier. Instead, the prover will simply be instructed to prepare a larger resource
state which also offers topological error-correction. See [27, 58, 59] for more details.
An important observation, however, is that the fault tolerant encoding, just like in the
Poly-QAS VQC protocol, is used only to boost security and not for correcting devia-
tions arising from faulty devices. This latter case is discussed in Section 5.2. To sum
up:

Theorem 3 For a fixed constant d > 0, VUBQC is a prepare-and-send QPIP
protocol having correctness δ = 1 and verifiability ε = (8/9)d .

It should be noted that in the original construction of the protocol, the fault toler-
ant encoding, used for boosting security, required the use of a resource state having
O(|C|2) qubits. The importance of the dotted-triple graph construction is that it
achieves the same level of security while keeping the number of qubits linear in |C|.
The same effect is achieved by a composite protocol which combines the Poly-QAS
VQC scheme, from the previous section, with VUBQC [51]. This works by having
the verifier run small instances of VUBQC in order to prepare the encoded blocks
used in the Poly-QAS VQC protocol. Because of the blindness property, the prover
does not learn the secret keys used in the encoded blocks. The verifier can then run the
Poly-QAS VQC protocol with the prover, using those blocks. This hybrid approach

Theory Comput Syst

illustrates how composition can lead to more efficient protocols. In this case, the
composite protocol maintains a single qubit preparation device for the verifier (as
opposed to a O(log(1/ε))-size quantum computer) while also achieving linear com-
munication complexity. We will encounter other composite protocols when reviewing
entanglement-based protocols in Section 4.

Lastly, let us explicitly state the resources and overhead of the verifier through-
out the VUBQC protocol. As mentioned, the verifier requires only a single-qubit
preparation device, capable of preparing states of the form |+θ 〉, with θ ∈
{0, π/4, 2π/4, ...7π/4}, and |0〉, |1〉. The number of qubits needed is on the order of
O(|C|). After the qubits have been sent to the prover, the two interact classically and
the size of the communication is also on the order of O(|C|).

2.3 Verification Based on Repeated Runs

The final prepare-and-send protocol we describe is the one defined by Broadbent in
[28]. While the previous approaches relied on hiding a flag subsystem or traps in
either the input or the computation, this protocol has the verifier alternate between
different runs designed to either test the behaviour of the prover or perform the
desired quantum computation. We will refer to this as the Test-or-Compute proto-
col. From the prover’s perspective, the possible runs are indistinguishable from each
other, thus making him unaware if he is being tested or performing the verifier’s
chosen computation. Specifically, suppose the verifier would like to delegate the
quantum circuit C to be applied on the |0〉⊗n state,29 where n is the size of the input.
The verifier then chooses randomly between three possible runs:

• Computation run. The verifier delegates C|0〉⊗n to the prover.
• X-test run. The verifier delegates the identity computation on the |0〉⊗n state to

the prover.
• Z-test run. The verifier delegates the identity computation on the |+〉⊗n state to

the prover.

It turns out that this suffices in order to test against any possible malicious behavior
of the prover, with high probability.

In more detail, the protocol uses a technique for quantum computing on encrypted
data, described in [60], which is similar to Childs’ protocol from Section 1.1, except
it does not involve two-way quantum communication. The verifier will one-time pad
either the |0〉⊗n state or the |+〉⊗n state and send the qubits to the prover. The prover
is then instructed to apply the circuit C, which consists of the gates X, Z, H, T, CNOT.
As we know, the Clifford operations commute (or normalise) with the one-time pad,
so the verifier would only need to appropriately update the one-time pad to account
for this. However, T gates do not commute with the pad. In particular, commuting
them past the X gates introduces unwanted S operations. To resolve this issue, the
verifier will use a particular gadget which will allow the prover to apply T and correct
for S at the same time. This gadget is shown in Fig. 7, reproduced from [28].

29The preparation of a specific input |x〉 can be done as part of the circuit C.

Theory Comput Syst

Fig. 7 Gadget for performing T on one-time padded state, reproduced from [28]

The gadget works in a gate teleportation fashion. For each qubit, labelled j ,
on which the prover should apply a T gate, the verifier sends a qubit of the form
XdZcSyT|+〉, as well as the classical bit x = a ⊕ c ⊕ y, where a is the X padding
of qubit j and c, d and y are chosen at random. The verifier then instructs the prover
to apply a CNOT between the sent qubit and qubit j , effectively entangling them,
and then measure qubit j in the computational basis. Lastly, the verifier instructs the
prover to apply an Sx gate to the sent qubit. The end result is that this qubit will be
the same as the de-one-time padded qubit j but with a T and a new one-time pad
acting on it. Importantly, the new pad is kept secret from the prover.

The T gate gadget allows the verifier to control the application of either a non-
Clifford operation or a Clifford operation through gate teleportation. For note that
if the verifier does not apply a T gate on the qubit sent to the prover, the resulting
computation is Clifford. This is what allows the verifier to switch between the com-
putation run and the two test runs. The prover cannot distinguish between the two
cases, since his side of the gadget is identical in both instances. Thus, in a test run, the
computation the prover performs will be Clifford and the verifier can simply update
the one-time pad, of the input, accordingly. There is, however, one complication. In
an X-test run, the input is |0〉⊗n and should remain this way until the end of the cir-
cuit, up to qubit flips resulting from the one-time pad. But any Hadamard gate in the
circuit will map |0〉 to |+〉. The same is true for Z-test runs, where |+〉 states can be
mapped to |0〉. To resolve this issue, Broadbent uses the following identities:

HT2HT2HT2H = H (52)

HHHH = I (53)

The idea is to have the prover implement each Hadamard operation in C by applying
four H gates alternating with S = T2 gates. Each T2 operation is performed by using
the T gate gadget twice. When the verifier chooses a computation run, she will apply
the T gates in the gadget and therefore, via (52), this leads to a Hadamard operation.
Conversely, in a rest run, no T gates are applied, hence, from (53), no Hadamard
operation will act on the target qubit. Since the output is always measured, by the
prover, in the computational basis, in an X-test run the verifier simply checks that the
de-one-time padded output is |0〉⊗n.

There is, in fact, an additional testing step being performed during an X-test run.
Consider the T gadget for such a run in Fig. 8, reproduced from [28].

Note that the measurement bit, c, provided by the prover to the verifier should be
an xor of the original X padding of the input and the updated X padding of the input.

Theory Comput Syst

Fig. 8 T gate gadget in X-test run, reproduced from [28]

Checking the value of this bit allows the verifier to test that the gadget was applied
correctly.

What about the Z-test run? In that case, the output should be the |+〉⊗n which,
upon measurement, should collapse with equal probability into any of the 2n possible
binary strings. The verifier does not test for this. Instead, each H gate that should be
applied by the prover has the effect of switching between the Z-test run and the X-test
run. Thus, whenever a Hadamard is applied to a qubit, during a Z-test run, the verifier
switches to an X-test run until the next Hadamard operation. In the X-test runs, the
verifier will use the T gate gadget from Fig. 8. These are the only checks that are
performed in the Z-test run.

Putting everything together, the protocol starts by having the verifier choose an
input x and a quantum computation C to act on this input (that includes preparing the
input from the |0〉⊗n state). Then, the verifier will randomly choose to perform one
of the following:

• Computation run. The verifier one-time pads the |0〉⊗n state and sends it to the
prover. The prover is then instructed to apply C on this state, such that for each
T gate in the circuit the prover and the verifier interact in order to perform the
T gadget. Additionally, any H in C is performed as in (52). For Clifford opera-
tions, the verifier updates the one-time pad of the state accordingly. The prover
is instructed to measure the output state of the circuit in the computational basis
and return the outcome to the verifier. The verifier undoes the padding of this
outcome and accepts if the output of the circuit indicates acceptance.

• X-test run. The verifier one-time pads the |0〉⊗n state and sends it to the prover.
As in the computation run, for each T, the verifier and the prover will interact to
run the T gate gadget. In this case, however, the verifier will use the T gate gadget
from Fig. 8, making the circuit effectively act as identity and checking that the
prover is performing these gadgets correctly (rejecting otherwise). Additionally,
the H gates in C will also act as identity, from (53), as described previously. The
verifier updates the one-time padding of the state accordingly for all gates in the
circuit. Once the circuit is finished, the prover is instructed to measure the output
in the computational basis and report the outcome to the verifier. The verifier
accepts if the de-one-time padded output is |0〉⊗n.

Theory Comput Syst

• Z-test run. The verifier one-time pads the |+〉⊗n state and sends it to the prover.
As in the X-test run, the T gate gadgets will act as identity. The H operations that
the prover performs will temporarily switch the Z-test run into an X-test run, in
which the verifier uses the gadget from Fig. 8 to check that prover implemented
it correctly. Any subsequent H will switch back to a Z-test run. Additionally, the
verifier updates the one-time padding of the state accordingly for all gates in the
circuit. The prover is instructed to measure the output in the computational basis
and report the outcome to the verifier, however in this case the verifier discards
the output.

The asymmetry between the X-test run and the Z-test run stems from the fact
that the output is always measured in the computational basis. This means that an
incorrect output is one which has been bit-flipped. In turn, this implies that only X and
Y operations on the output will act as deviations, since Z effectively acts as identity
on computational basis states. If the circuit C does not contain any Hadamard gates
and hence, the computation takes place entirely in the computational basis, then the
X-test is sufficient for detecting such deviations. However, when Hadamard gates are
present, this is no longer the case since deviations can occur in the conjugate basis,
(|+〉, |−〉), as well. This is why the Z-test is necessary. Its purpose is to check that the
prover’s operations are performed correctly when switching to the conjugate basis.
For this reason, a Hadamard gate will switch a Z-test run into an X-test run which
provides verification using the T gate gadget.

In terms of the correctness of the protocol, we can see that if the prover behaves
honestly then the correct outcome is obtained in the computation run and the verifier
will accept the test runs, hence δ = 1.30 For verifiability, the analysis is similar
to the previous protocols. Suppose that |ψ〉 is either the |0〉⊕n or the |+〉⊕n state
representing the input. Additionally, assuming there are t T gates in C (including the
ones used for performing the Hadamards), let |φ〉 be the state of the t qubits that the
verifier sends for the T gate gadgets. Then, the one-time padded state that the prover
receives is:

1

4n+t

∑

Q∈Pn+t

Q|ψ〉〈ψ | ⊗ |φ〉〈φ|Q† (54)

The prover is then instructed to follow the steps of the protocol in order to run the
circuit C. Note that all of the operations that he is instructed to perform are Clifford
operations. This is because any non-Clifford operation from C is performed with
the T gate gadgets (which require only Clifford operations) and the states from |φ〉,
prepared by the verifier. In following the notation from [28], we denote the honest
action of the protocol as C. As in the previous protocols, the prover’s deviation can

30However, note that if the verifier chooses a test run, in the case where the prover is honest, this will lead to
acceptance irrespective of the outcome of the decision problem. This is in contrast to the previous protocols
in which the testing is performed at the same time as the computation and, when the test succeeds, the
verifier outputs the result of the computation.

Theory Comput Syst

be commuted to the end of the protocol, so that it acts on top of the correct state.
After expressing the deviation map in terms of Pauli operators one gets:

1

4n+t

∑

Pi,Pj ,Q∈Pn+t

αiα
∗
j PiQC|ψ〉〈ψ | ⊗ |φ〉〈φ|C†Q†P

†
j (55)

Note that we have also commuted C past the one-time pad so that it acts on the state
|ψ〉|φ〉, rather than on the one-time padded versions of these states. This is possible
precisely because C is a Clifford operation and therefore normalises Pauli operations.
One can then assume that the verifier performs the decryption of the padding before
the final measurement, yielding:

1

4n+t

∑

Pi,Pj ,Q∈Pn+t

αiα
∗
j Q†PiQC|ψ〉〈ψ | ⊗ |φ〉〈φ|C†Q†P

†
j Q (56)

We now use the Pauli twirl from Lemma 2 to get:

1

4n+t

∑

Pi∈Pn+t

|αi |2 PiC|ψ〉〈ψ | ⊗ |φ〉〈φ|C†P
†
i (57)

which is a convex combination of Pauli attacks acting on the correct output state. If
we now denote M to be the set of non-benign Pauli attacks (i.e. attacks which do not
act as identity on the output of the computation), then one of the test runs will reject
with probability:

∑

Pi∈M

|αi |2 (58)

This is because non-benign Pauli X or Y operations are detected by the X-test run,
whereas non-benign Pauli Z operations are detected by the Z-test run. Since either test
occurs with probability 1/3, it follows that, the probability of the verifier accepting
an incorrect outcome is at most 2/3, hence ε = 2/3.

Note that when discussing the correctness and verifiability of the Test-or-Compute
protocol, we have slightly abused the terminology, since this protocol does not rigor-
ously match the established definitions for correctness and verifiability that we have
used for the previous protocols. The reason for this is the fact that in the Test-or-
Compute protocol there is no additional flag or trap subsystem to indicate failure.
Rather, the verifier detects malicious behaviour by alternating between different runs.
It is therefore more appropriate to view the Test-or-Compute protocol simply as a
QPIP protocol having a constant gap between completeness and soundness:

Theorem 4 Test-or-Compute is a prepare-and-send QPIP protocol having complete-
ness 8/9 and soundness 7/9.

In terms of the verifier’s quantum resources, we notice that, as with the VUBQC
protocol, the only requirement is the preparation of single qubit states. All of these
states are sent in the first round of the protocol, the rest of the interaction being
completely classical.

Theory Comput Syst

2.4 Summary of Prepare-and-Send Protocols

The protocols, while different, have the common feature that they all use blindness
or have the potential to be blind protocols. Out of the five presented protocols, only
the Poly-QAS VQC and the Test-or-Compute protocols are not explicitly blind since,
in both cases, the computation is revealed to the server. However, it is relatively easy
to make the protocols blind by encoding the circuit into the input (which is one-time
padded). Hence, one can say that all protocols achieve blindness.

This feature is essential in the proof of security for these protocols. Blindness
combined with either the Pauli twirl Lemma 2 or the Clifford twirl Lemma 1 have
the effect of reducing any deviation of the prover to a convex combination of Pauli
attacks. Each protocol then has a specific way of detecting such an attack. In the
Clifford-QAS VQC protocol, the convex combination is turned into a uniform com-
bination and the attack is detected by a flag subsystem associated with a quantum
authentication scheme. A similar approach is employed in the Poly-QAS VQC pro-
tocol, using a quantum authentication scheme based on a special type of quantum
error correcting code. The VUBQC protocol utilizes trap qubits and either sequen-
tial repetition or encoding in an error correcting code to detect Pauli attacks. Finally,
the Test-or-Compute protocol uses a hidden identity computation acting on either the
|0〉⊗n or |+〉⊗n states, in order to detect the malicious behavior of the prover.

Because of these differences, each protocol will have different “quantum require-
ments” for the verifier. For instance, in the authentication-based protocols, the
verifier is assumed to be a quantum computer operating on a quantum memory of
size O(log(1/ε)), where ε is the desired verifiability of the protocol. In VUBQC
and Test-or-Compute, however, the verifier only requires a device capable of prepar-
ing single-qubit states. Additionally, out of all of these protocols, only Clifford-QAS
VQC requires 2-way quantum communication, whereas the other three require the
verifier to send only one quantum message at the beginning of the protocol, while the
rest of the communication is classical. These facts, together with the communication
complexities of the protocols are shown in Table 1.

As mentioned, if we want to make the Poly-QAS VQC and Test-or-Compute pro-
tocols blind, the verifier will hide her circuit by incorporating it into the input. The

Table 1 Comparison of prepare-and-send protocols

Protocol Verifier resources Communication 2-way quantum comm.

Clifford-QAS VQC O(log(1/ε)) O(N · log(1/ε)) Y

Poly-QAS VQC O(log(1/ε)) O((n + L) · log(1/ε)) N

VUBQC O(1) O(N · log(1/ε)) N

Test-or-Compute O(1) O((n + T) · log(1/ε)) N

If denote as C the circuit that the verifier wishes to delegate to the prover, and as x the input to this circuit,
then n = |x|, N = |C|. Additionally, T denotes the number of T gates in C, L denotes the number of
Toffoli gates in C and ε denotes the verifiability of the protocols. The second column refers to the verifier’s
quantum resources. The third column quantifies the total communication complexity, both classical and
quantum, of the protocols (i.e. number of messages times the size of a message)

Theory Comput Syst

Fig. 9 Receive-and-measure protocols

input would then consist of an encoding of C and an encoding of x. The prover
would be asked to perform controlled operations from the part of the input contain-
ing the description of C, to the part containing x, effectively acting with C on x.
We stress that in this case, the protocols would have a communication complexity of
O(|C| · log(1/ε)), just like VUBQC and Clifford-QAS VQC.31

3 Receive-and-Measure Protocols

The protocols presented so far have utilized a verifier with a trusted preparation
device (and potentially a trusted quantum memory) interacting with a prover having
the capability of storing and performing operations on arbitrarily large quantum sys-
tems. In this section, we explore protocols in which the verifier possesses a trusted
measurement device. The point of these protocols is to have the prover prepare a spe-
cific quantum state and send it to the verifier. The verifier’s measurements have the
effect of either performing the quantum computation or extracting the outcome of the
computation. An illustration of receive-and-measure protocols is shown in Fig. 9.

For prepare-and-send protocols we saw that blindness was an essential feature for
achieving verifiability. While most of the receive-and-measure protocols are blind
as well, we will see that it is possible to perform verification without hiding any
information about the input or computation, from the prover. Additionally, while in
prepare-and-send protocols the verifier was sending an encoded or encrypted quan-
tum state to the prover, in receive-and-measure protocols, the quantum state received
by the verifier is not necessarily encoded or encrypted. Moreover, this state need not
contain a flag or a trap subsystem. For this reason, we can no longer consistently
define ε-verifiability and δ-correctness, as we did for prepare-and-send protocols.
Instead, we will simply view receive-and-measure protocols as QPIP protocols.

The protocols presented in this section are:

1. Section 3.1: a measurement-only protocol developed by Morimae and Hayashi
that employs ideas from MBQC in order to perform verification [31].

2. Section 3.2: a post hoc verification protocol, developed by Morimae and
Fitzsimons [29, 61] (and independently by Hangleiter et al. [30]).

31Technically, the complexity should be O((|x| + |C|) · log(1/ε)), however we are assuming that C acts
non-trivially on x (i.e. there are at least |x| gates in C).

Theory Comput Syst

There is an additional receive-and-measure protocol by Gheorghiu et al. [33]
which we refer to as Steering-based VUBQC. That protocol, however, is similar to
the entanglement-based GKW protocol from Section 4.1. We will therefore review
Steering-based VUBQC in that subsection by comparing it to the entanglement-based
protocol.

3.1 Measurement-Only Verification

In this section we discuss the measurement-only protocol from [31], which we shall
simply refer to as the measurement-only protocol. This protocol uses MBQC to
perform the quantum computation, like the VUBQC protocol from Section 2.2, how-
ever the manner in which verification is performed is more akin to Broabdent’s
Test-or-Compute protocol, from Section 2.3. This is because, just like in the Test-or-
Compute protocol, the measurement-only approach has the verifier alternate between
performing the computation or testing the prover’s operations.

The key idea for this protocol, is the fact that graph states can be completely speci-
fied by a set of stabilizer operators. This fact is explained in Section 1. To reiterate the
main points, recall that for a graph G, with associated graph state |G〉, if we denote
as V (G) the set of vertices in G and as NG(v) the set of neighbours for a given vertex
v, then the generators for the stabilizer group of |G〉 are:

Kv = Xv

∏

w∈NG(v)

Zw (59)

for all v ∈ V (G). In other words, the Kv operators generate the entire group of
operators, O, such that O|G〉 = |G〉.

When viewed as observables, stabilizers allow one to test that an unknown quan-
tum state is in fact a particular graph state |G〉, with high probability. This is done
by measuring random stabilizers of |G〉 on multiple copies of the unknown quantum
state. If all measurements return the +1 outcome, then, the unknown state is close
in trace distance to |G〉. This is related to a concept known as self-testing, which is
the idea of determining whether an unknown quantum state and an unknown set of
observables are close to a target state and observables, based on observed statistics.
We postpone a further discussion of this topic to the next section, since self-testing is
ubiquitous in entanglement-based protocols.

As mentioned, the measurement-only protocol involves a testing phase and a com-
putation phase. The prover will be instructed to prepare multiple copies of a 2D
cluster state, |G〉, and send them, qubit by qubit, to the verifier. The verifier will then
randomly use one of these copies to perform the MBQC computation, whereas the
other copies are used for testing that the correct cluster state was prepared.32 This
testing phase will involve checking all possible stabilizers of |G〉. In particular, the
verifier will divide the copies to be tested into two groups, which we shall refer to
as the XZ group and the ZX group. In the XZ group of states, the verifier will mea-
sure the qubits according to the 2D cluster structure, starting with an X operator in

32This is very much in the spirit of a cryptographic technique known as cut-and-choose [62], which has
also been used in the context of testing quantum states [63].

Theory Comput Syst

the upper left corner of the lattice and then alternating between X and Z. In the ZX
group, she will measure the dual operators by swapping X with Z. The two cases are
illustrated in Fig. 10.

Together, the measurement outcomes of the two groups can be used to infer out-
comes of all stabilizer measurements defined by the Kv operators. For instance, given
that the measurement outcomes for the qubits take values ±1, to compute the out-
come of a Kv measurement, for some node v that is measured with X, the verifier
simply takes product of the measurement outcomes for all nodes in {v} ∪ Nv . These
tests allow the verifier to certify that the prover is indeed preparing copies of the state
|G〉. She can then use one of these copies to run the computation. Since the prover
does not know which state the verifier will use for the computation, any deviation he
implements has a high chance of being detected by one of the verifier’s tests. Hence,
the protocol works as follows:

(1) The verifier chooses an input x and a quantum computation C.
(2) She instructs the prover to prepare 2k + 1 copies of a 2D cluster state, |G〉, for

some constant k, and send all of the qubits, one at a time, to the verifier.
(3) The verifier randomly picks one copy to run the computation of C on x in an

MBQC fashion. The remaining 2k copies are randomly divided into the XZ
groups and the ZX group and measured, as described above, so as to check the
stabilizers of |G〉.

(4) If all stabilizer measurement outcomes are successful (i.e. produced the out-
come +1), then the verifier accepts the outcome of the computation, otherwise
she rejects.

As with all protocols, completeness follows immediately, since if the prover
behaves honestly, the verifier will accept the outcome of the computation. In the case
of soundness, Hayashi and Morimae treat the problem as a hypothesis test. In other
words, in the testing phase of the protocol the verifier is checking the hypothesis that
the prover prepared 2k + 1 copies of the state |G〉. Hayashi and Morimae then prove
the following theorem:

Fig. 10 Stabilizer measurements

Theory Comput Syst

Theorem 5 Let 1/(2k + 1) ≤ α ≤ 1 be the verifier’s confidence level in the testing
phase of the measurement-only protocol. Then, the state used by the verifier for the
computation, denoted ρ, satisfies:

〈G|ρ|G〉 ≥ 1 − 1

α(2k + 1)
(60)

This theorem is essentially showing that as the number of copies of |G〉, requested
by the verifier, increases, and the verifier accepts in the testing phase, one gets that the
state ρ, used by the verifier for the computation, is close in trace distance to the ideal
state, |G〉. The confidence level, α, represents the maximum acceptance probability
for the verifier, such that the computation state, ρ, does not satisfy (60). Essentially
this represents the probability for the verifier to accept a computation state that is far
from ideal. Hayashi and Morimae argue that the lower bound, α ≥ 1/(2k + 1), is
tight, because if the prover corrupts one of the 2k + 1 states sent to the verifier, there
is a 1/(2k + 1) chance that that state will not be tested and the verifier accepts.

If one now denotes with C the POVM that the verifier applies on the computation
state in order to perform the computation of C, then it is the case that:

|T r(Cρ) − T r(C|G〉〈G|)| ≤ 1√
α(2k + 1)

(61)

What this means is that the distribution of measurement outcomes for the state ρ, sent
by the prover in the computation run, is almost indistinguishable from the distribution
of measurement outcomes for the ideal state |G〉. The soundness of the protocol is
therefore upper bounded by 1√

α(2k+1)
. This implies that to achieve soundness below

ε, for some ε > 0, the number of copies that the prover would have to prepare scales

as O
(

1
α

· 1
ε2

)
.

In terms of the quantum capabilities of the verifier, she only requires a single qubit
measurement device capable of measuring the observables: X,Y, Z, (X+Y)/

√
2, (X−

Y)/
√

2. Recently, however, Morimae, Takeuchi and Hayashi have proposed a similar
protocol which uses hypergraph states [32]. These states have the property that one
can perform universal quantum computations by measuring only the Pauli observ-
ables (X, Y and Z). Hypergraph states are generalizations of graph states in which
the vertices of the graph are linked by hyperedges, which can connect more than
two vertices. Hence, the entangling of qubits is done with a generalized CZ opera-
tion involving multiple qubits. The protocol itself is similar to the one from [31], as
the prover is required to prepare many copies of a hypergraph state and send them
to the verifier. The verifier will then test all but one of these states using stabilizer
measurements and use the remaining one to perform the MBQC computation. For a
computation, C, the protocol has completeness lower bounded by 1 − |C|e−|C| and
soundness upper bounded by 1/

√|C|. The communication complexity is higher than
the previous measurement-only protocol, as the prover needs to send O(|C|21) copies

Theory Comput Syst

of the O(|C|)-qubit graph state, leading to a total communication cost of O(|C|22).
We end with the following result:

Theorem 6 The measurement-only protocols are receive-and-measure QPIP proto-
cols having an inverse polynomial gap between completeness and soundness.

3.2 Post Hoc Verification

The protocols we have reviewed so far have all been based on cryptographic primi-
tives. There were reasons to believe, in fact, that any quantum verification protocol
would have to use some form of encryption or hiding. This is due to the parallels
between verification and authentication, which were outlined in Section 2. However,
it was shown that this is not the case when Morimae and Fitzsimons, and indepen-
dently Hangleiter et al, proposed a protocol for post hoc quantum verification [29,
30]. The name “post hoc” refers to the fact that the protocol is not interactive, requir-
ing a single round of back and forth communication between the prover and the
verifier. Moreover, verification is performed after the computation has been carried
out. It should be mentioned that the first post hoc protocol was proposed in [22], by
Fitzsimons and Hajdušek, however, that protocol utilizes multiple quantum provers,
and we review it in Section 4.3.

In this section, we will present the post hoc verification approach, refered to
as 1S-Post-hoc, from the perspective of the Morimae and Fitzsimons paper [29].
The reason for choosing their approach, over the Hangleiter et al one, is that the
entanglement-based post hoc protocols, from Section 4.3, are also described using
similar terminology to the Morimae and Fitzsimons paper. The protocol of Hangleiter
et al is essentially identical to the Morimae and Fitzsimons one, except it is presented
from the perspective of certifying the ground state of a gapped, local Hamiltonian.
Their certification procedure is then used to devise a verification protocol for a class
of quantum simulation experiments, with the purpose of demonstrating a quantum
computational advantage [30].

The starting point is the complexity class QMA, for which we have stated the def-
inition in Section 1. Recall, that one can think of QMA as the class of problems
for which the solution can be checked by a BQP verifier receiving a quantum state
|ψ〉, known as a witness, from a prover. We also stated the definition of the k-local
Hamiltonian problem, a complete problem for the class QMA, in Definition 9. We
mentioned that for k = 2 the problem is QMA-complete [64]. For the post hoc pro-
tocol, Morimae and Fitzsimons consider a particular type of 2-local Hamiltonian
known as an XZ-Hamiltonian.

To define an XZ-Hamiltonian we introduce some helpful notation. Consider
an n-qubit operator S, which we shall refer to as XZ-term, such that S =⊗n

j=1 Pj , with Pj ∈ {I,X, Z}. Denote wX(S) as the X-weight of S, represent-
ing the total number of j ’s for which Pj = X. Similarly denote wZ(S) as the
Z-weight for S. An XZ-Hamiltonian is then a 2-local Hamiltonian of the form
H = ∑

i aiSi , where the ai’s are real numbers and the Si’s are XZ-terms having
wX(Si) + wZ(Si) ≤ 2.

Theory Comput Syst

The 1S-Post-hoc protocol starts with the observation that BQP ⊆ QMA. This
means that any problem in BQP can be viewed as an instance of the 2-local Hamil-
tonian problem. Therefore, for any language L ∈ BQP and input x, there exists
an XZ-Hamiltonian, H , such that the smallest eigenvalue of H is less than a when
x ∈ L or larger than b, when x ∈ L, where a and b are a pair of numbers satisfying
b − a ≥ 1/poly(|x|). Hence, the lowest energy eigenstate of H (also referred to as
ground state), denoted |ψ〉, is a quantum witness for x ∈ L. In a QMA protocol, the
prover would be instructed to send this state to the verifier. The verifier then performs
a measurement on |ψ〉 to estimate its energy, accepting if the estimate is below a and
rejecting otherwise. However, we are interested in a verification protocol for BQP
problems where the verifier has minimal quantum capabilities. This means that there
will be two requirements: the verifier can only perform single-qubit measurements;
the prover is restricted to BQP computations. The 1S-Post-hoc protocol satisfies both
of these constraints.

The first requirement is satisfied because estimating the energy of a quantum state,
|ψ〉, with respect to an XZ-Hamiltonian H , can be done by measuring one of the
observables Si on the state |ψ〉. Specifically, it is shown in [65] that if one chooses the
local term Si according to a probability distribution given by the normalized terms
|ai |, and measures |ψ〉 with the Si observables, this provides an estimate for the
energy of |ψ〉. Since H is an XZ-Hamiltonian, this entails performing at most two
measurements, each of which can be either an X measurement or a Z measurement.
This implies that the verifier need only perform single-qubit measurements.

For the second requirement, one needs to show that for any BQP computation,
there exists an XZ-Hamiltonian such that the ground state can be prepared by a
polynomial-size quantum circuit. Suppose the computation that the verifier would
like to delegate is denoted as C and the input for this computation is x. Given what
we have mentioned above, regarding the local Hamiltonian problem, it follows that
there exists an XZ-Hamiltonian H and numbers a and b, with b − a ≥ 1/poly(|x|),
such that if C accepts x with high probability then the ground state of H has energy
below a, otherwise it has energy above b. It was shown in [64, 66, 67], that starting
from C and x one can construct an XZ-Hamiltonian satisfying this property and which
also has a ground state that can be prepared by a BQP machine. The ground state is
known as the Feynman-Kitaev clock state. To describe this state, suppose the circuit
C has T gates (i.e. T = |C|) and that these gates, labelled in the order in which they
are applied, are denoted {Ui}Ti=0. For i = 0 we assume U0 = I . The Feynman-Kitaev
state is the following:

|ψ〉 = 1√
T + 1

T∑

t=0

UtUt−1...U0|x〉
∣∣∣1t0T −t

〉
(62)

This is essentially a superposition over all time steps, t , of the time evolved state in the
circuit C. Hence, the state can be prepared by a BQP machine. The XZ-Hamiltonian
is then a series of 2-local constraints that are all simultaneously satisfied by this state.

We can now present the steps of the 1S-Post-hoc protocol:

(1) The verifier chooses a quantum circuit, C, and an input x to delegate to the
prover.

Theory Comput Syst

(1) The verifier computes the terms ai of the XZ-Hamiltonian, H = ∑
i aiSi ,

having as a ground state the Feynman-Kitaev state asswith C and x, denoted
|ψ〉.

(2) The verifier instructs the prover to send her |ψ〉, qubit by qubit.
(4) The verifier chooses one of the XZ-terms Si , according to the normalized distri-

bution {|ai |}i , and measures it on |ψ〉. She accepts if the measurement indicates
the energy of |ψ〉 is below a.

Note that the protocol is not blind, since the verifier informs the prover about both
the computation C and the input x.

As mentioned, the essential properties that any QPIP protocol should satisfy are
completeness and soundness. For the post hoc protocol, these follow immediately
from the local Hamiltonian problem. Specifically, we know that there exist a and b

such that b − a ≥ 1/poly(|x|). When C accepts x with high probability, the state
|ψ〉 will be an eigenstate of H having eigenvalue smaller than a. Otherwise, any
state, when measured under the H observable, will have an energy greater than b.
Of course, the verifier is not computing the exact energy |ψ〉 under H , merely an
estimate. This is because she is measuring only one local term from H . However, it
is shown in [29] that the precision of her estimate is also inverse polynomial in |x|.
Therefore:

Theorem 7 1S-Post-hoc is a receive-and-measure QPIP protocol having an inverse
polynomial gap between completeness and soundness.

The only quantum capability of the verifier is the ability to measure single qubits
in the computational and Hadamard bases (i.e. measuring the Z and X observables).
The protocol, as described, suggests that it is sufficient for the verifier to measure
only two qubits. However, since the completeness-soundness gap decreases with the
size of the input, in practice one would perform a sequential repetition of this protocol
in order to boost this gap. It is easy to see that, for a protocol with a completeness-
soundness gap of 1/p(|x|), for some polynomial p, in order to achieve a constant gap
of at least 1 − ε, where ε > 0, the protocol needs to be repeated O(p(|x|) · log(1/ε))

times. It is shown in [30, 68] that p(|x|) is O(|C|2), hence the protocol should be
repeated O(|C|2 · log(1/ε)) times and this also gives us the total number of measure-
ments for the verifier.33 Note, however, that this assumes that each run of the protocol
is independent of the previous one (in other words, that the states sent by the prover to
the verifier in each run are uncorrelated). Therefore, the O(|C|2 · log(1/ε)) overhead
should be taken as an i.i.d. (independent and identically distributed states) estimate.
This is, in fact, mentioned explicitly in the Hangleiter et al result, where they explain

33As a side note, the total number of measurements is not the same as the communication complexity for
this protocol, since the prover would have to send O(|C|3 · log(1/ε)) qubits in total. This is because, for
each repetition, the prover sends a state of O(|C|) qubits, but the verifier only measures 2 qubits from each
such state.

Theory Comput Syst

that the prover should prepare “a number of independent and identical copies of a
quantum state” [30]. Thus, when considering the most general case of a malicious
prover that does not obey the i.i.d. constraint, one requires a more thorough analysis
involving non-independent runs, as is done in the measurement-only protocol [31] or
the steering-based VUBQC protocol [33].

3.3 Summary of Receive-and-Measure Protocols

Receive-and-measure protocols are quite varied in the way in which they perform
verification. The measurement-only protocols use stabilizers to test that the prover
prepared a correct graph state and then has the verifier use this state to perform
an MBQC computation. The 1S-Post-hoc protocol relies on the entirely different
approach of estimating the ground state energy of a local Hamiltonian. Lastly, the
steering-based VUBQC protocol, which we detail in Section 4.1, is different from
these other two approaches by having the verifier remotely prepare the VUBQC
states on the prover’s side and then doing trap-based verification. Having such var-
ied techniques leads to significant differences in the total number of measurements
performed by the verifier, as we illustrate in Table 2.

Of course, the number of measurements is not the only metric we use in com-
paring the protocols. Another important aspect is how many observables the verifier
should be able to measure. The 1S-Post-hoc protocol is optimal in that sense,
since the verifier need only measure X and Z observables. Next is the hypergraph
state measurement-only protocol which requires all three Pauli observables. Lastly,
the other two protocols require the verifier to be able to measure the XY-plane
observables X, Y, (X + Y)/

√
2 and (X − Y)/

√
2 plus the Z observable.

Finally, we compare the protocols in terms of blindness, which we have seen plays
an important role in prepare-and-send protocols. For receive-and-measure protocols,
the 1S-Post-hoc protocol is the only one that is not blind. While this is our first
example of a verification protocol that does not hide the computation and input from
the prover, it is not the only one. In the next section, we review two other post hoc
protocols that are also not blind.

Table 2 Comparison of receive-and-measure protocols

Protocol Measurements Observables Blind

Measurement-only O(N · 1/α · 1/ε2) 5 Y

Hypergraph measurement-only O(max(N, 1/ε2)22) 3 Y

1S-Post-hoc O(N2 · log(1/ε)) 2 N

Steering-based VUBQC O(N13log(N) · log(1/ε)) 5 Y

We denote N = |C| to be the size of the delegated quantum computation. The number of measurements is
computed for a target gap between completeness and soundness of 1 − ε for some constant ε > 0. For the
first measurement-only protocol, α denotes the confidence level of the verifier in the hypothesis test

Theory Comput Syst

4 Entanglement-Based Protocols

The protocols discussed in the previous sections have been either prepare-and-send
or receive-and-measure protocols. Both types employ a verifier with some minimal
quantum capabilities interacting with a single BQP prover. In this section we explore
protocols which utilize multiple non-communicating provers that share entanglement
and a fully classical verifier. The main idea will be for the verifier to distribute a
quantum computation among many provers and verify its correct execution from
correlations among the responses of the provers.

We classify the entanglement-based approaches as follows:

1. Section 4.1 three protocols which make use of the CHSH game, the first one
developed by Reichardt et al. [18], the second by Gheorghiu et al. [19] and the
third by Hajdušek, Pérez-Delgado and Fitzsimons.

2. Section 4.2 a protocol based on self-testing graph states, developed by McKague
[21].

3. Section 4.3 two post hoc protocols, one developed by Fitzsimons and Hajdušek
[29] and another by Natarajan and Vidick [23].

Unlike the previous sections where, for the most part, each protocol was based on
a different underlying idea for performing verification, entanglement-based protocols
are either based on some form of rigid self-testing or on testing local Hamiltonians via
the post hoc approach. In fact, as we will see, even the post hoc approaches employ
self-testing. Of course, there are distinguishing features within each of these broad
categories, but due to their technical specificity, we choose to label the protocols in
this section by the initials of the authors.

Since self-testing plays such a crucial role in entanglement-based protocols, let us
provide a brief description of the concept. The idea of self-testing was introduced by
Mayers and Yao in [69], and is concerned with characterising the shared quantum
state and observables of n non-communicating players in a non-local game. A non-
local game is one in which a referee (which we will later identify with the verifier)
will ask questions to the n players (which we will identify with the provers) and,
based on their responses, decide whether they win the game or not. Importantly, we
are interested in games where there is a quantum strategy that outperforms a classical
strategy. By a classical strategy, we mean that the players can only produce local
correlations.34 Conversely, in a quantum strategy, the players are allowed to share
entanglement in order to produce non-local correlations and achieve a higher win
rate. Even so, there is a limit to how well the players can perform in the game. In
other words, the optimal quantum strategy has a certain probability of winning the
game, which may be less than 1. Self-testing results are concerned with non-local
games in which the optimal quantum strategy is unique, up to local isometries on the

34To define local correlations, consider a setting with two players, Alice and Bob. Each player receives an
input, x for Alice and y for Bob and produces an output, denoted a for Alice and b for Bob. We say that
the players’ responses are locally correlated if: Pr(a, b|x, y) = ∑

λ P r(a|x, λ)P r(b|y, λ)P r(λ). Where
λ is known as a hidden variable. In other words, given this hidden variable, the players’ responses depend
only on their local inputs.

Theory Comput Syst

players’ systems. This means that if the referee observes a near maximal win rate for
the players, in the game, she can conclude that they are using the optimal strategy
and can therefore characterise their shared state and their observables, up to a local
isometries. More formally, we give the definition of self-testing, adapted from [70]
and using notation similar to that of [23]:

Definition 4 (Self-testing) Let G denote a game involving n non-communicating
players denoted {Pi}ni=1. Each player will receive a question from a set, Q and reply
with an answer from a set A. Thus, each Pi can be viewed as a mapping from Q to
A. There exists some condition establishing which combinations of answers to the
questions constitutes a win for the game. Let ω∗(G) denote the maximum winning
probability of the game for players obeying quantum mechanics.

The mappings Pi are implemented by a measurement strategy S = (|ψ〉, {Oj
i }ij)

consisting of a state |ψ〉 shared among the n players and local observables {Oj
i }j ,

for each player Pi . We say that the game G self-tests the strategy S, with robustness

ε = ε(δ), for some δ > 0, if, for any strategy S̃ = (

∣∣∣ψ̃
〉
, {Õj

i }ij) achieving winning

probability ω∗(G)− ε there exists a local isometry � = ⊗n
i=1 �i and a state |junk〉

such that:

T D(�(

∣∣∣ψ̃
〉
), |junk〉|ψ〉) ≤ δ (63)

and for all j :

T D

(
�

(
n⊗

i=1

Õ
j
i

∣∣∣ψ̃
〉)

, |junk〉
n⊗

i=1

O
j
i |ψ〉

)
≤ δ (64)

Note that T D denotes trace distance, and is defined in Section 1.

4.1 Verification Based on CHSH Rigidity

RUV Protocol In [71], Tsirelson gave an upper bound for the total amount of non-
local correlations shared between two non-communicating parties, as predicted by
quantum mechanics. In particular, consider a two-player game consisting of Alice
and Bob. Alice is given a binary input, labelled a, and Bob is given a binary input,
labelled b. They each must produce a binary output and we label Alice’s output as x

and Bob’s output as y. Alice and Bob win the game iff a ·b = x ⊕y. The two are not
allowed to communicate during the game, however they are allowed to share classical
or quantum correlations (in the form of entangled states). This defines a non-local
game known as the CHSH game [72]. The optimal classical strategy for winning the
game achieves a success probability of 75%, whereas, what Tsirelson proved, is that
any quantum strategy achieves a success probability of at most cos2(π/8) ≈ 85.3%.
This maximal winning probability, in the quantum case, can in fact be achieved by
having Alice and Bob do the following. First, they will share the state |�+〉 = (|00〉+
|11〉)/√2. If Alice receives input a = 0, then she will measure the Pauli X observable
on her half of the |�+〉 state, otherwise (when a = 1) she measures the Pauli Z
observable. Bob, on input b = 0 measures (X + Z)/

√
2, on his half of the Bell pair,

Theory Comput Syst

and on input b = 1, he measures (X−Z)/
√

2. We refer to this strategy as the optimal
quantum strategy for the CHSH game.

McKague, Yang and Scarani proved a converse of Tsierlson’s result, by showing
that if one observes two players winning the CHSH game with a near cos2(π/8)

probability, then it can be concluded that the players’ shared state is close to a Bell
pair and their observables are close to the ideal observables of the optimal strategy
(Pauli X and Z, for Alice, and (X + Z)/

√
2 and (X − Z)/

√
2, for Bob) [73]. This is

effectively a self-test for a Bell pair. Reichardt, Unger and Vazirani then proved a
more general result for self-testing a tensor product of multiple Bell states as well as
the observables acting on these states [18].35 It is this latter result that is relevant for
the RUV protocol so we give a more formal statement for it:

Theorem 8 Suppose two players, Alice and Bob, are instructed to play n sequential
CHSH games. Let the inputs, for Alice and Bob, be given by the n-bit strings a, b ∈
{0, 1}n. Additionally, let S = (

∣∣∣ψ̃
〉
, Ã(a), B̃(b)) be the strategy employed by Alice

and Bob in playing the n CHSH games, where
∣∣∣ψ̃
〉
is their shared state and Ã(a) and

B̃(b) are their respective observables, for inputs a, b.
Suppose Alice and Bob win at least n(1 − ε)cos2(π/8) games, with ε =

poly(δ, 1/n) for some δ > 0, such that ε → 0 as δ → 0 or n → ∞. Then, there
exist a local isometry � = �A ⊗ �B and a state |junk〉 such that:

T D(�(

∣∣∣ψ̃
〉
), |junk〉|�+〉⊗n) ≤ δ (65)

and:
T D

(
�
(
Ã(a) ⊗ B̃(b)

∣∣∣ψ̃
〉)

, |junk〉A(a) ⊗ B(b)|�+〉⊗n
)

≤ δ (66)

where A(a) =
n⊗

i=1
P(a(i)), B(b) =

n⊗
i=1

Q(b(i)) and P(0) = X, P(1) = Z, Q(0) =
(X + Z)/

√
2, Q(1) = (X − Z)/

√
2.

What this means is that, up to a local isometry, the players share a state which is
close in trace distance to a tensor product of Bell pairs and their measurements are
close to the ideal measurements. This result, known as CHSH game rigidity, is the
key idea for performing multi-prover verification using a classical verifier. We will
refer to the protocol in this section as the RUV protocol.

Before giving the description of the protocol, let us first look at an example of gate
teleportation, which we also mentioned when presenting the Poly-QAS VQC proto-
col of Section 2.1. Suppose two parties, Alice and Bob, share a Bell state |�+〉. Bob
applies a unitary U on his share of the entangled state so that the joint state becomes

35Note that the McKague, Yang and Scarani result could also be used to certify a tensor product of Bell
pairs, by repeating the self-test of a single Bell pair multiple times. However, this would require each
repetition to be independent of the previous one. In other words the states shared by Alice and Bob, as
well as their measurement outcomes, should be independent and identically distributed (i.i.d.) in each
repetition. The Reichardt, Unger and Vazirani result makes no such assumption.

Theory Comput Syst

(I ⊗ U) |�+〉. Alice now takes an additional qubit, labelled |ψ〉 and measures this
qubit and the one from the |�+〉 state in the Bell basis given by the states:

|�+〉 = |00〉 + |11〉√
2

|�−〉 = |00〉 − |11〉√
2

|	+〉 = |01〉 + |10〉√
2

|	−〉 = |01〉 − |10〉√
2

The outcome of this measurement will be two classical bits which we label b1 and b2.
After the measurement, the state on Bob’s system will be UXb1Zb2 |ψ〉. Essentially,
Bob has a one-time padded version of |ψ〉 with the U gate applied.

We now describe the RUV protocol. It uses two quantum provers but can be gener-
alized to any number of provers greater than two. Suppose that Alice and Bob are the
two provers. They are allowed to share an unbounded amount of quantum entangle-
ment but are not allowed to communicate during the protocol. A verifier will interact
classically with both of them in order to delegate and check an arbitrary quantum
computation specified by the quantum circuit C. The protocol consists in alternating
randomly between four sub-protocols:

• CHSH games. In this subprotocol, the verifier will simply play CHSH games
with Alice and Bob. To be precise, the verifier will repeatedly instruct Alice and
Bob to perform the ideal measurements of the CHSH game. She will collect the
answers of the two provers (which we shall refer to as CHSH statistics) and after
a certain number of games, will compute the win rate of the two provers. The
verifier is interested in the case when Alice and Bob win close to the maximum
number of games as predicted by quantum mechanics. Thus, at the start of the
protocol she takes ε = poly(1/|C|) and accepts the statistics produced by Alice
and Bob if and only if they win at least a fraction (1 − ε)cos2(π/8) of the total
number of games. Using the rigidity result, this implies that Alice and Bob share
a state which is close to a tensor product of perfect Bell states (up to a local
isometry). This step is schematically illustrated in Fig. 11.

Fig. 11 Ideal CHSH game strategy

Theory Comput Syst

• State tomography. This time the verifier will instruct Alice to perform the
ideal CHSH game measurements, as in the previous case. However, she instructs
Bob to measure his halves of the entangled states so that they collapse to
a set of resource states which will be used to perform gate teleportation.
The resource states are chosen so that they are universal for quantum com-
putation. Specifically, in the RUV protocol, the following resource states are
used: {P |0〉 , (HP)2 |�+〉 , (GY)2 |�+〉 ,CNOT2,4P2Q4(|�+〉 ⊗ |�+〉) : P,Q ∈
{X,Y, Z, I }}, where G = exp

(−i π
8 Y
)

and the subscripts indicate on which
qubits the operators act. Assuming Alice and Bob do indeed share Bell states,
Bob’s measurements will collapse Alice’s states to the same resource states (up to
a one-time padding known to the verifier). Alice’s measurements on these states
are used to check Bob’s preparation, effectively performing state tomography on
the resource states.

• Process tomography. This subprotocol is similar to the state tomography one,
except the roles of Alice and Bob are reversed. The verifier instructs Bob to per-
form the ideal CHSH game measurements. Alice, on the other hand, is instructed
to perform Bell basis measurements on pairs of qubits. As in the previous sub-
protocol, Bob’s measurement outcomes are used to tomographically check that
Alice is indeed performing the correct measurements.

• Computation. The final subprotocol combines the previous two. Bob is asked
to perform the resource preparation measurements, while Alice is asked to per-
form Bell basis measurements. This effectively makes Alice perform the desired
computation through repeated gate teleportation.

An important aspect, in proving the correctness of the protocol, is the local sim-
ilarity of pairs of subprotocols. For instance, Alice cannot distinguish between the
CHSH subprotocol and the state tomography one, or between the process tomogra-
phy one and computation. This is because, in those situations, she is asked to perform
the same operations on her side, while being unaware of what Bob is doing. More-
over, since the verifier can test all but the computation part, if Alice deviates there
will be a high probability of her deviation being detected. The same is true for Bob.
In this way, the verifier can, essentially, enforce that the two players behave honestly
and thus perform the correct quantum computation. Note, that this is not the same as
the blindness property, discussed in relation to the previous protocols. The RUV pro-
tocol does, however, posses that property as well. This follows from a more involved
argument regarding the way in which the computation by teleportation is performed.

It should be noted that there are only two constraints imposed on the provers: that
they cannot communicate once the protocol has commenced and that they produce
close to quantum optimal win-rates for the CHSH games. Importantly, there are no
constraints on the quantum systems possessed by the provers, which can be arbitrarily
large. Similarly, there are no constraints on what measurements they perform or what
strategy they use in order to respond to the verifier. In spite of this, the rigidity result
shows that for the provers to produce statistics that are accepted by the verifier, they
must behave according to the ideal strategy (up to local isometry). Having the ability
to fully characterise the prover’s shared state and their strategies in this way is what

Theory Comput Syst

allows the verifier to check the correctness of the delegated quantum computation.
This approach, of giving a full characterisation of the states and observables of the
provers, is a powerful technique which is employed by all the other entanglement-
based protocols, as we will see.

In terms of practically implementing such a protocol, there are two main consid-
erations: the amount of communication required between the verfier and the provers
and the required quantum capabilities of the provers. For the latter, it is easy to
see that the RUV protocol requires both provers to be universal quantum computers
(i.e. BQP machines), having the ability to store multiple quantum states and perform
quantum circuits on these states. In terms of the communication complexity, since
the verifier is restricted to BPP, the amount of communication must scale polyno-
mially with the size of the delegated computation. It was computed in [19], that this
communication complexity is of the order O(|C|c), with c > 8192. Without even
considering the constant factors involved, this scaling is far too large for any sort of
practical implementation in the near future.36

There are essentially two reasons for the large exponent in the scaling of the com-
munication complexity. The first, as mentioned by the authors, is that the bounds
derived in the rigidity result are not tight and could possibly be improved. The sec-
ond and, arguably more important reason, stems from the rigidity result itself. In
Theorem 8, notice that ε = poly(δ, 1/n) and ε → 0 as n → ∞. We also know
that the provers need to win a fraction (1 − ε)cos2(π/8) of CHSH games, in order
to pass the verifier’s checks. Thus, the completeness-soundness gap of the protocol
will be determined by ε. But since, for fixed δ, ε is essentially inverse polynomial in
n, the completeness-soundness gap will also be inverse polynomial in n. Hence, one
requires polynomially many repetition in order to boost the gap to constant.

We conclude with:

Theorem 9 The RUV protocol is an MIP∗ protocol achieving an inverse polynomial
gap between completeness and soundness.

GKW Protocol As mentioned, in the RUV protocol the two quantum provers must
be universal quantum computers. One could ask whether this is a necessity or whether
there is a way to reduce one of the provers to be non-universal. In a paper by Ghe-
orghiu, Kashefi and Wallden it was shown that the latter option is indeed possible.
This leads to a protocol which we shall refer to as the GKW protocol. The protocol
is based on the observation that one could use the state tomography subprotocol of
RUV in such a way so that one prover is remotely preparing single qubit states for
the other prover. The preparing prover would then only be required to perform single
qubit measurements and, hence, not need the full capabilities of a universal quan-
tum computer. The specific single qubit states that are chosen, can be the ones used
in the VUBQC protocol of Section 2.2. This latter prover can then be instructed to

36However, with added assumptions (such as i.i.d. states and measurement statistics for the two provers),
the scaling can become small enough that experimental testing is possible. A proof of concept experiment
of this is realized in [74].

Theory Comput Syst

perform the VUBQC protocol with these states. Importantly, because the provers
are not allowed to communicate, this would preserve the blindness requirement of
VUBQC. We will refer to the preparing prover as the sender and the remaining prover
as the receiver. Once again, we assume the verifier wishes to delegate to the provers
the evaluation of some quantum circuit C.

The protocol, therefore, has a two-step structure:

(1) Verified preparation. This part is akin to the state tomography subprotocol of
RUV. The verifier is trying to certify the correct preparation of states {|+θ 〉}θ
and |0〉, |1〉, where θ ∈ {0, π/4, ..., 7π/4}. Recall that these are the states used
in VUBQC. We shall refer to them as the resource states. This is done by self-
testing a tensor product of Bell pairs and the observables of the two provers
using CHSH games and the rigidity result of Theorem 8.37 As in the RUV
protocol, the verifier will play multiple CHSH games with the provers. This
time, however, each game will be an extended CHSH game (as defined in [18])
in which the verifier will ask each prover to measure an observable from the
set {X,Y, Z, (X ± Z)/

√
2, (Y ± Z)/

√
2, (X ± Y)/

√
2}. Alternatively, this can be

viewed as the verifier choosing to play one of 6 possible CHSH games defined
by the observables in that set38 These observables are sufficient for obtaining
the desired resource states. In particular, measuring the X, Y, and (X ± Y)/

√
2

observables on the Bell pairs will collapse the entangled qubits to states of the
form {|+θ 〉}θ , while measuring Z will collapse them to |0〉, |1〉. The verifier
accepts if the provers win a fraction (1 − ε)cos2(π/8) of the CHSH games,
where ε = poly(δ, 1/|C|), and δ > 0 is the desired trace distance between the
reduced state on the receiver’s side and the ideal state consisting of the required
resource states in tensor product, up to a local isometry (ε → 0 as δ → 0 or
|C| → ∞). The verifier will also instruct the sender prover to perform additional
measurements so as to carry out the remote preparation on the receiver’s side.
This verified preparation is illustrated in Fig. 12.

(2) Verified computation. This part involves verifying the actual quantum compu-
tation, C. Once the resource states have been prepared on the receiver’s side, the
verifier will perform the VUBQC protocol with that prover as if she had sent
him the resource states. She accepts the outcome of the computation if all trap
measurements succeed, as in VUBQC.

Note the essential difference, in terms of the provers’ requirements, between this
protocol and the RUV protocol. In the RUV protocol, both provers had to per-
form entangling measurements on their side. However, in the GKW protocol, the
sender prover is required to only perform single qubit measurements. This means
that the sender prover can essentially be viewed as an untrusted measurement device,
whereas the receiver is the only universal quantum computer. For this reason, the

37In fact, what is used here is a more general version of Theorem 8 involving an extended CHSH game.
See the appendix section of [18].
38For instance, one game would involve Alice measuring either X or Y, whereas Bob should measure
(X + Y)/

√
2 or (X − Y)/

√
2. Similar games can be defined by suitably choosing observables from the

given set.

Theory Comput Syst

Fig. 12 Verified preparation

GKW protocol is also described as a device-independent [75, 76] verification proto-
col. This stems from comparing it to VUBQC or the receive-and-measure protocols,
of Section 3, where the verifier had a trusted preparation or measurement device. In
this case, the verifier essentially has a measurement device (the sender prover) which
is untrusted.

Of course, performing the verified preparation subprotocol and combining it with
VUBQC raises some questions. For starters, in the VUBQC protocol, the state sent
to the prover is assumed to be an ideal state (i.e. an exact tensor product of states
of the form |+θ 〉 or |0〉, |1〉). However, in this case the preparation stage is proba-
bilistic in nature and therefore the state of the receiver will be δ-close to the ideal
tensor product state, for some δ > 0. How is the completeness-soundness gap of the
VUBQC protocol affected by this? Stated differently, is VUBQC robust to deviations
in the input state? A second aspect is that, since the resource state is prepared by the
untrusted sender, even though it is δ-close to ideal, it can, in principle, be correlated
with the receiving prover’s system. Do these initial correlations affect the security of
the protocol?

Both of these issues are addressed in the proofs of the GKW protocol. Firstly,
assume that in the VUBQC protocol the prover receives a state which is δ-close
to ideal and uncorrelated with his private system. Any action of the prover can, in
the most general sense, be modelled as a CPTP map. This CPTP map is of course
distance preserving and so the output of this action will be δ-close to the output in
the ideal case. It follows from this that the probabilities of the verifier accepting a
correct or incorrect result change by at most O(δ). As long as δ > 1/poly(|C|) (for
a suitably chosen polynomial), the protocol remains a valid QPIP protocol.

Secondly, assume now that the δ-close resource state is correlated with the prover’s
private system, in VUBQC. It would seem that the prover could, in principle, exploit
this correlation in order to convince the verifier to accept an incorrect outcome.

Theory Comput Syst

However, it is shown that this is, in fact, not the case, as long as the correlations are
small. Mathematically, let ρV P be the state comprising of the resource state and the
prover’s private system. In the ideal case, this state should be a product state of the
form ρV ⊗ρP , where ρV = |ψid〉〈ψid | is the ideal resource state and ρP the prover’s
system. However, in the general case the state can be entangled. In spite of this, it is
known that:

T D(T rP (ρV P), |ψid〉〈ψid |) ≤ δ (67)

Using a result known as the gentle measurement lemma [18], one can show that this
implies:

T D(ρV P , |ψid〉〈ψid | ⊗ T rV (ρV P)) ≤ O(
√

δ) (68)

In other words, the joint system of resource states and the prover’s private memory
is O(

√
δ)-close to the ideal system. Once again, as long as δ > 1/poly(|C|) (for a

suitably chosen polynomial), the protocol is a valid QPIP protocol.
These two facts essentially show that the GKW protocol is a valid entanglement-

based protocol, as long as sufficient tests are performed in the verified preparation
stage so that the system of resource states is close to the ideal resource states. As
with the RUV protocol, this implies a large communication overhead, with the com-
munication complexity being of the order O(|C|c), where c > 2048. One therefore
has:

Theorem 10 The GKW protocol is an MIP∗ protocol achieving an inverse polyno-
mial gap between completeness and soundness.

Before concluding this section, we describe the steering-based VUBQC protocol
that we referenced in Section 3. As mentioned, the GKW protocol can be viewed as a
protocol involving a verifier with an untrusted measurement device interacting with
a quantum prover. In a subsequent paper, Gheorghiu, Wallden and Kashefi addressed
the setting in which the verifier’s device becomes trusted [33]. They showed that one
can define a self-testing game for Bell states which involves steering correlations
[77] as opposed to non-local correlations. Steering correlations arise in a two-player
setting in which one of the players is trusted to measure certain observables. This
extra piece of information allows for the characterisation of Bell states with com-
paratively fewer statistics than in the non-local case. The steering-based VUBQC
protocol, therefore, has exactly the same structure as the GKW protocol. First, the
verifier uses this steering-based game, between her measurement device and the
prover, to certify that the prover prepared a tensor product of Bell pairs. She then mea-
sures some of the Bell pairs so as to remotely prepare the resource states of VUBQC
on the prover’s side and then performs the trap-based verification. As mentioned in
Section 3, the protocol has a communication complexity of O(|C|13log(|C|)) which
is clearly an improvement over O(|C|2048). This improvement stems from the trust
added to the measurement device. However, the overhead is still too great for any
practical implementation.

HPDF Protocol Independently from the GKW approach, Hajdušek, Pérez-Delgado
and Fitzsimons developed a protocol which also combines the CHSH rigidity

Theory Comput Syst

result with the VUBQC protocol. This protocol, which we refer to as the HPDF
protocol has the same structure as GKW in the sense that it is divided into a veri-
fied preparation stage and a verified computation stage. The major difference is that
the number of non-communicating provers is on the order O(poly(|C|)), where C is
the computation that the verifier wishes to delegate. Essentially, there is one prover
for each Bell pair that is used in the verified preparation stage. This differs from
the previous two approaches in that the verifier knows, a priori, that there is a ten-
sor product structure of states. She then needs to certify that these states are close,
in trace distance, to Bell pairs. The advantage of assuming the existence of the ten-
sor product structure, instead of deriving it through the RUV rigidity result, is that
the overhead of the protocol is drastically reduced. Specifically, the total number of
provers, and hence the total communication complexity of the protocol is of the order
O(|C|4log(|C|)).

We now state the steps of the HPDF protocol. We will refer to one of the
provers as the verifier’s untrusted measurement device. This is akin to the sender
prover in the GKW protocol. The remaining provers are the ones which will
“receive” the states prepared by the verifier and subsequently perform the quantum
computation.

(1) Verified preparation. The verifier is trying to certify the correct preparation of
the resource states {|+θ 〉}θ and |0〉, |1〉, where θ ∈ {0, π/4, ..., 7π/4}. The veri-
fier instructs each prover to prepare a Bell pair and send one half to her untrusted
measurement device. For each received state, she will randomly measure one of
the following observables {X,Y, Z, (X+Z)/

√
2, (Y+Z)/

√
2, (X+Y)/

√
2, (X−

Y)/
√

2}. Each prover is either instructed to randomly measure an observable
from the set {X,Y, Z} or to not perform any measurement at all. The latter case
corresponds to the qubits which are prepared for the computation stage. The
verifier will compute correlations between the measurement outcomes of her
device and the provers and accept if these correlations are above some thresh-
old parametrized by ε = poly(δ, 1/|C|) (ε → 0 as δ → 0 or |C| → ∞), where
δ > 0 is the desired trace distance between the reduced state on the receiving
provers’ sides and the ideal state consisting of the required resource states in
tensor product, up to a local isometry.

(2) Verified computation. Assuming the verifier accepted in the previous stage,
she instructs the provers that have received the resource states to act as a sin-
gle prover. The verifier then performs the VUBQC protocol with that prover
as if she had sent him the resource states. She accepts the outcome of the
computation if all trap measurements succeed, as in VUBQC.

In their paper, Hajdušek et al have proved that the procedure in the verified prepa-
ration stage of their protocol constitutes a self-testing procedure for Bell states. This
procedure self-tests individual Bell pairs, as opposed to the CHSH rigidity theo-
rem which self-tests a tensor product of Bell pairs. In this case, however, the tensor
product structure is already given by having the O(|C|4log(|C|)) non-communicating
provers. The correctness of the verified computation stage follows from the robust-
ness of the VUBQC protocol, as mentioned in the previous section. One therefore
has the following:

Theory Comput Syst

Theorem 11 The HPDF protocol is an MIP∗[poly] protocol achieving an inverse
polynomial gap between completeness and soundness.

4.2 Verification Based on Self-Testing Graph States

We saw, in the HPDF protocol, that having multiple non-communicating provers
presents a certain advantage in characterising the shared state of these provers, due
to the tensor product structure of the provers’ Hilbert spaces. This approach not only
leads to simplified proofs, but also to a reduced overhead in characterising this state,
when compared to the CHSH rigidity Theorem 8, from [18].

Another approach which takes advantage of this tensor product structure is the
one of McKague from [21]. In his protocol, as in HPDF, the verifier will interact
with O(poly(|C|)) provers. Specifically, there are multiple groups of O(|C|) provers,
each group jointly sharing a graph state |G〉. In particular, each prover should hold
only one qubit from |G〉. The central idea is for the verifier to instruct the provers to
measure their qubits to either test that the provers are sharing the correct graph state
or to perform an MBQC computation of C. This approach is similar to the stabilizer
measurement-only protocol of Section 3.1 and, just like in that protocol or the Test-
or-Compute or RUV protocols, the verifier will randomly alternate between tests and
computation.

Before giving more details about this verification procedure, we first describe the
type of graph state that is used in the protocol and the properties which allow this
state to be useful for verification. McKague considers |G〉 to be a triangular graph
state, which is a type of universal cluster state. What this means is that the graph G

on which the state is based on, is a triangular lattice (a planar graph with triangular
faces). An example is shown in Fig. 13. For each vertex v in G we have that:

XvZN(v) |G〉 = |G〉 (69)

Where N(v) denotes the neighbors of the vertex v. In other words, |G〉 is stabilized
by the operators Kv = XvZN(v), for all vertices v. This is important for the testing
part of the protocol as it means that measuring the observable Sv will always yield
the outcome 1. Another important property is:

XτZN(τ) |G〉 = − |G〉 (70)

Fig. 13 Triangular lattice graph

Theory Comput Syst

Fig. 14 Verifier instructing some of the provers to perform measurements in McKague’s protocol

where τ is a set of 3 neighboring vertices which comprise a triangle in the graph G

(and N(τ) are the odd neighbors of those vertices39). This implies that measuring
Tτ = XτZN(τ) produces the outcome −1. Triangular graph states are universal for
quantum computation, as explained in [21, 78], by performing local measurements
(with corrections) on the vertex qubits using the observables R(θ) = cos(θ)X +
sin(θ)Z, where θ ∈ {0, π/4, ..., 7π/4}.

We now have the necessary elements to describe McKague’s protocol. The verifier
considers a triangular graph state |G〉 for the computation she wishes to verify. Let
n = O(|C|) denote the number of vertices in G. In the ideal case, there will be
multiple groups of n provers and, in each group, every prover should have one of
the qubits of this graph (entangled with its neighbors). Denote T as the number of
triangles (consisting of 3 neighboring vertices) in G and NG = 3n+T . The protocol’s
setting is shown in Fig. 14.

The verifier will choose one of the n groups of provers at random to perform the
computation C. The computation is performed in an MBQC fashion. In other words,
the verifier will pick appropriate measurement angles {θv}v∈V (G), for all vertices in
G, as well as a partial order for the vertices. To perform the computation C, the ver-
ifier instructs the provers to measure the qubits of |G〉 with the observables R(θv),
defined above. The partial order establishes the temporal ordering of these measure-
ments. Additionally, the θv angles, for the R(θv) measurements, should be updated
so as to account for corrections arising from previous measurement outcomes. In
other words, the angles {θv}v∈V (G), which we shall refer to as computation angles,

39In other words, N(τ) consists of those vertices that are connected to an odd number of vertices from τ .

Theory Comput Syst

are the ideal angles assuming no corrections. See Section 1 for more details about
measurement-based quantum computations.

The remaining groups of provers are used to test that the correct graph state, |G〉,
was prepared. This testing phase consists in the verifier randomly choosing to run
one of the following sub-protocols:

• Vertex test, chosen with probability n
NG

. The verifier randomly picks a vertex
v of the graph. She instructs the prover having the qubit corresponding to v to
measure it in the X basis. At the same time, she asks the provers having the
neighboring qubits, N(v), to measure them in the Z basis. The ±1 outcomes
of the provers are multiplied by the verifier and she checks to see whether this
product is 1 (since she is essentially measuring the Sv stabilizer). If this is the
case, she accepts, otherwise she rejects.

• Triangle test, chosen with probability T
NG

. Similar to the previous test, the ver-
ifier picks a random triangle in G, consisting of the vertices τ . She instructs the
provers having these vertices to measure them in the X basis, while their neigh-
bors (N(τ)) are instructed to measure in the Z basis. The verifier checks if the
product of their outcomes is −1 and if so, she accepts, otherwise she rejects.

• R(θ) test, chosen with probability 2n
NG

. In this case the verifier first randomly
picks a vertex v of the graph, a neighbor u of v (so u ∈ N(v)) and t in {−1, +1}.
She then randomly picks X with probability p = cos(θv)

cos(θv)+|sin(θv)| or Z with prob-
ability 1 − p, where θv is the computation angle associated with v. If she chose
X, then she queries the prover holding v to measure R(tθv), and his neighbors
(N(v)) to measure Z. She accepts if the product of their replies is +1. If the ver-
ifier instead chose Z, then she instructs the prover holding v to measure tR(tθv),
the prover holding u to measure X and the neighbors of u and v to measure Z.
She accepts if the product of their outcomes is +1.

Together, these three tests are effectively performing a self-test of the graph state
|G〉 and the prover’s observables. Specifically, McKague showed the following:

Theorem 12 For a triangular graph G, having n vertices, suppose that n provers,

performing the strategy S = (

∣∣∣ψ̃
〉
, {Õj

i }ij) succeed in the test described above with

probability 1 − ε, where ε = poly(δ, 1/n) for some δ > 0 and ε → 0 as δ → 0

or n → ∞. The strategy involves sharing the state
∣∣∣ψ̃
〉
and measuring the observ-

ables {Õj
i }ij , where each prover, i, has observables {Õj

i }j . Then there exists a local
isometry � = ⊗n

i=1 �i and a state |junk〉 such that:

T D(�(

∣∣∣ψ̃
〉
), |junk〉|G〉) ≤ δ (71)

and for all j :

T D

(
�

(
n⊗

i=1

Õ
j
i

∣∣∣ψ̃
〉)

, |junk〉
n⊗

i=1

O
j
i |G〉

)
≤ δ (72)

Theory Comput Syst

where for all i, Oj
i ∈ {R(θ)| θ ∈ {0, π/4, ..., 7π/4}}.40

Note that the verifier will ask the provers to perform the same types of measure-
ments in both the testing phase and the computation phase of the protocol. This
means that, at the level of each prover, the testing and computation phases are indis-
tinguishable. Moreover, the triangular state |G〉, being a universal cluster state, will
be the same for computations of the same size. Therefore, the protocol is blind in
the sense that each prover, on its own, is unaware of what computation is being per-
formed. In summary, the protocol consists of the verifier choosing to perform one of
the following:

• Computation. In this case, the verifier instructs the provers to perform the
MBQC computation of C on the graph state |G〉, as described above.

• Testing |G〉. In this case, the verifier will randomly choose between one of the
three tests described above accepting if an only if the test succeeds.

It is therefore the case that:

Theorem 13 McKague’s protocol is an MIP∗[poly] protocol having an inverse
polynomial gap between completeness and soundness.

As with the previous approaches, the reason for the inverse polynomial gap
between completeness and soundness is the use of a self-test with robustness ε =
poly(1/n) (and ε → 0 as n → ∞). In turn, this leads to a polynomial overhead
for the protocol as a whole. Specifically, McKague showed that the total number of
required provers and communication complexity, for a quantum computation C, is
of the order O(|C|22). Note, however, that each of the provers must only perform a
single-qubit measurement. Hence, apart from the initial preparation of the graph state
|G〉, the individual provers are not universal quantum computers, merely single-qubit
measurement devices.

4.3 Post Hoc Verification

In Section 3.2 we reviewed a protocol by Morimae and Fitzsimons for post hoc veri-
fication of quantum computation. Of course, that protocol involved a single quantum
prover and a verifier with a measurement device. In this section, we review two post
hoc protocols for the multi-prover setting having a classical verifier. We start with
the first post hoc protocol by Fitzsimons and Hajdušek.

FH Protocol Similar to the 1S-Post-hoc protocol from Section 3.2, the protocol of
Fitzsimons and Hajdušek, which we shall refer to as the FH protocol, also makes use
of the local Hamiltonian problem stated in Definition 9. As mentioned, this problem
is complete for the class QMA, which consists of problems that can be decided by a

40The measurement angles need not be restricted to this set, however, as in VUBQC, this set of angles is
sufficient for performing universal MBQC computations.

Theory Comput Syst

BQP verifier receiving a witness state from a prover. Importantly, the size of the wit-
ness state is polynomial in the size of the input to the problem. However, Fitzsimons
and Vidick proposed a protocol for the k-local Hamiltonian problem (and hence any
QMA problem), involving 5 provers, in which the quantum state received by the ver-
ifier is of constant size [79]. That protocol is the basis for the FH protocol and so we
start with a description of it.

Suppose that the k-local Hamiltonian is of the form H = ∑
i Hi , acting on a

system of n qubits and each Hi is a k-local, n-qubit projector. For fixed a and b, such
that b − a ≥ 1/poly(n), the verifier should accept if there exists a state |ψ〉 such
that 〈ψ |H |ψ〉 ≤ a and reject if for all states |ψ〉 it is the case that 〈ψ |H |ψ〉 ≥ b.
Suppose we are in the acceptance case and let |ψ〉 be the witness state. The 5 provers
must share a version of |ψ〉 encoded in the 5-qubit error correcting code,41 denoted
|ψ〉L. Specifically, for each logical qubit of |ψ〉L, each prover should hold one of its
constituent physical qubits. The verifier will then check that the provers are indeed
sharing this state, accepting if this is the case and rejecting otherwise. She will also
perform an energy measurement on the state, to estimate if it has energy above b

or below a. To do this she will, with equal probability, choose to either test that
the shared state of the provers has energy below a or that the provers share a state
encoded in the 5-qubit code:

• Energy measurement. In this case, the verifier will pick a random term Hi ,
from H , and ask each prover for k qubits corresponding to the logical states
on which Hi acts. The verifier will then perform a two-outcome measurement,
defined by the operators {Hi, I − Hi} on the received qubits. As in the 1S-Post-
hoc protocol, this provides an estimate for the energy of |ψ〉. The verifier accepts
if the measurement outcome indicates the state has energy below a.

• Encoding measurement. In this case the verifier will choose at random between
two subtests. In the first subtest, she will choose j at random from 1 to n and
ask each prover to return the physical qubits comprising the j ’th logical qubit.
She then measures these qubits to check whether their joint state lies within the
code space, accepting if it does and rejecting otherwise. In the second subtest,
the verifier chooses a random set, S, of 3 values between 1 and n. She also
picks one of the values at random, labelled j . The verifier then asks a randomly
chosen prover for the physical qubits of the logical states indexed by the values
in S, while asking the remaining provers for their shares of logical qubit j . As
an example, if the set contains the values {1, 5, 8}, then the verifier picks one of
the 5 provers at random and asks him for his shares (physical qubits) of logical
qubits 1, 5 and 8 from |ψ〉. Assuming that the verifier also picked the random
value 8 from the set, then she will ask the remaining provers for their shares of
logical qubit 8. The verifier then measures logical qubit j (or 8, in our example)
and checks if it is in the code subspace, accepting if it is and rejecting otherwise.
The purpose of this second subtest is to guarantee that the provers respond with
different qubits when queried.

41The 5-qubit code is the smallest error correcting capable of correcting for arbitrary single-qubit errors
[80].

Theory Comput Syst

Table 3 Generators for 5-qubit code

Generator Name

IXZZX g1

XIXZZ g2

ZXIXZ g3

ZZXIX g4

One can see that when the witness state exists and the provers follow the protocol,
the verifier will indeed accept with high probability. On the other hand, Fitzsimons
and Vidick show that when there is no witness state, the provers will fail at con-
vincing the verifier to accept with high probability. This is because they cannot
simultaneously provide qubits yielding the correct energy measurements and also
have their joint state be in the correct code space. This also illustrates why their pro-
tocol required testing both of these conditions. If one wanted to simplify the protocol,
so as to have a single prover providing the qubits for the verifier’s {Hi, I − Hi} mea-
surement, then it is no longer possible to prove soundness. The reason is that even
if there does not exist a |ψ〉 having energy less than a for H , the prover could still
find a group of k qubits which minimize the energy constraint for the specific Hi

that the verifier wishes to measure. The second subtest prevents this from happening,
with high probability, since it forces the provers to consistently provide the requested
indexed qubits from the state |ψ〉.

Note that for a BQP computation, defined by the quantum circuit C and input x,
the state |ψ〉 in the Fitzsimons and Vidick protocol becomes the Feynman-Kitaev
state of that circuit, as described in Section 3.2. The FH protocol essentially takes the
Fitzsimons and Vidick protocol for BQP computations and alters it by making the
verifier classical. This is achieved using an approach of Ji [81] which allows for the
two tests to be performed using only classical interaction with the provers. The idea is
based on self-testing and is similar to the rigidity of the CHSH game. To understand
this approach let us first examine the stabilizer generators, {gi}4

i=1 for the code space
of the 5-qubit code, shown in Table 3. Notice that they all involve only Pauli X, Z or
identity operators. In particular, the operator acting on the fifth qubit is always either
X or Z. Ji then considers rotating this operator so that X → X′ and Z → Z′, where
X′ = (X+Z)/

√
2 and Z′ = (X−Z)/

√
2, resulting in the new operators {g′

i}4
i=1 shown

in Table 4.

Table 4 Generators with fifth operator rotated

Generator Name

IXZZX′ g′
1

XIXZZ′ g′
2

ZXIXZ′ g′
3

ZZXIX′ g′
4

Theory Comput Syst

The new operators satisfy a useful property. For any state |φ〉 in the code space of
the 5-qubit code, it is the case that:

∑

i

〈φ|g′
i |φ〉 = 4

√
2 (73)

This is similar to the CHSH game. In the CHSH game, the ideal strategy involves
Alice measuring either X or Z and Bob measuring either X′ or Z′, respectively, on the
maximally entangled state |�+〉. These observables and the Bell state satisfy:

〈�+|XX′ + XZ′ + ZX′ − ZZ′|�+〉 = 2
√

2 (74)

It can be shown that having observables which satisfy this relation implies that Alice
and Bob win the CHSH game with the (quantum) optimal probability of success
cos2(π/8). Analogous to the CHSH game, the stabilizers {g′

i}4
i=1, viewed as observ-

ables, can be used to define a 5-player non-local game, in which the optimal quantum
strategy involves measuring these observables on a state encoded in the 5-qubit code.
Moreover, just like in the CHSH game, observing the players achieve the maximum
quantum win-rate for the game implies that, up to local isometry, the players are fol-
lowing the ideal quantum strategy. We will not detail the game, except to say that it
inolves partitioning the 5 provers into two sets, one consisting of four provers and the
other with the remaining prover. Such a bipartition of a state encoded in the 5-qubit
code yields a state which is isometric to a Bell pair. This means that the 5-player
game is essentially self-testing a maximally entangled state, hence the similarity to
the CHSH game. This then allows a classical verifier, interacting with the 5 provers,
to perform the encoding test of the Fitzsimons and Vidick protocol.

We have discussed how a classical verifier can test that the 5 provers share a state
encoded in the logical space of the 5-qubit code. But to achieve the functionality
of the Fitzsimons and Vidick protocol, one needs to also delegate to the provers the
measurement of a local term Hi from the Hamiltonian. This is again possible using
the 5-player non-local game. Firstly, it can be shown that, without loss of generality,
that each Hi , in the k-local Hamiltonian, can be expressed as a linear combination of
terms comprised entirely of I , X and Z. This means that the Hamiltonian itself is a
linear combination of such terms, H = ∑

i aiSi , where ai are real coefficients and
Si are k-local XZ-terms. This is akin to the XZ-Hamiltonian from the 1S-Post-hoc
protocol.

Given this fact, the verifier can measure one of the Si terms, in order to estimate
the energy of the ground state, instead of measuring {Hi, I − Hi}. She will pick an
Si term at random and ask the provers to measure the constituent Pauli observables
in Si . However, the verifier will also alternate these measurements with the stabilizer
measurements of the non-local game, rejecting if the provers do not achieve the max-
imal non-local value of the game. This essentially forces the provers to perform the
correct measurements (Fig. 15).

To summarize, the FH protocol is a version of the Fitzsimons and Vidick protocol
which restricts the provers to be BQP machines and uses Ji’s techniques, based on
non-local games, to make the verifier classical. The steps of the FH protocol are as
follows:

Theory Comput Syst

Fig. 15 Verifier interacting with the 5 provers

(1) The verifier instructs the provers to share the Feynman-Kitaev state, associated
with her circuit C, encoded in the 5-qubit error correcting code, as described
above. We denote this state as |ψ〉L. The provers are then split up and not
allowed to communicate. The verifier then considers a k-local Hamiltonian
having |ψL〉 as a ground state as well as the threshold values a and b, with
b − a > 1/poly(|C|).

(2) The verifier chooses to either perform the energy measurement or the encod-
ing measurement as described above. For the energy measurement she asks the
provers to measure a randomly chosen XZ-term from the local Hamiltonian.
The verifier accepts if the outcome indicates that the energy of |ψL〉 is below a.
For the encoding measurement the verifier instructs the provers to perform the
measurements of the 5-player non-local game. She accepts if the provers win
the game, indicating that their shared state is correctly encoded.

One therefore has:

Theorem 14 The FH protocol is an MIP∗ protocol achieving an inverse polynomial
gap between completeness and soundness.

There are two significant differences between this protocol and the previous
entanglement-based approaches. The first is that the protocol does not use self-testing
to enforce that the provers are performing the correct operations in order to imple-
ment the computation C. Instead, the computation is checked indirectly by using the
self-testing result to estimate the ground-state energy of the k-local Hamiltonian. This
then provides an answer to the considered BQP computation viewed as a decision

Theory Comput Syst

problem.42 The second difference is that the protocol is not blind. In all the previous
approaches, the provers had to share an entangled state which was independent of
the computation, up to a certain size. However, in the FH protocol, the state that the
provers need to share depends on which quantum computation the verifier wishes to
perform.

In terms of communication complexity, the protocol, as described, would involve
only 2 rounds of interaction between the verifier and the provers. However, since the
completeness-soundness gap is inverse polynomial, and therefore decreases with the
size of the computation, it becomes necessary to repeat the protocol multiple times
to properly differentiate between the accepting and rejecting cases. On the one hand,
the local Hamiltonian itself has an inverse polynomial gap between the two cases of
acceptance and rejection. As shown in [30, 68], for the Hamiltonian resulting from a
quantum circuit, C, that gap is 1/|C|2. To boost this gap to constant, the provers must
share O(|C|2) copies of the Feynman-Kitaev state.

On the other hand, the self-testing result has an inverse polynomial robustness.
This means that estimating the energy of the ground state is done with a preci-
sion which scales inverse polynomially in the number of qubits of the state. More
precisely, according to Ji’s result, the scaling should be 1/O(N16), where N is
the number of qubits on which the Hamiltonian acts [81]. This means that the
protocol should be repeated on the order of O(N16) times, in order to boost the
completeness-soundness gap to constant.

NV Protocol The second entanglement-based post hoc protocol was developed by
Natarajan and Vidick [23] and we therefore refer to it as the NV protocol. The main
ideas of the protocol are similar to those of the FH protocol. However, Natarajan and
Vidick prove a self-testing result having constant robustness and use it in order to
perform the energy estimation of the ground state for the local Hamiltonian.

The statement of their general self-testing result is too involved to state here, so
instead we reproduce a corollary to their result (also from [23]) that is used for the
NV protocol. This corollary involves self-testing a tensor product of Bell pairs:

Theorem 15 For any integer n there exists a two-player non-local game, known
as the Pauli braiding test (PBT), with O(n)-bit questions and O(1)-bit answers
satisfying the following:

Let S = (

∣∣∣ψ̃
〉
, Ã(a), B̃(b)) be the strategy employed by two players (Alice and

Bob) in playing the game, where
∣∣∣ψ̃
〉
is their shared state and Ã(a) and B̃(b) are their

respective (multi-qubit) observables when given n-bit questions a and b, respectively.
Suppose Alice and Bob win the Pauli braiding test with probability ω∗(PBT) − ε,
for some ε > 0 (note that ω∗(PBT) = 1). Then there exist δ = poly(ε), a local
isometry � = �A ⊗ �B and a state |junk〉 such that:

T D(�(

∣∣∣ψ̃
〉
), |junk〉|�+〉⊗n) ≤ δ (75)

42In their paper, Fitzsimons and Hajdušek also explain how their protocol can be used to sample from a
quantum circuit, rather than solve a decision problem [22].

Theory Comput Syst

T D
(
�
(
Ã(a) ⊗ B̃(b)

∣∣∣ψ̃
〉)

, |junk〉X(a) ⊗ Z(b)|�+〉⊗n
)

≤ δ (76)

where X(a) =
n⊗

i=1
Xa(i) and Z(b) =

n⊗
i=1

Zb(i).

This theorem is essentially a self-testing result for a tensor product of Bell states,
and Pauli X and Z observables, achieving a constant robustness. The Pauli braiding
test is used in the NV protocol in a similar fashion to Ji’s result, from the previous
subsection, in order to certify that a set of provers are sharing a state that is encoded
in a quantum error correcting code. Again, this relies on a bi-partition of the provers
into two sets, such that, an encoded state shared across the bi-partition is equivalent
to a Bell pair.

Let us first explain the general idea of the Pauli braiding test for self-testing n

Bell pairs and n-qubit observables. We have a referee that is interacting with two
players, labelled Alice and Bob. The test consists of three subtests which are chosen
at random by the referee. The subtests are:

• Linearity test. In this test, the referee will randomly pick a basis setting, W ,
from the set {X, Z}. She then randomly chooses two strings a1, a2 ∈ {0, 1}n and
sends them to Alice. With equal probability, the referee takes b1 to be either a1,
a2 or a1 ⊕ a2. She also randomly chooses a string b2 ∈ {0, 1}n and sends the
pair (b1, b2) to Bob.43 Alice and Bob are then asked to measure the observables
W(a1), W(a2) and W(b1), W(b2), respectively, on their shared state. We denote
Alice’s outcomes as a1, a2 and Bob’s outcomes as b1, b2. If b1 = a1 (or b1 = a2,
respectively), the referee checks that b1 = a1 (or b1 = a2, respectively). If
b1 = a1 ⊕ a2, she checks that b1 = a1a2. This test is checking, on the one hand,
that when Alice and Bob measure the same observables, they should get the same
outcome (which is what should happen if they share Bell states). On the other
hand, and more importantly, it is checking the commutation and linearity of their
operators, i.e. that W(a1)W(a2) = W(a2)W(a1) = W(a1 + a2) (and similarly
for Bob’s operators).

• Anticommutation test. The referee randomly chooses two strings x, z ∈ {0, 1}n,
such that x · z = 1 mod 2, and sends them to both players. These strings define
the observables X(x) and Z(z) which are anticommuting because of the imposed
condition on x and z. The referee then engages in a non-local game with Alice
and Bob designed to test the anticommutation of these observables for both of
their systems. This can be any game that tests this property, such as the CHSH
game or the magic square game, described in [82, 83]. As an example, if the
referee chooses to play the CHSH game, then Alice will be instructed to measure
either X(x) or Z(z) on her half of the shared state, while Bob would be instructed
to measure either (X(x) + Z(z))/

√
2 or (X(x) − Z(z))/

√
2. The test is passed if

the players achieve the win condition of the chosen anticommutation game. Note
that for the case of the magic square game, the condition can be achieved with

43Note that pair can be either (b1,b2) or (b2,b1), so that Bob does not know which string is the one
related to Alice’s inputs.

Theory Comput Syst

probability 1 when the players implement the optimal quantum strategy. For this
reason, if the chosen game is the magic square game, then ω∗(PBT) = 1.

• Consistency test. This test combines the previous two. The referee randomly
chooses a basis setting, W ∈ {X, Z} and two strings x, z ∈ {0, 1}n. Addition-
ally, let w = x, if W = X and w = z if W = Z. The referee sends W , x
and z to Alice. With equal probability the referee will then choose to perform
one of two subtests. In the first subtest, the referee sends x, z to Bob as well
and plays the anticommutation game with both, such that Alice’s observable is
W(w). As an example, if W = X and the game is the CHSH game, then Alice
would be instructed to measure X(x), while Bob is instructed to measure either
(X(x)+Z(z))/

√
2 or (X(x)−Z(z))/

√
2. This subtest essentially mimics the anti-

commutation test and is passed if the players achieve the win condition of the
game. In the second subtest, which mimics the linearity test, the referee sends
W , w and a random string y ∈ {0, 1}n to Bob, instructing him to measure W(w)

and W(y). Alice is instructed to measure W(x) and W(z). The test if passed if
Alice and Bob obtain the same result for the W(w) observable. For instance, if
W = X, then both Alice and Bob will measure X(x) and their outcomes for that
measurement must agree.

Having observables that satisfy the linearity conditions of the test as well as the
anticommutation condition implies that they are isometric to the actual X and Z
observables acting on a maximally entangled state. This is what the Pauli braiding
test checks and what is proven by the self-testing result of Natarajan and Vidick.

We can now describe the NV protocol. Similar to the FH protocol, for a quan-
tum circuit, C, and an input, x, one considers the associated Feynman-Kitaev state,
denoted |ψ〉. This is then used to construct a 2-local XZ-Hamiltonian such that
the ground state of this Hamiltonian is |ψ〉. As before, for some a and b, with
b − a > 1/poly(|C|), when C accepts x we have that 〈ψ |H |ψ〉 < a, otherwise
〈ψ |H |ψ〉 > b. The verifier will instruct 7 provers to share a copy of |ψ〉 state,
encoded in a 7-qubit quantum error correcting code known as Steane’s code. The
provers are then asked to perform measurements so as to self-test an encoded state
or perform an energy measurement on this state. The code space, for Steane’s code,
is the 7-qubit subspace stabilized by all operators generated by {gi}6

i=1, where the
generators are listed in Table 5.

The reason Natarajan and Vidick use this specific error correcting code is because
it has two properties that are necessary for the application of their self-testing result.

Table 5 Generators for Steane’s 7-qubit code

Generator Name

IIIXXXX g1

IXXIIXX g2

XIXIXIX g3

IIIZZZZ g4

IXXIIXZ g5

ZIZIZIZ g6

Theory Comput Syst

The first property is that each stabilizer generator is a tensor product of only the I ,
X and Z operators. This, of course, is true for the 5-qubit code as well. The second
property is a symmetry condition: for each index i ∈ {1, ..., 6}, there exists a pair of
stabilizer generators, SX and SZ, such that SX consists exclusively of I and X operators
and has an X on position i, whereas SZ is identical to SX but with all X operators
replaced with Z. This property is not satisfied by the 5-qubit code and will allow the
verifier to delegate to the provers measurements of the form X(x) and Z(z), where x
and z are binary strings, as in the Pauli braiding test.

Putting everything together, the protocol works as follows. The verifier instructs
the 7 provers to share an encoded instance of the Feynman-Kitaev state, |ψ〉L, such
that, for each logical qubit in |ψL〉, each prover will hold one of 7 the constituent
physical qubits. She then chooses at random to perform one of the following:

• Pauli braiding test. The verifier chooses one of the 7 provers at random to be
Alice, while the remaining provers will take on the role of Bob. The verifier
then performs the Pauli braiding test with Alice and Bob in order to self-test the
logical qubits in |ψL〉. As mentioned, each logical qubit, encoded in the 7 qubit
code, is equivalent to a Bell pair under the chosen bi-partition. The Pauli braiding
test is essentially checking that the provers have correctly encoded each of the
qubits in |ψ〉 and that they are correctly measuring X and Z observables. The
verifier rejects if the provers do not pass the test.

• Energy test. In this case, the verifier will pick an XZ-term, S, from H , at random,
and instruct the provers to measure this term on their shared state. Note that S

consists of logical X and Z operators. This means that each prover will need to
perform local measurements so that their joint measurement acts as either XL or
ZL, respectively. Additionally, XL and ZL, for the 7 qubit code, are expressed as
tensor products of physical X and Z operations. This means that each prover will
be instructed to measure an operators of the form X(x) and Z(z), on its physical
qubits, where x, z ∈ {0, 1}N , and N is the total number of logical qubits on which
H acts. The product X(x)Z(z) is the outcome for that prover’s share of S. The
verifier then takes all of these ±1 outcomes and multiplies them together, thus
obtaining the outcome of measuring S itself. She accepts if the outcome of the
measurement indicates that the estimated energy of |ψ〉 is below a and rejects
otherwise.

• Energy consistency test. This test is a combination of the previous two. As in
the Pauli braiding test, the provers are bi-partitioned into two sets, one consisting
of one prover, denoted Alice, and the other consisting of the other 6 provers,
jointly denoted as Bob. The verifier now performs a test akin to the linearity test
from Pauli braiding. She randomly chooses W ∈ {X, Z}, and let w = x, if W = X
and w = z if W = Z. She also chooses x, z ∈ {0, 1}N according to the same
distribution as in the energy test (i.e. as if she were instructing the provers to
measure a random XZ-term from H). The verifier then does one of the following:

• With probability 1/2, instructs Alice to measure the observables X(x)
and Z(z). Additionally, the verifier chooses y ∈ {0, 1}N at random and
instructs Bob to measure W(y) and W(y ⊕ w). If W = X, the verifier
accepts if the product of Bob’s answers agrees with Alice’s answer for

Theory Comput Syst

the X(x) observable. If W = Z, the verifier accepts if the product of
Bob’s answers agrees with Alice’s answer for the Z(z) observable. Note
that this is the case since the product of Bob’s observables should be
W(w) if he is behaving honestly.

• With probability 1/4, instructs Alice to measure W(y) and W(v), where
y,w ∈ {0, 1}N are chosen at random. Bob is instructed to measure W(y)
and W(y ⊕ w). The verifier accepts if the outcomes of Alice and Bob
for W(y) agree.

• With probability 1/4, instructs Alice to measure W(y ⊕ w) and W(v),
where y,w ∈ {0, 1}N are chosen at random. Bob is instructed to mea-
sure W(y) and W(y⊕w). The verifier accepts if the outcomes of Alice
and Bob for W(y ⊕ w) agree.

The self-testing result guarantees that if these tests succeed, the verifier obtains an
estimate for the energy of the ground state. Importantly, unlike the FH protocol, her
estimate has constant precision. However, the protocol, as described up to this point,
will still have an inverse polynomial completeness-soundness gap given by the local
Hamiltonian. Recall that this is because the Feynman-Kitaev state will have energy
below a when C accepts x with high probability, and energy above b otherwise, where
b − a > 1/|C|2. But one can easily boost the protocol to a constant gap between
completeness and soundness by simply requiring the provers to share M = O(|C|2)
copies of the ground state. This new state, |ψ〉⊗M , would then be the ground state
of a new Hamiltonian H ′.44 One then runs the NV protocol for this Hamiltonian. It
should be mentioned that this Hamiltonian is no longer 2-local, however, all of the
tests in the NV protocol apply for these general Hamiltonians as well (as long as each
term is comprised of I , X and Z operators, which is the case for H ′). Additionally,
the new Hamiltonian has a constant gap. The protocol therefore achieves a constant
number of rounds of interaction with the provers (2 rounds) and we have that:

Theorem 16 The NV protocol is anMIP∗ protocol achieving a constant gap between
completeness and soundness.

To then boost the completeness-soundness gap to 1 − ε, for some ε > 0, one can
perform a parallel repetition of the protocol O(log(1/ε)) times.

4.4 Summary of Entanglement-Based Protocols

We have seen that having non-communicating provers sharing entangled states allows
for verification protocols with a classical client. What all of these protocols have
in common is that they all make use of self-testing results. These essentially state
that if a number of non-communicating players achieve a near optimal win rate in a

44Note that the state still needs to be encoded in the 7 qubit code.

Theory Comput Syst

non-local game, the strategy they employ in the game is essentially fixed, up to a local
isometry. The strategy of the players consists of their shared quantum state as well as
their local observables. Hence, self-testing results provide a precise characterisation
for both.

This fact is exploited by the surveyed protocols in order to achieve verifiability.
Specifically, we have seen that one approach is to define a number of non-local games
so that by combining the optimal strategies of these games, the provers effectively
perform a universal quantum computation. This is the approach employed by the
RUV protocol [18]. Alternatively, the self-testing result can be used to check only for
the correct preparation of a specific resource state. This resource state is then used by
the provers to perform a quantum computation. How this is done depends on the type
of resource state and on how the computation is delegated to the provers. For instance,
one possibility is to remotely prepare the resource state used in the VUBQC protocol
and then run the verification procedure of that protocol. This is the approach used by
the GKW and HPDF protocols [19, 20]. Another possibility is to prepare a cluster
state shared among many provers and then have each of those provers measure their
states so as to perform an MBQC computation. This approach was used by McKague
in his protocol [21]. Lastly, the self-tested resource state can be the ground state of a
local Hamiltonian leading to the post hoc approaches employed by the FH and NV
protocols.

We noticed that, depending on the approach that is used, there will be differ-
ent requirements for the quantum operations of the provers. Of course, all protocols
require that collectively the provers can perform BQP computations, however, indi-
vidually some provers need not be universal quantum computers. Related to this is
the issue of blindness. Again, based on what approach is used some protocols utilize
blindness and some do not. In particular, the post hoc protocols are not blind since
the computation and the input are revealed to the provers so that they can prepare the
Feynman-Kitaev state.

We have also seen that the robustness of the self-testing game impacts the commu-
nication complexity of the protocol. Specifically, having robustness which is inverse
polynomial in the number of qubits of the self-tested state, leads to an inverse poly-
nomial gap between completeness and soundness. In order to make this gap constant,
the communication complexity of the protocol has to be made polynomial. This
means that most protocols will have a relatively large overhead, when compared to
prepare-and-send or receive-and-measure protocols. Out of the surveyed protocols,
the NV protocol is the only one which utilizes a self-testing result with constant
robustness and therefore has a constant completeness-soundness gap. We summarize
all of these facts in Table 6.45

45Note that for the HPDF protocol we assumed that there is one prover with quantum memory, comprised
of the individual provers that come together in order to perform the MBQC computation at the end of the
protocol. Since, to achieve a completeness-soundness gap of 1 − ε. the protocol is repeated O(log(1/ε))

times, this means there will be O(log(1/ε)) provers with quantum memory in total.

Theory Comput Syst

Ta
bl
e
6

C
om

pa
ri

so
n

of
en

ta
ng

le
m

en
t-

ba
se

d
pr

ot
oc

ol
s

Pr
ot

oc
ol

Pr
ov

er
s

Q
m

em
pr

ov
er

s
R

ou
nd

s
C

om
m

un
ic

at
io

n
B

lin
d

R
U

V
2

2
O

(N
81

92
·lo

g
(1

/
ε
))

O
(N

81
92

·lo
g
(1

/
ε
))

Y

M
cK

ag
ue

O
(N

22
·lo

g
(1

/
ε
))

0
O

(N
22

·lo
g
(1

/
ε
))

O
(N

22
·lo

g
(1

/
ε
))

Y

G
K

W
2

1
O

(N
20

48
·lo

g
(1

/
ε
))

O
(N

20
48

·lo
g
(1

/
ε
))

Y

H
PD

F
O

(N
4
lo

g
(N

)
·lo

g
(1

/
ε
))

O
(l

o
g
(1

/
ε
))

O
(N

4
lo

g
(N

)
·lo

g
(1

/
ε
))

O
(N

4
lo

g
(N

)
·lo

g
(1

/
ε
))

Y

FH
5

5
O

(N
16

·lo
g
(1

/
ε
))

O
(N

19
·lo

g
(1

/
ε
))

N

N
V

7
7

O
(1

)
O

(N
3
·lo

g
(1

/
ε
))

N

W
e

de
no

te
N

=
|C|

to
be

th
e

si
ze

of
th

e
de

le
ga

te
d

qu
an

tu
m

co
m

pu
ta

tio
n

to
ge

th
er

w
ith

th
e

in
pu

tt
o

th
at

co
m

pu
ta

tio
n.

T
he

lis
te

d
va

lu
es

ar
e

gi
ve

n
as

su
m

in
g

a
co

m
pl

et
en

es
s-

so
un

dn
es

s
ga

p
of

at
le

as
t

1
−

ε
,f

or
so

m
e

ε
>

0.
Fo

r
th

e
“Q

m
em

pr
ov

er
s”

co
lu

m
n,

th
e

nu
m

be
rs

in
di

ca
te

ho
w

m
an

y
pr

ov
er

s
ne

ed
to

ha
ve

a
qu

an
tu

m
m

em
or

y
th

at
is

no
t

of
co

ns
ta

nt
si

ze
,w

ith
re

sp
ec

t
to

|C|
(i

f
w

e
ig

no
re

th
e

pr
ep

ar
at

io
n

of
th

e
in

iti
al

sh
ar

ed
en

ta
ng

le
d

st
at

e)
.T

he
“R

ou
nd

s”
co

lu
m

n
qu

an
tif

ie
s

ho
w

m
an

y
ro

un
ds

of
in

te
ra

ct
io

n
ar

e
pe

rf
or

m
ed

be
tw

ee
n

th
e

ve
ri

fi
er

an
d

th
e

pr
ov

er
s,

w
he

re
as

“C
om

m
un

ic
at

io
n”

qu
an

tif
ie

s
th

e
to

ta
la

m
ou

nt
of

co
m

m
un

ic
at

io
n

(n
um

be
r

of
ro

un
ds

tim
es

th
e

si
ze

of
th

e
m

es
sa

ge
s)

.
N

ot
e

th
at

a
si

m
ila

r
ta

bl
e

ca
n

be
fo

un
d

in
[2

4]

Theory Comput Syst

5 Outlook

5.1 Sub-Universal Protocols

So far we have presented protocols for the verification of universal quantum compu-
tations, i.e. protocols in which the provers are assumed to be BQP machines. In the
near future, however, quantum computers might be more limited in terms of the type
of computations that they can perform. Examples of this include the class of so-called
instantaneous quantum computations, denoted IQP, boson sampling or the one-pure
qubit model of quantum computation [1, 2, 84]. While not universal, these examples
are still highly relevant since, assuming some plausible complexity theoretic conjec-
tures hold, they could solve certain problems or sample from certain distributions that
are intractable for classical computers. One is therefore faced with the question of
how to verify the correctness of outcomes resulting from these models. In particular,
when considering an interactive protocol, the prover should be restricted to the corre-
sponding sub-universal class of problems and yet still be able to prove statements to a
computationally limited verifier. We will see that many of the considered approaches
are adapted versions of the VUBQC protocol from Section 2.2. It should be noted,
however, that the protocols themselves are not direct applications of VUBQC. In each
instance, the protocol was constructed so as to adhere to the constraints of the model.

The first sub-universal verification protocol is for the one-pure (or one-clean) qubit
model. A machine of this type takes as input a state of limited purity (for instance,
a system comprising of the totally mixed state and a small number of single qubit
pure states), and is able to coherently apply quantum gates. The model was consid-
ered in order to reflect the state of a quantum computer with noisy storage. In [85],
Kapourniotis, Kashefi and Datta introduced a verification protocol for this model
by adapting VUBQC to the one-pure qubit setting. The verifier still prepares indi-
vidual pure qubits, as in the original VUBQC protocol, however the prover holds
a mixed state of limited purity at all times.46 Additionally, the prover can inject or
remove pure qubits from his state, during the computation, as long as it does not
increase the total purity of the state. The resulting protocol has an inverse polyno-
mial completeness-soundness gap. However, unlike the universal protocols we have
reviewed, the constraints on the prover’s state do not allow for the protocol to be
repeated. This means that the completeness-soundness gap cannot be boosted through
repetition.

Another model, for which verification protocols have been proposed, is that of
instantaneous quantum computations, or IQP [2, 86]. An IQP machine is one which
can only perform unitary operations that are diagonal in the X basis and therefore
commute with each other. The name “instantaneous quantum computation” illus-
trates that there is no temporal structure to the quantum dynamics [2]. Additionally,
the machine is restricted to measurements in the computational basis. It is impor-
tant to mention that IQP does not represent a decision class, like BQP, but rather a

46The purity of a d-qubit state, ρ, is quantified by the purity parameter defined in [85] as: π(ρ) =
log(T r(ρ2)) + d.

Theory Comput Syst

sampling class. The input to a sampling problem is a specification of a cer-
tain probability distribution and the output is a sample from that distribution.
The class IQP, therefore, contains all distributions which can be sampled effi-
ciently (in polynomial time) by a machine operating as described above. Under
plausible complexity theoretic assumptions, it was shown that this class is not con-
tained in the set of distributions which can be efficiently sampled by a classical
computer [86].

In [2], Shepherd and Bremner proposed a hypothesis test in which a classical
verifier is able to check that the prover is sampling from an IQP distribution. The
verifier cannot, however, check that the prover sampled from the correct distributions.
Nevertheless, the protocol serves as a practical tool for demonstrating a quantum
computational advantage. The test itself involves an encoding, or obfuscation scheme
which relies on a computational assumption (i.e. it assumes that a particular problem
is intractable for IQP machines).

Another test of IQP problems is provided by the Hangleiter et al approach, from
Section 3.2 [30]. Recall that this was essentially the 1S-Post-hoc protocol for cer-
tifying the ground state of a local Hamiltonian. Hangleiter et al have the prover
prepare multiple copies of a state which is the Feynman-Kitaev state of an IQP cir-
cuit. They then use the post hoc protocol to certify that the prover prepared the correct
state (measuring local terms from the Hamiltonian associated with that state) and
then use one copy to sample from the output of the IQP circuit. This is akin to the
measurement-only approach of Section 3.1. In a subsequent paper, by Bermejo-Vega
et al, they consider a subclass of sampling problems that are contained in IQP and
prove that this class is also hard to classically simulate (subject to standard complex-
ity theory assumptions). The problems can be viewed as preparing a certain entangled
state and then measuring all qubits in a fixed basis. The authors provide a way to cer-
tify that the state prepared is close to the ideal one, by giving an upper bound on the
trace distance. Moreover, the measurements required for this state certification can
be made using local stabilizer measurements, for the considered architectures and
settings [5].

Recently, another scheme has been proposed, by Mills et al. [87], which again
adapts the VUBQC protocol to the IQP setting. This eliminates the need for com-
putational assumptions, however it also requires the verifier to have a single qubit
preparation device. In contrast to VUBQC, however, the verifier need only prepare
eigenstates of the Y and Z operators.

Yet another scheme derived from VUBQC was introduced in [88] for a model
known as the Ising spin sampler. This is based on the Ising model, which describes
a lattice of interacting spins in the presence of a magnetic field [89]. The Ising spin
sampler is a translation invariant Ising model in which one measures the spins thus
obtaining samples from the partition function of the model. Just like with IQP, it was
shown in [90] that, based on complexity theoretic assumptions, sampling from the
partition function is intractable for classical computers.

Lastly, Disilvestro and Markham proposed a verification protocol [91] for
Spekkens’ toy model [92]. This is a local hidden variable theory which is phenomeno-
logically very similar to quantum mechanics, though it cannot produce non-local
correlations. The existence of the protocol, again inspired by VUBQC, suggests that

Theory Comput Syst

Bell non-locality is not a necessary feature for verification protocols, at least in the
setting in which the verifier has a trusted quantum device.

5.2 Fault Tolerance

The protocols reviewed in this paper have all been described in an ideal setting in
which all quantum devices work perfectly and any deviation from the ideal behaviour
is the result of malicious provers. This is not, however, the case in the real world.
The primary obstacle, in the development of scalable quantum computers, is noise
which affects quantum operations and quantum storage devices. As a solution to
this problem, a number of fault tolerant techniques, utilizing quantum error detec-
tion and correction, have been proposed. Their purpose is to reduce the likelihood of
the quantum computation being corrupted by imperfect gate operations. But while
these techniques have proven successful in minimizing errors in quantum computa-
tions, it is not trivial to achieve the same effect for verification protocols. To clarify,
while we have seen the use of quantum error correcting codes in verification proto-
cols, their purpose was to either boost the completeness-soundness gap (in the case
of prepare-and-send protocols), or to ensure an honest behaviour from the provers (in
the case of entanglement-based post hoc protocols). The question we ask, therefore,
is: how can one design a fault-tolerant verification protocol? Note that this question
pertains primarily to protocols in which the verifier is not entirely classical (such as
the prepare-and-send or receive-and-measure approaches) or in which one or more
provers are assumed to be single-qubit devices (such as the GKW and HPDF proto-
cols). For the remaining entanglement-based protocols, one can simply assume that
the provers are performing all of their operations on top of a quantum error correcting
code.

Let us consider what happens if, in the prepare-and-send and receive-and-measure
protocols, the devices of the verifier and the prover are subject to noise.47 If, for
simplicity, we assume that the errors on these devices imply that each qubit will
have a probability, p, of producing the same outcome as in the ideal setting, when
measured, we immediately notice that the probability of n qubits producing the same
outcomes scales as O(pn). This means that, even if the prover behaves honestly, the
computation is very unlikely to result in the correct outcome [19].

Ideally, one would like the prover to perform his operations in a fault tolerant
manner. In other words, the prover’s state should be encoded in a quantum error cor-
recting code, the gates he performs should result in logical operations being applied
on his state and he should, additionally, perform error-detection (syndrome) mea-
surements and corrections. But we can see that this is problematic to achieve. Firstly,
in prepare-and-send protocols, the computation state of the prover is provided by the
verifier. Who should then encode this state in the error-correcting code, the verifier or

47Different noise models have been examined when designing fault tolerant protocols, however, a very
common model and one which can be considered in our case, is depolarizing noise [93, 94]. This can be
single-qubit depolarizing noise, which acts as E(ρ) = (1 − p)[I] + p/3([X] + [Y] + [Z]), or two-qubit
depolarizing noise, which acts as E(ρ) = (1−p)[I ⊗I]+p/15([I ⊗X]+ ...[Z⊗Z]), for some probability
p > 0. The square bracket notation indicates the action of an operator.

Theory Comput Syst

the prover? It is known that in order to suppress errors in a quantum circuit, C, each
qubit should be encoded in a logical state having O(polylog(|C|))-many qubits [93].
This means that if the encoding is performed by the verifier, she must have a quan-
tum computer whose size scales poly-logarithmically with the size of the circuit that
she would like to delegate. It is preferable, however, that the verifier has a constant-
size quantum computer. Conversely, even if the prover performs the encoding, there
is another complication. Since the verifier needs to encrypt the states she sends to the
prover, and since her operations are susceptible to noise, the errors acting on these
states will have a dependency on her secret parameters. This means that when the
prover performs error-detection procedures he could learn information about these
secret parameters and compromise the protocol.

For receive-and-measure protocols, one encounters a different obstacle. While the
verifier’s measurement device is not actively malicious, if the errors occurring in
this device are correlated with the prover’s operations in preparing the state, this can
compromise the correctness of the protocol.

A number of fault tolerant verification protocols have been proposed, however,
they all overcome these limitations by making additional assumptions. For instance,
one proposal, by Kapourniotis and Datta [88], for making VUBQC fault tolerant, uses
a topological error-correcting code described in [58, 59]. The error-correcting code
is specifically designed for performing fault tolerant MBQC computations, which
is why it is suitable for the VUBQC protocol. In the proposed scheme, the verifier
still prepares single qubit states, however there is an implicit assumption that the
errors on these states are independent of the verifier’s secret parameters. The prover
is then instructed to perform a blind MBQC computation in the topological code.
The protocol described in [88] is used for a specific type of MBQC computation
designed to demonstrate a quantum computational advantage. However, the authors
argue that the techniques are general and could be applied for universal quantum
computations.

A fault-tolerant version of the measurement-only protocol from Section 3.1 has
also been proposed in [95]. The graph state prepared by the prover is encoded in an
error-correcting code, such as the topological lattice used by the previous approaches.
As in the ‘non-fault-tolerant’ version of the protocol, the prover is instructed to send
many copies of this state which the verifier will test using stabilizer measurements.
The verifier also uses one copy in order to perform her computation in an MBQC
fashion. The protocol assumes that the errors occurring on the verifier’s measurement
device are independent of the errors occurring on the prover’s devices.

More details, regarding the difficulties with achieving fault tolerance in QPIP
protocols, can be found in [26].

5.3 Experiments and Implementations

Protocols for verification will clearly be useful for benchmarking experiments imple-
menting quantum computations. Experiments implementing quantum computations
on a small number of qubits can be verified with brute force simulation on a classical
computer. However, as we have pointed out that this is not scalable, in the long-term
it is worthwhile to try and implement verification protocols on these devices. As a

Theory Comput Syst

result, there have been proof of concept experiments that demonstrate the components
necessary for verifiable quantum computing.

Inspired by the prepare-and-send VUBQC protocol, Barz et al implemented a
four-photon linear optical experiment, where the four-qubit linear cluster state was
constructed from entangled pairs of photons produced through parametric down-
conversion [96]. Within this cluster state, in runs of the experiment, a trap qubit was
placed in one of two possible locations, thus demonstrating some of the elements of
the VUBQC protocol. However, it should be noted that the trap qubits are placed
in the system through measurements on non-trap qubits within the cluster state, i.e.
through measurements made on the the other three qubits. Because of this, the anal-
ysis of the VUBQC protocol cannot be directly translated over to this setting, and
bespoke analysis of possible deviations is required. In addition, the presence of entan-
glement between the photons was demonstrated through Bell tests that are performed
blindly. This work also builds on a previous experimental implementation of blind
quantum computation by Barz et al. [97].

With regards to receive-and-measure protocols, and in particular the measurement-
only protocol of Section 3.1, Greganti et al. implemented [98] some of the elements
of these protocols with a four-photon experiment, similar to the experiment of Barz
et al mentioned above [96]. This demonstration builds on previous work in the exper-
imental characterisation of stabiliser states [99]. In this case, two four-qubit cluster
states were generated: the linear cluster state and the star graph state, where in the lat-
ter case the only entanglement is between one central qubit and pairwise with every
other qubit. In order to demonstrate the elements for measurement-only verification,
by suitable measurements made by the client, traps can be placed in the state. Fur-
thermore, the linear cluster state and star graph state can be used as computational
resources for implementing single qubit unitaries and an entangling gate respectively.

Finally, preliminary steps have been taken towards an experimental implementa-
tion of the RUV protocol, from Section 4.1. Huang et al implemented a simplified
version of this protocol using sources of pairs of entangled photons [74]. Repeated
CHSH tests were performed on thousands of pairs of photons demonstrating a large
violation of the CHSH inequality; a vital ingredient in the protocol of RUV. In
between the many rounds of CHSH tests, state tomography, process tomography,
and a computation were performed, with the latter being the factorisation of the
number 15. Again, all of these elements are ingredients in the protocol, however,
the entangled photons are created ’on-the-fly’. In other words, in RUV, two non-
communicating provers share a large number of maximally entangled states prior to
the full protocol, but in this experiment these states are generated throughout.

6 Conclusions

The realization of the first quantum computers capable of outperforming classical
computers at non-trivial tasks is fast approaching. All signs indicate that their devel-
opment will follow a similar trajectory to that of classical computers. In other words,
the first generation of quantum computers will comprise of large servers that are
maintained and operated by specialists working either in academia, industry or a

Theory Comput Syst

combination of both. However, unlike with the first super-computers, the Internet
opens up the possibility for users, all around the world, to interface with these devices
and delegate problems to them. This has already been the case with the 5-qubit IBM
machine [100], and more powerful machines are soon to follow [101, 102]. But how
will these computationally restricted users be able to verify the results produced by
the quantum servers? That is what the field of quantum verification aims to answer.
Moreover, as mentioned before and as is outlined in [12], the field also aims to answer
the more foundational question of: how do we verify the predictions of quantum
mechanics in the large complexity regime?

In this paper, we have reviewed a number of protocols that address these questions.
While none of them achieve the ultimate goal of the field, which is to have a classical
client verify the computation performed by a single quantum server, each protocol
provides a unique approach for performing verification and has its own advantages
and disadvantages. We have seen that these protocols combine elements from a mul-
titude of areas including: cryptography, complexity theory, error correction and the
theory of quantum correlations. We have also seen that proof-of-concept experiments,
for some of these protocols, have already been realized.

What all of the surveyed approaches have in common, is that none of them are
based on computational assumptions. In other words, they all perform verification
unconditionally. However, recently, there have been attempts to reduce the veri-
fier’s requirements by incorporating computational assumptions as well. What this
means is that the protocols operate under the assumption that certain problems are
intractable for quantum computers. We have already mentioned an example: a pro-
tocol for verifying the sub-universal sampling class of IQP computations, in which
the verifier is entirely classical. Other examples include protocols for quantum fully
homomorphic encryption [103, 104]. In these protocols, a client is delegating a quan-
tum computation to a server while trying to keep the input to the computation hidden.
The use of computational assumptions allows these protocols to achieve this func-
tionality using only one round of back-and-forth communication. However, in the
referenced schemes, the client does require some minimal quantum capabilities. A
recent modification of these schemes has been proposed in order to make the pro-
tocols verifiable as well [105]. Additionally, an even more recent paper introduces a
protocol for quantum fully homomorphic encryption with an entirely classical client
(again, based on computational assumptions) [106]. We can therefore see a new direc-
tion emerging in the field of delegated quantum computations. This recent success
in developing protocols based on computational assumptions could very well lead to
the first single-prover verification protocol with a classical client.

Another new direction, especially pertaining to entanglement-based protocols, is
given by the development of self-testing results achieving constant robustness. This
started with the work of Natarajan and Vidick, which was the basis of their protocol
from Section 4.3 [23]. We saw, in Section 4, that all entanglement-based protocols
rely, one way or another, on self-testing results. Consequently, the robustness of
these results greatly impacts the communication complexity and overhead of these
protocols. Since most protocols were based on results having inverse polynomial
robustness, this led to prohibitively large requirements in terms of quantum resources
(see Table 6). However, subsequent work by Coladangelo et al, following up on the

Theory Comput Syst

Natarajan and Vidick result, has led to two entanglement-based protocols, which
achieve near linear overhead [24].48 This is a direct consequence of using a self-
testing result with constant robustness and combining it with the Test-or-Compute
protocol of Broadbent from Section 2.3. Of course, of the two protocols proposed by
Coladangelo et al, only one is blind and so an open problem, of their result, is whether
the second protocol can also be made blind. Another question is whether the proto-
cols can be further optimized so that only one prover is required to perform universal
quantum computations, in the spirit of the GKW protocol from Section 4.1.

We conclude by listing a number of other open problems that have been raised by
the field of quantum verification. The resolution of these problems is relevant not just
to quantum verification but to quantum information theory as a whole.

• While the problem of a classical verifier delegating computations to a single
prover is the main open problem of the field, we emphasize a more particular
instance of this problem: can the proof that any problem in PSPACE49 admits
an interactive proof system, be adapted to show that any problem in BQP admits
an interactive proof system with a BQP prover? The proof that PSPACE = IP
(in particular the PSPACE ⊆ IP direction) uses error-correcting properties of
low-degree polynomials to give a verification protocol for a PSPACE-complete
problem [107]. We have seen that the Poly-QAS VQC scheme, presented in
Section 2.1, also makes use of error-correcting properties of low-degree poly-
nomials in order to perform quantum verification (albeit, with a quantum error
correcting code and a quantum verifier). Can these ideas lead to a classical
verifier protocol for BQP problems with a BQP prover?

• In all existing entanglement-based protocols, one assumes that the provers are
not allowed to communicate during the protocol. However, this assumption
is not enforced by physical constraints. Is it, therefore, possible to have an
entanglement-based verification protocol in which the provers are space-like sep-
arated?50 Note, that since all existing protocols require the verifier to query the
two (or more) provers adaptively, it is not directly possible to make the provers
be space-like separated.

• What is the optimal overhead (in terms of either communication complexity, or
the resources of the verifier) in verification protocols? For all types of verifica-
tion protocols we have seen that, for a fixed completeness-soundness gap, the
best achieved communication complexity is linear. For the prepare-and-send case
is it possible to have a protocol in which the verifier need only prepare a poly-
logarithmic number of single qubits (in the size of the computation)? For the
entanglement-based case, can the classical verifier send only poly-logarithmic
sized questions to the provers? This latter question is related to the quantum PCP
conjecture [108].

48The result from [24] appeared on the arxiv close to the completion of this work, which is why we did
not review it.
49PSPACE is the class of problems which can be solved in polynomial space by a classical computer.
50In an experiment, two regions are space-like separated if the time it takes light to travel from one region
to the other is longer than the duration of the experiment. Essentially, according to relativity, this means
that there is no causal ordering between events occurring in one region and events occurring in the other.

Theory Comput Syst

• Are there other models of quantum computation that are suitable for developing
verification protocols? We have seen that the way in which we view quan-
tum computations has a large impact on how we design verification protocols
and what characteristics those protocols will have. Specifically, the separation
between classical control and quantum resources in MBQC lead to VUBQC,
or the QMA-completeness of the local Hamiltonian problem lead to the post
hoc approaches. Of course, all universal models are equivalent in terms of the
computations which can be performed, however each model provides a partic-
ular insight into quantum computation which can prove useful when devising
new protocols. Can other models of quantum computation, such as the adiabatic
model, the anyon model etc, provide new insights?

• We have seen that while certain verification protocols employ error-correcting
codes, these are primarily used for boosting the completeness-soundness gap.
Alternatively, for the protocols that do in fact incorporate fault tolerance, in order
to cope with noisy operations, there are additional assumptions such as the noise
in the verifier’s device being uncorrelated with the noise in the prover’s devices.
Therefore, the question is: can one have a fault tolerant verification protocol,
with a minimal quantum verifier, in the most general setting possible? By this we
mean that there are no restrictions on the noise affecting the quantum devices in
the protocol, other than those resulting from the standard assumptions of fault tol-
erant quantum computations (constant noise rate, local errors etc). This question
is addressed in more detail in [26]. Note that the question refers in particular to
prepare-and-send and receive-and-measure protocols, since entanglement-based
approaches are implicitly fault tolerant (one can assume that the provers are
performing the computations on top of error correcting codes).

Acknowledgements The authors would like to thank Petros Wallden, Alex Cojocaru, Thomas Vidick
for very useful comments and suggestions for improving this work, and Dan Mills for TEX support. AG
would also like to especially thank Matty Hoban for many helpful remarks and comments and Vivian Uhlir
for useful advice in improving the figures in the paper. EK acknowledges funding through EPSRC grant
EP/N003829/1 and EP/M013243/1. TK acknowledges funding through EPSRC grant EP/K04057X/2.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

Quantum Information and Computation

In this section, we provide a few notions regarding the basics of quantum information
and quantum computation and refer the reader to the appropriate references for a
more in depth presentation [93, 109, 110].

Basics of Quantum Mechanics A quantum state (or a quantum register) is a unit
vector in a complex Hilbert space, H. We denote quantum states, using standard

http://creativecommons.org/licenses/by/4.0/

Theory Comput Syst

Dirac notation, as |ψ〉 ∈ H, called a ‘ket’ state. The dual of this state is denoted
〈ψ〉, called a ‘bra’, and is a member of the dual space H⊥. We will only be con-
cerned with finite-dimensional Hilbert spaces. Qubits are states in two-dimensional
Hilbert spaces. Traditionally, one fixes an orthonormal basis for such a space, called
computational basis, and denotes the basis vectors as |0〉 and |1〉. Gluing together
systems to express the states of multiple qubits is achieved through tensor product,
denoted ⊗. The notation |ψ〉⊗n denotes a state comprising of n copies of |ψ〉. If a
state |ψ〉 ∈ H1 ⊗ H2 cannot be expressed as |a〉 ⊗ |b〉, for any |a〉 ∈ H1 and any
|b〉 ∈ H2, we say that the state is entangled. As a shorthand, we will sometimes
write |a〉 |b〉 instead of |a〉 ⊗ |b〉. As a simple example of an entangled state one can
consider the Bell state:

|�+〉 = |00〉 + |11〉√
2

(77)

Quantum mechanics postulates that there are two ways to change a quantum state:
unitary evolution and measurement. Unitary evolution involves acting with some uni-
tary operation U on |ψ〉, thus producing the mapping |ψ〉 → U |ψ〉. Note that any
such operation is reversible through the application of the hermitian conjugate of U ,
denoted U†, since UU† = U†U = I .

Measurement, in its most basic form, involves expressing a state |ψ〉 in a particular
orthonormal basis, B, and then choosing one of the basis vectors as the state of the
system post-measurement. The index of that vector is the classical outcome of the
measurement. The post-measurement vector is chosen at random and the probability
of obtaining a vector |v〉 ∈ B is given by | 〈v|ψ〉 |2.

More generally, a measurement involves a collection of operators {Mi}i acting on
the state space of the system to be measured and satisfying:

∑

i

M
†
i Mi = I (78)

The label i indicates a potential measurement outcome. Given a state |ψ〉 to be mea-
sured, the probability of obtaining outcome i is p(i) = 〈ψ |M†

i Mi |ψ〉 and the state of
the system after the measurement will be Mi |ψ〉/√p(i). If we are only interested in
the probabilities of the different outcomes and not in the post-measurement state then
we can denote Ei = M

†
i Mi and we will refer to the set {Ei}i as a positive-operator

valued measure (POVM). When performing a measurement in an orthonormal basis
B = {|i〉}i , we are essentially choosing Mi = |i〉〈i|. This is known as a projec-
tive measurement and in general consists of operators Mi satisfying the property that
M2

i = Mi .
Lastly, when discussing measurements we will sometimes use observables. These

are hermitian operators which define a measurement specified by the diagonal basis
of the operator. Specifically, for some hermitian operator O, we know that there exists
an orthonormal basis B = {|i〉}i such that:

O =
∑

i

λi |i〉 (79)

Theory Comput Syst

where {λi}i is the set of eigenvalues of O. Measuring the O observable on some state
|ψ〉 is equivalent to performing a projective measurement of |ψ〉 in the basis B.51

When using observables, one takes the measurement outcomes to be the eigenvalues
of O, rather than the basis labels. In other words, if when measuring O the state is
projected to |i〉, then the measurement outcome is taken to be λi .

Density Matrices States denoted by kets are also referred to as pure states. Quan-
tum mechanics tells us that for an isolated quantum system the complete description
of that system is given by a pure state.52 This is akin to classical physics where
pure states are points in phase space, which provide a complete characterisation of
a classical system. However, unlike classical physics where knowing the pure state
uniquely determines the outcomes of all possible measurements of the system, in
quantum mechanics measurements are probabilistic even given the pure state. It is
also possible that the state of a quantum system is specified by a probability distri-
bution over pure states. This is known as a mixed state and can be represented using
density matrices. These are positive semidefinite, trace one, hermitian operators.

The density matrix of a pure state |ψ〉 is ρ = |ψ〉 〈ψ |. For an ensemble of states
{|ψi〉}i , each occurring with probability pi , such that

∑
i pi = 1, the corresponding

density matrix is:
ρ =

∑

i

pi |ψi〉 〈ψi〉 (80)

It can be shown that if ρ corresponds to a pure state then T r(ρ2) = 1, whereas when
ρ is a mixed state T r(ρ2) < 1. One of the most important mixed states, which we
encounter throughout this review, is the maximally mixed state. The density matrix
for this state is I/d , where I is the identity matrix and d is the dimension of the
underlying Hilbert space. As an example, the maximally mixed state for a one qubit
system is I/2. This state represents the state of maximal uncertainty about quantum
system. What this means is that for any basis {|vi〉}i of the Hilbert space of dimension
d, the maximally mixed state is:

I

d
= 1

d

d∑

i=1

|vi〉 〈vi〉 (81)

Equivalently, any non-degenerate projective measurement, specified by an orthonor-
mal basis B, of the maximally mixed state will have all outcomes occurring with
equal probability. We will denote the set of all density matrices over some Hilbert
space H as D(H).

When performing a measurement on a state ρ, specified by operators {Mi}i , the
probability of outcome i is given by p(i) = T r(M

†
i Miρ) and the post-measurement

state will be MiρM
†
i /p(i).

51Note that if the operator is degenerate (i.e. has repeating eigenvalues) then the projectors for degenerate
eigenvalues will correspond to projectors on the subspaces spanned by the associated eigenvectors.
52It should be noted that this is the case provided that quantum mechanics is a complete theory in terms of
its characterisation of physical systems. See [111] for more details.

Theory Comput Syst

Purification An essential operation concerning density matrices is the partial trace.
This provides a way of obtaining the density matrix of a subsystem that is part of
a larger system. Partial trace is linear, and is defined as follows. Given two density
matrices ρ1 and ρ2 with Hilbert spaces H1 and H2, we have that:

ρ1 = T r2(ρ1 ⊗ ρ2) ρ2 = T r1(ρ1 ⊗ ρ2) (82)

In the first case one is ‘tracing out’ system 2, whereas in the second case we trace out
system 1. This property together with linearity completely defines the partial trace.
For if we take any general density matrix, ρ, on H1 ⊗ H2, expressed as:

ρ =
∑

i,i′,j,j ′
aii′jj ′ |i〉1

〈
i′
〉
1 ⊗ |j〉2

〈
j ′〉

2 (83)

where {|i〉} ({∣∣i′〉}) and {|j〉} ({∣∣j ′〉}) are orthonormal bases for H1 and H2, if we
would like to trace out subsystem 2, for example, we would then have:

T r2(ρ) = T r2

⎛

⎝
∑

i,i′,j,j ′
aii′jj ′ |i〉1

〈
i′
〉
1 ⊗ |j〉2

〈
j ′〉

2

⎞

⎠ =
∑

i,i′,j
aii′jj |i〉1

〈
i′
〉
1 (84)

An important fact, concerning the relationship between mixed states and pure
states, is that any mixed state can be purified. In other words, for any mixed state ρ

over some Hilbert space H1 one can always find a pure state |ψ〉 ∈ H1 ⊗ H2 such
that dim(H1) = dim(H2)

53 and:

T r2(|ψ〉 〈ψ〉) = ρ (85)

Moreover, the purification |ψ〉 is not unique and so another important result is the
fact that if |φ〉 ∈ H1 ⊗ H2 is another purification of ρ then there exists a unitary U ,
acting only on H2 (the additional system that was added to purify ρ) such that:

|φ〉 = (I ⊗ U)|ψ〉 (86)

We will refer to this as the purification principle.

CPTP Maps and Isometries All operations on quantum states can be viewed as
maps from density matrices on an input Hilbert space to density matrices on an
output Hilbert space, O : D(Hin) → D(Hout), which may or may not be of the
same dimension. Quantum mechanics dictates that such a map, must satisfy three
properties:

1. Linearity: O(aρ1 + bρ2) = aO(ρ1) + bO(ρ2).
2. Complete positivity: the map O ⊗ I : D(Hin ⊗HE) → D(Hout ⊗HE)) takes

positive states to positive states, for all extensions HE .
3. Trace preserving: T r(O(ρ)) = T r(ρ).

53One could allow for purifications in larger systems, but we restrict attention to same dimensions.

Theory Comput Syst

For this reason, such maps are referred to as completely positive trace-preserving
(CPTP) maps. It can be shown that any CPTP map can be equivalently expressed as:

O(ρ) =
∑

i

KiρK
†
i (87)

for some set of linear operators {Ki}i , known as Kraus operators, satisfying:
∑

i

K
†
i Ki = I (88)

CPTP maps are also referred to as quantum channels.
Let us also define isometries. First, let � : Hin → Hout be a bounded linear map.

The adjoint of �, denoted �† is the unique linear map �† : Hout → Hin such that
for all |ψ〉 ∈ Hin, |φ〉 ∈ Hout :

〈�(ψ)|φ〉 =
〈
ψ |�†(φ)

〉
(89)

An isometry is a bounded linear map, � : Hin → Hout such that:

�† ◦ � = id (90)

where id is the identity map (on Hin).

Trace Distance We will frequently be interested in comparing the “closeness” of
quantum states. To do so we will use the notion of trace distance which generalizes
variation distance for probability distributions. Recall that if one has two probabil-
ity distributions p(x) and q(x), over a finite sample space, the variation distance
between them is defined as:

D(p, q) = 1

2

∑

x

|p(x) − q(x)| (91)

Informally, this represents the largest possible difference between the probabilities
that the two distributions can assign to some even x. The quantum analogue of this,
for density matrices, is:

T D(ρ1, ρ2) = 1

2
T r

(√
(ρ1 − ρ2)2

)
(92)

One could think that the trace distance simply represents the variation distance
between the probability distributions associated with measuring ρ1 and ρ2 in the
same basis (or using the same POVM). However, there are infinitely many choices
of a measurement basis. So, in fact, the trace distance is the maximum over all pos-
sible measurements of the variation distance between the corresponding probability
distributions.

Similar to variation distance, the trace distance takes values between 0 and 1,
with 0 corresponding to identical states and 1 to perfectly distinguishable states.
Additionally, like any other distance measure, it satisfies the triangle inequality.

Quantum Computation Quantum computation is most easily expressed in the
quantum gates model. In this framework, gates are unitary operations which act on

Theory Comput Syst

groups of qubits. As with classical computation, universal quantum computation is
achieved by considering a fixed set of quantum gates which can approximate any
unitary operation up to a chosen precision. The most common universal set of gates
is given by:

X =
[

0 1
1 0

]
Z =

[
1 0
0 −1

]
H= 1√

2

[
1 1
1 −1

]
T=

[
1 0
0 eiπ/4

]
CNOT=

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤

⎥⎥⎦

(93)
In order, the operations are known as Pauli X and Pauli Z, Hadamard, the T-gate and
controlled-NOT. Note that general controlled-U operations are operations perform-
ing the mapping |0〉 |ψ〉 → |0〉|ψ〉, |1〉|ψ〉 → |1〉U |ψ〉. The first qubit is known as a
control qubit, whereas the second is known as target qubit. The matrices express the
action of each operator on the computational basis. A classical outcome for a partic-
ular quantum computation can be obtained by measuring the quantum state resulting
from the application of a sequence of quantum gates. Another gate, which we will
encounter, is the Toffoli gate, or the controlled-controlled-NOT gate, described by the
matrix:

CCNOT =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(94)

The effect of this gate is to apply an X on a target qubit if both control qubits are in
the |1〉 state.

We also mention an important class of quantum operations known as Clifford
operations. To define them, consider first the n-qubit Pauli group:

Pn = {α σ1 ⊗ ... ⊗ σn|α ∈ {+1, −1, +i, −i}, σi ∈ {I,X,Y, Z}} (95)

As a useful side note, the n-qubit Pauli group forms a basis for all 2n × 2n matrices.
The Clifford group is then defined as follows:

Cn = {U ∈ U(2n)|σ ∈ Pn =⇒ UσU† ∈ Pn} (96)

Where U(2n) is the set of all 2n × 2n unitary matrices. Clifford operations, there-
fore, are operations which leave the Pauli group invariant under conjugation (in other
words, they normalise the Pauli group). Operationally they can be obtained through
combinations of the Pauli gates together with H, CNOT and S = T2, in which case
they are referred to as Clifford circuits. We note that the T and Toffoli gates are not
Clifford operations. However, Clifford circuits combined with either of these two
gates gives a universal set of quantum operations.

Bloch Sphere The final aspect we mention is the Bloch sphere, which offers a useful
geometric picture for visualizing single qubit states. Any such state is represented

Theory Comput Syst

as a point on the surface of the sphere. In Fig. 16, one can see a visualization of
the Bloch sphere together with the states |0〉 , |1〉, the eigenstates of Z, as well as
|+〉 = 1√

2
(|0〉 + |1〉), |−〉 = 1√

2
(|0〉 − |1〉), the eigenstates of X and

∣∣+π/2
〉 =

1√
2
(|0〉 + i |1〉), ∣∣−π/2

〉 = 1√
2
(|0〉 − i |1〉), the eigenstates of Y. All of the previously

mentioned single-qubit operations can be viewed as rotations on this sphere. The
Pauli X,Y, Z gates correspond to rotations by π radians around the corresponding
X,Y, Z axes. The Hadamard gate, which can be expressed as H = 1√

2
(X + Z) acts

as a rotation by π radians around the X + Z axis. Lastly, the T gate, corresponds to a
rotation by π/4 radians around the Z axis.

We will frequently mention the states
∣∣+φ

〉 = 1√
2
(|0〉 + eiφ |1〉) and

∣∣−φ

〉 =
1√
2
(|0〉 − eiφ |1〉) which all lie in the XY-plane of the Bloch sphere, represented in

blue in the above figure. These states can be viewed as rotations of the |+〉, |−〉 states
by φ radians around the Z axis. For example, the

∣∣+π/2
〉
,
∣∣−π/2

〉
states are rotations

by π/2 around the Z axis of the |+〉, |−〉 states. One can also consider measurements
in the XY-plane. Any two diametrically opposed states in this plane form a basis for a
one-qubit Hilbert space and therefore define a projective measurement. Suppose we
choose the basis (

∣∣+φ

〉
,
∣∣−φ

〉
) and wish to measure the state |+θ 〉. It can be shown

that the probability of the state being projected to
∣∣+φ

〉
is cos2((φ − θ)/2), whereas

the probability of it being projected to
∣∣−φ

〉
is sin2((φ − θ)/2). In other words, the

probabilities only depend on the angle difference between φ and θ . This fact will
prove very useful later on.

Quantum Error Correction One important consideration, when discussing quan-
tum protocols, is that any implementation of quantum operations will be subject to
noise stemming from interactions with the external environment. For this reason,
one needs a fault tolerant way of performing quantum computation. This is achieved
using protocols for quantum error detection and correction, for which we give a
simplified description.

Fig. 16 Bloch sphere

Theory Comput Syst

Suppose we have a k-qubit quantum state |ψ〉 on which we want to perform some
quantum gate G. The quantum memory storing |ψ〉 as well as the implementation of
G are subject to noise. This means that if we were to apply G directly on |ψ〉 the
result would be E(G |ψ〉), where E is a CPTP error map associated with the noisy
application of G. Using the Kraus decomposition, the action of E can be expressed
as:

E(G|ψ〉) =
∑

j

Ej G|ψ〉〈ψ |G† E
†
j (97)

where {Ej }j is a set of Kraus operators. If one can correct for all Ej ’s then one can
correct for E as well [112].

To detect and correct for errors from the set {Ej }j , one first performs an encoding
procedure on |ψ〉 mapping it to a so-called logical state |ψ〉L on n qubits, where
n > k. This procedure involves the use of n − k auxiliary qubits known as ancilla
qubits. If we denote the state of these n−k ancillas as |anc〉 we then have the encoding
procedure Enc(|ψ〉|anc〉) → |ψ〉L. This state is part of a 2k-dimensional subspace of
the 2n-dimensional Hilbert space of all n qubits, denoted H. The subspace is usually
referred to as the code space of the error correcting code. One way to represent this
space is by giving a set of operators such that the code space is the intersection of the
+1 eigenspaces of all the operators.

As an example, consider the 3-qubit flip code. We will take k = 1 and n =
3, so that one qubit is encoded in 3 qubits. The code is able to detect and correct
for Pauli X errors occurring on a single qubit. The encoding procedure for a state
|ψ〉 = a|0〉 + b|1〉 maps it to the state |ψ〉L = a|000〉 + b|111〉. The code space is
therefore defined by span(|000〉, |111〉). It is also the unique +1 eigenspace of the
operators g1 = Z ⊗ Z ⊗ I and g2 = I ⊗ Z ⊗ Z.54 All valid operations on |ψ〉L
must be invariant on this subspace, whereas any error from the set {Ej }j should map
the state to a different subspace. In this case, valid operations, or logical operations,
are the analogues of the single-qubit unitaries that map |ψ〉 → |φ〉 = U |ψ〉. Thus,
a logical operation UL would map |ψ〉L → |φ〉L. The error set simply consists of
{X ⊗ I ⊗ I, I ⊗ X ⊗ I, I ⊗ I ⊗ X}. We can see that any of these errors will map a
state inside span(|000〉, |111〉) to a state outside of this code space. One then defines
a projective measurement in which the projectors are associated with each of the
2n−k subspaces of H. This is called a syndrome measurement. Its purpose is to detect
whether an error has occurred and, if so, which error. Knowing this, the effect of the
error can be undone by simply applying the inverse operation. For the 3-qubit code,
there are 23−1 = 4 possible subspaces in which the state can be mapped to, meaning
that we need a 4-outcome measurement. The syndrome measurement is defined by
jointly measuring the observables g1 and g2. An outcome of +1 for both observables
indicates that the state is in the correct subspace, span(|000〉, |111〉). Conversely,
if either of the two observables produces a −1 outcome, then this corresponds to
one of the 3 possible errors. For instance, an outcome of +1 for the first observable

54These are known as stabilizer operators for the states in the code spaces. We also encounter these opera-
tors in Section 1. The operators form a group under multiplication and so, when specifying the code space,
it is sufficient to provide the generators of the group.

Theory Comput Syst

and −1 for the second, indicates that the state is in the subspace span(|001〉, |110〉),
corresponding to an X error on the third qubit. The error is corrected by applying
another X operation on that qubit.

Since Kraus operators can be expressed in terms of Pauli matrices acting on the
individual qubits, one often speaks about the weight of an error correcting code. If
the code can correct non-identity Pauli operations on at most w qubits, then w is the
weight of the code.

The smallest error correcting code which can correct for any single-qubit error
is the 5-qubit code (i.e. one qubit is encoded as 5 qubits) [80]. This code is used
Section 4.3.

Measurement-Based Quantum Computation

Since some of the protocols we review are expressed in the model of measurement-
based quantum computation (MBQC), defined in [113–115], we provide a brief
description of this model.

Unlike the quantum gates model of computation, in MBQC a given computation is
performed by measuring qubits from a large entangled state. Traditionally, this state
consists of qubits prepared in the state |+〉 = 1√

2
(|0〉 + |1〉), entangled using the CZ

(controlled-Z) operation, where:

CZ =

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎤

⎥⎥⎦

They are then measured in the basis (
∣∣+φ

〉
,
∣∣−φ

〉
). These measurements are denoted

as M(φ), and depending on the value of φ chosen for each qubit one can perform
universal quantum computation. For this to work, the entangled qubits need to form
a universal graph state. A graph state, denoted |G〉, is one in which the qubits have
been entangled according to the structure of a graph G. Given some fixed constant k,
a universal graph state is a family of graph states, denoted {|GN 〉}N , with N > 0, and
having kN qubits, such that, for any quantum circuit C, consisting of N gates, there
exists a measurement pattern55 on |GN 〉 that implements C |00..0〉. In other words,
for each quantum circuit of size N , there is an MBQC computation using |GN 〉 that
performs that circuit.

An example of such a state is the brickwork state, defined in [36] from which we
illustrate Fig. 17. To be more precise, suppose we would like to perform some quan-
tum computation described by a circuit consisting of N gates. The corresponding
MBQC computation consists of the following steps:

1. Initialization. Prepare O(N) qubits, each in the state |+〉.
2. Entanglement. Entangle the qubits according to some universal graph state

structure, such as the brickwork state.

55A measurement pattern is simply a tuple consisting of the measurement angles, for the qubits in |GN 〉,
and the partial ordering of these measurements.

Theory Comput Syst

...
...

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Fig. 17 Brickwork state, reproduced from [36]

3. Measurement. Measure each qubit, i using M(φi), for some angle φi deter-
mined based on the computation we would like to perform. The angles φi are
referred to as the computation angles.

4. Correction. Apply appropriate corrections (Pauli X and Z operations) to the
qubits, based on the measurement outcomes.

The last two steps can be performed together. This is because if we would like to
apply a Pauli X correction to a qubit, i, before measuring it, we can simply measure it
using M(−φi). Similarly, if we would like to apply a Pauli Z correction to that same
qubit we measure it using M(φi +π). Therefore, the general measurement performed
on a particular qubit will be M((−1)sφi + rπ), where s, r ∈ {0, 1} are determined
by previous measurement outcomes.

One element concerning graph states, which we will encounter in some protocols,
is the representation of these states using stabilizers. A stabilizer state for a unitary
hermitian operator, O, is some state |ψ〉 such that O|ψ〉 = |ψ〉. O is referred to as
a stabilizer of |ψ〉. It is possible to specify a state, |ψ〉, by giving a set of operators,
such that |ψ〉 is the unique state (up to global phase) which is stabilized by all the
operators in the set. As an example, the state |�+〉 = (|00〉 + |11〉)/√2 is uniquely
stabilized by the set {X⊗X, Z⊗Z}. Note that the set of all stabilizers for a state forms
a group, since if O1|ψ〉 = |ψ〉 and O2|ψ〉 = |ψ〉, then clearly O1O2|ψ〉 = |ψ〉. So,
it is sufficient to specify a set of generators for that group in order to describe the
stabilizer group for a particular state.

To specify the generators for the stabilizer group of a graph state |G〉, let us first
denote V (G) as the set of vertices in the graph G and NG(v) as the set of neighbour-
ing vertices for some vertex v (i.e. all vertices in G that are connected to v through
an edge). Additionally, for some operator O, when we write Ov we mean that O is
acting on the qubit from |G〉 associated with vertex v in G. The generators for the
stabilizer group of |G〉 are then given by:

Kv = Xv

∏

w∈NG(v)

Zw (98)

for all v ∈ V (G).

Theory Comput Syst

As a final remark, it should be noted that one can translate quantum circuits into
MBQC patterns in a canonical way. For instance, the universal gate set mentioned in
the previous subsection, and hence any quantum circuit comprising of those gates,
can be translated directly into MBQC. See for example [36, 115] for more details.

Complexity Theory

As mentioned in the introduction, the questions regarding verification of quantum
computation can be easily expressed in the language of complexity theory. To that
end, we provide definitions for the basic complexity classes used in this paper. We
let {0, 1}∗ denote the set of all binary strings of finite length and {0, 1}n the set of all
binary strings of length n. We use standard complexity theory notation and assume
familiarity with the concepts of Turing machines and uniform circuits. For a more
general introduction into the subject we refer the reader to [116, 117].

Definition 5 A language L ⊆ {0, 1}∗ belongs to BPP if there exists a polynomial
p and a probabilistic Turing machine M , whose running time on inputs of size n is
bounded by p(n), such that for any x ∈ {0, 1}n the following is true:

• when x ∈ L, M(x)56 accepts with probability at least c,
• when x ∈ L, M(x) accepts with probability at most s,

where c − s ≥ 1/p(n).

Here, and in all subsequent definitions, c is referred to as completeness and s is
referred to as soundness. Traditionally, one takes c = 2/3 and s = 1/3, however,
in full generality, the only requirement is that there exists an inverse polynomial gap
between c and s.

Definition 6 A language L ⊆ {0, 1}∗ belongs to BQP if there exists a polynomial
p and a uniform quantum circuit family {Cn}n, where each circuit has at most p(n)

gates, such that for any x ∈ {0, 1}n the following is true:

• when x ∈ L, Cn(x) accepts with probability at least c,
• when x ∈ L, Cn(x) accepts with probability at most s,

where c − s ≥ 1/p(n).

For the quantum circuit Cn, acceptance can be defined as having one of its output
qubits outputting 1 when measured in the computational basis.

Definition 7 A language L ⊆ {0, 1}∗ belongs to MA if there exists a polynomial
p and a probabilistic Turing machine V , whose running time on inputs of size n is
bounded by p(n), such that for any x ∈ {0, 1}n the following is true:

56The notation M(x) means running the Turing machine M on input x.

Theory Comput Syst

• when x ∈ L, there exists a string w ∈ {0, 1}≤p(n), such that V (x, w) accepts
with probability at least c,

• when x ∈ L, for all strings w ∈ {0, 1}≤p(n), V (x, w) accepts with probability at
most s,

where c − s ≥ 1/p(n).

For this class, V is traditionally referred to as the verifier (or Arthur), whereas w,
which is the witness string, is provided by the prover (or Merlin). Essentially, the
verifier and is tasked with checking a purported proof that x ∈ L, provided by the
prover. There is also a quantum version of this class:

Definition 8 A language L ⊆ {0, 1}∗ belongs to QMA if there exists a polynomial
p and a uniform quantum circuit family {Vn}n taking x and a quantum state |ψ〉 as
inputs, such that for any x ∈ {0, 1}n the following are true:

• when x ∈ L, there exists a quantum state |ψ〉 ∈ H, such that Vn(x, |ψ〉) accepts
with probability at least c, and

• when x ∈ L, for all quantum states |ψ〉 ∈ H, Vn(x, |ψ〉) accepts with probability
at most s,

where dim(H) ≤ 2p(|x|) and c − s ≥ 1/p(|x|).

For QMA we also provide the definition of a complete problem57 since this will
be referenced in some of the protocols we review. The specific problem we state was
defined by Kitaev et al and is known as the k-local Hamiltonian problem [66]. A
k-local Hamiltonian, acting on a system of n qubits, is a hermitian operator H that
can be expressed as H = ∑

i Hi , where each Hi is a hermitian operator which acts
non-trivially on at most k qubits. We give the definition of the k-local Hamiltonian
problem from [108]:

Definition 9 (The k-local Hamiltonian (LH) problem)

• Input: H1, . . . , Hm, a set of m Hermitian matrices each acting on k qubits out
of an n-qubit system and satisfying ‖Hi‖ ≤ 1. Each matrix entry is specified
by poly(n)-many bits. Apart from the Hi we are also given two real numbers, a

and b (again, with polynomially many bits of precision) such that � = b − a >

1/poly(n). � is referred to as the absolute promise gap of the problem.
• Output: Is the smallest eigenvalue of H = H1 + H2 + ... + Hm smaller than a

or are all its eigenvalues larger than b?

Essentially, for some language L ∈ QMA, and given a and b, one can construct a
k-local Hamiltonian such that, whenever x ∈ L, its smallest eigenvalue is less than
a and whenever x ∈ L, all of its eigenvalues are greater than b. The witness |ψ〉,

57A problem, P , is complete for the complexity class QMA if P ∈ QMA and all problems in QMA can be
reduced in quantum polynomial time to P .

Theory Comput Syst

when x ∈ L, is the eigenstate of H corresponding to its lowest eigenvalue (or one
such eigenstate if the Hamiltonian is degenerate). The uniform circuit family {Vn}n
represents a BQP verifier, whereas the state |ψ〉 is provided by a prover. The verifier
receives this witness from the prover and measures one of the local terms Hi (which
is an observable) on that state. This can be done with a polynomial-size quantum
circuit and yields an estimate for measuring H itself. Therefore, when x ∈ L and
the prover sends |ψ〉, with high probability the verifier will obtain the corresponding
eigenvalue of |ψ〉 which will be smaller than a. Conversely, when x ∈ L, no matter
what state the prover sends, with high probability, the verifier will measure a value
above b. The constant k, in the definition, is not arbitrary. In the initial construction
of Kitaev, k had to be at least 5 for the problem to be QMA-complete. Subsequent
work has shown that even with k = 2 the problem remains QMA-complete [64].

Definition 10 A language L ⊆ {0, 1}∗ belongs to IP if there exists a polynomial
p and a probabilistic Turing machine V , whose running time on inputs of size n is
bounded by p(n), such that for any x ∈ {0, 1}n the following is true:

• when x ∈ L, there exists a prover P which exchanges at most p(n) messages (of
length at most p(n)) with V and makes V accept with probability at least c,

• when x ∈ L, any prover P which exchanges at most p(n) messages (of length at
most p(n)) with V , makes V accept with probability at most s,

where c − s ≥ 1/p(n).

While the previous are fairly standard complexity classes, we now state the
definition of a more non-standard class, which first appeared in [25]:

Definition 11 A language L ⊆ {0, 1}∗ belongs to QPIP if there exists a polynomial
p, a constant κ and a probabilistic Turing machine V , whose running time on inputs
of size n is bounded by p(n), and which is augmented with the ability to prepare and
measure groups of κ qubits, such that for any x ∈ {0, 1}n the following is true:

• when x ∈ L, there exists a BQP prover P which exchanges at most p(n) classical
or quantum messages (of length at most p(n)) with V and makes V accept with
probability at least c,

• when x ∈ L, any BQP prover P which exchanges at most p(n) classical or quan-
tum messages (of length at most p(n)) with V , makes V accept with probability
at most s,

where c − s ≥ 1/p(n).

Some clarifications are in order. The class QPIP differs from IP in two ways.
Firstly, while computationally the verifier is still restricted to the class BPP, oper-
ationally it has the additional ability of preparing or measuring groups of κ qubits.
Importantly, κ is a constant which is independent of the size of the input. This is why
this extra ability does not add to the verifier’s computational power, since a constant-
size quantum device can be simulated in constant time by a BPP machine. Secondly,

Theory Comput Syst

unlike IP, in QPIP the prover is restricted to BQP computations. This constraint on
the prover is more in line with Problem 1 and it also has the direct implication that
QPIP ⊆ BQP.

As we will see, all the protocols in Sections 2 and 3 are QPIP protocols. And since
these protocols allow for the delegation of arbitrary BQP problems, it follows that
QPIP = BQP.

We now proceed to the multi-prover setting and define the multi-prover general-
ization of IP:

Definition 12 A language L ⊆ {0, 1}∗ belongs to MIP[k] if there exists a polynomial
p and a probabilistic Turing machine V , whose running time on inputs of size n is
bounded by p(n), such that for any x ∈ {0, 1}n the following is true:

• when x ∈ L, there exists a k-tuple of provers (P1, P2, ...Pk) which are not
allowed to communicate and which exchange at most p(n) messages (of length
at most p(n)) with V and make V accept with probability at least c,

• when x ∈ L, any k-tuple of provers (P1, P2, ...Pk) which are not allowed to
communicate and which exchange at most p(n) messages (of length at most
p(n)) with V , make V accept with probability at most s,

where c − s ≥ 1/p(n).

Note that MIP[1] = IP and it was shown that for all k > 2, MIP[k] = MIP[2]
[118]. The latter class is simply denoted MIP. If the provers are allowed to share
entanglement then we obtain the class:

Definition 13 A language L ⊆ {0, 1}∗ belongs to MIP∗[k] if there exists a polyno-
mial p and a probabilistic Turing machine V , whose running time on inputs of size n

is bounded by p(n), such that for any x ∈ {0, 1}n the following is true:

• when x ∈ L, there exists a k-tuple of provers (P1, P2, ...Pk) which can share
arbitrarily many entangled qubits, are not allowed to communicate and which
exchange at most p(n) messages (of length at most p(n)) with V and make V

accept with probability at least c,
• when x ∈ L, any k-tuple of provers (P1, P2, ...Pk) which can share arbitrarily

many entangled qubits, are not allowed to communicate and which exchange
at most p(n) messages (of length at most p(n)) with V , make V accept with
probability at most s,

where c − s ≥ 1/p(n).

As before it is the case that MIP∗[k] = MIP∗[2] and this class is denoted as
MIP∗ [119]. It is not known whether MIP = MIP∗, however, it is known that both
classes contain BQP. Importantly, for MIP∗ protocols, if the provers are restricted to
BQP computations, the resulting complexity class is equal to BQP [18]. Most of the
protocols presented in Section 4 are of this type.

Theory Comput Syst

Note that while the protocols we review can be understood in terms of the listed
complexity classes, we will often give a more fine-grained description of their func-
tionality and resources than is provided by complexity theory. To give an example,
for a QPIP protocol, from the complexity theoretic perspective, we are interested in
the verifier’s ability to delegate arbitrary BQP decision problems to the prover by
interacting with it for a polynomial number of rounds. In practice, however, we are
interested in a number of other characteristics of the protocol such as:

• whether the verifier can delegate not just decision problems, but also sampling
problems (i.e. problems in which the verifier wishes to obtain a sample from a
particular probability distribution and is able to certify that, with high probability,
the sample came from the correct distribution),

• whether the prover can receive a particular quantum input for the computation or
return a quantum output to the verifier,

• having minimal quantum communication between the verifier and the prover,
• whether the verifier can “hide” the input and output of the computation from the

prover.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

1. Aaronson, S., Arkhipov, A.: The computational complexity of linear optics. In: Proceedings of the
Forty-third Annual ACM Symposium on Theory of Computing. STOC ’11, pp. 333–342. ACM, New
York (2011)

2. Shepherd, D., Bremner, M.J.: Temporally unstructured quantum computation. In: Proceedings of the
Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 465, pp. 1413–
1439. The Royal Society (2009)

3. Boixo, S., Isakov, S.V., Smelyanskiy, V.N., Babbush, R., Ding, N., Jiang, Z., Martinis, J.M., Neven,
H.: Characterizing quantum supremacy in near-term devices. arXiv:1608.00263 (2016)

4. Aaronson, S., Chen, L.: Complexity-theoretic foundations of quantum supremacy experiments.
arXiv:1612.05903 (2016)

5. Bermejo-Vega, J., Hangleiter, D., Schwarz, M., Raussendorf, R., Eisert, J.: Architectures for quantum
simulation showing a quantum speedup (2017)

6. Tillmann, M., Dakić, B., Heilmann, R., Nolte, S., Szameit, A., Walther, P.: Experimental boson
sampling. Nat. Photon. 7(7), 540–544 (2013)

7. Spagnolo, N., Vitelli, C., Bentivegna, M., Brod, D.J., Crespi, A., Flamini, F., Giacomini, S., Milani,
G., Ramponi, R., Mataloni, P., et al: Experimental validation of photonic boson sampling. Nat.
Photon. 8(8), 615–620 (2014)

8. Bentivegna, M., Spagnolo, N., Vitelli, C., Flamini, F., Viggianiello, N., Latmiral, L., Mataloni, P.,
Brod, D.J., Galvão, E.F., Crespi, A., et al.: Experimental scattershot boson sampling. Sci. Adv. 1(3),
e1400255 (2015)

9. Lanyon, B., Barbieri, M., Almeida, M., White, A.: Experimental quantum computing without
entanglement. Phys. Rev. Lett. 101(20), 200501 (2008)

10. Aaronson, S.: The Aaronson $25.00 prize. http://www.scottaaronson.com/blog/?p=284
11. Vazirani, U.: Workshop on the computational worldview and the sciences http://users.cms.caltech.

edu/schulman/Workshops/CS-Lens-2/report-comp-worldview.pdf (2007)
12. Aharonov, D., Vazirani, U.: Is Quantum Mechanics Falsifiable? A Computational Perspective on

the Foundations of Quantum Mechanics. Computability: Turing, Gödel, Church, and Beyond. MIT
Press (2013)

http://arXiv.org/abs/1608.00263
http://arXiv.org/abs/1612.05903
http://www.scottaaronson.com/blog/?p=284
http://users.cms.caltech.edu/ schulman/Workshops/CS-Lens-2/report-comp-worldview.pdf
http://users.cms.caltech.edu/ schulman/Workshops/CS-Lens-2/report-comp-worldview.pdf

Theory Comput Syst

13. Impagliazzo, R., Wigderson, A.: P= bpp if e requires exponential circuits: Derandomizing the xor
lemma. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing,
pp. 220–229. ACM (1997)

14. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM Rev. 41(2), 303–332 (1999)

15. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26(5), 1411–1473 (1997)
16. Watrous, J.: Succinct quantum proofs for properties of finite groups. In: Proceedings of the 41st

Annual Symposium on Foundations of Computer Science. FOCS ’00, pp. 537–. IEEE Computer
Society, Washington, DC (2000)

17. Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Exponential algorithmic
speedup by a quantum walk. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory
of Computing, pp. 59–68. ACM (2003)

18. Reichardt, B.W., Unger, F., Vazirani, U.: Classical command of quantum systems. Nature 496(7446),
456 (2013)

19. Gheorghiu, A., Kashefi, E., Wallden, P.: Robustness and device independence of verifiable blind
quantum computing. J. Phys. 17(8), 083040 (2015)

20. Hajdušek, M., Pérez-Delgado, C.A., Fitzsimons, J.F.: Device-independent verifiable blind quantum
computation. arXiv:1502.02563 (2015)

21. McKague, M.: Interactive proofs for BQP via self-tested graph states. Theory Comput. 12(3), 1–42
(2016)

22. Fitzsimons, J.F., Hajdušek, M.: Post hoc verification of quantum computation. arXiv:1512.04375
(2015)

23. Natarajan, A., Vidick, T.: Robust self-testing of many-qubit states. arXiv:1610.03574 (2016)
24. Coladangelo, A., Grilo, A., Jeffery, S., Vidick, T.: Verifier-on-a-leash: new schemes for verifiable

delegated quantum computation, with quasilinear resources. arXiv:1708.07359 (2017)
25. Aharonov, D., Ben-Or, M., Eban, E.: Interactive proofs for quantum computations. In: Innovations in

Computer Science - ICS 2010, Tsinghua University, Beijing, China, January 5-7, 2010. Proceedings,
pp. 453–469 (2010)

26. Aharonov, D., Ben-Or, M., Eban, E., Mahadev, U.: Interactive proofs for quantum computations.
arXiv:1704.04487 (2017)

27. Fitzsimons, J.F., Kashefi, E.: Unconditionally verifiable blind quantum computation. Phys. Rev. A
96, 012303 (2017)

28. Broadbent, A.: How to verify a quantum computation. Theory of Computing. arXiv:1509.09180
(2018)

29. Morimae, T., Fitzsimons, J.F.: Post hoc verification with a single prover. arXiv:1603.06046 (2016)
30. Hangleiter, D., Kliesch, M., Schwarz, M., Eisert, J.: Direct certification of a class of quantum

simulations. Quant. Sci. Technol. 2(1), 015004 (2017)
31. Hayashi, M., Morimae, T.: Verifiable measurement-only blind quantum computing with stabilizer

testing. Phys. Rev. Lett. 115(22), 220502 (2015)
32. Morimae, T., Takeuchi, Y., Hayashi, M.: Verification of hypergraph states. Phys. Rev. A 96, 062321

(2017)
33. Gheorghiu, A., Wallden, P., Kashefi, E.: Rigidity of quantum steering and one-sided device-

independent verifiable quantum computation. J. Phys. 19(2), 023043 (2017)
34. Fitzsimons, J.F.: Private quantum computation: An introduction to blind quantum computing and

related protocols. npj Quant. Inf. 3(1), 23 (2017)
35. Childs, A.M.: Secure assisted quantum computation. Quant. Info. Comput. 5(6), 456–466 (2005)
36. Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation. In: Proceedings of

the 50th Annual Symposium on Foundations of Computer Science. FOCS ’09, pp. 517–526. IEEE
Computer Society (2009)

37. Arrighi, P., Salvail, L.: Blind quantum computation. Int. J. Quant. Inf. 04(05), 883–898 (2006)
38. Giovannetti, V., Maccone, L., Morimae, T., Rudolph, T.G.: Efficient universal blind quantum

computation. Phys. Rev. Lett. 111, 230501 (2013)
39. Mantri, A., Pérez-Delgado, C.A., Fitzsimons, J.F.: Optimal blind quantum computation. Phys. Rev.

Lett. 111, 230502 (2013)
40. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. Found.

Sec. Comput. 4(11), 169–180 (1978)

http://arXiv.org/abs/1502.02563
http://arXiv.org/abs/1512.04375
http://arXiv.org/abs/1610.03574
http://arXiv.org/abs/1708.07359
http://arXiv.org/abs/1704.04487
http://arxiv.org/abs/1509.09180
http://arxiv.org/abs/1603.06046

Theory Comput Syst

41. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the Forty-first
Annual ACM Symposium on Theory of Computing. STOC ’09, pp. 169–178. ACM, New York
(2009)

42. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE.
In: Proceedings of the 2011 IEEE 52Nd Annual Symposium on Foundations of Computer Science.
FOCS ’11, pp. 97–106. IEEE Computer Society, Washington, DC (2011)

43. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without boot-
strapping. In: In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference.
ITCS ’12, pp. 309–325. ACM, New York (2012)

44. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the
integers. In: Proceedings of the 29th Annual International Conference on Theory and Applications
of Cryptographic Techniques. EUROCRYPT’10, pp. 24–43. Springer, Berlin (2010)

45. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC press (2014)
46. Danos, V., Kashefi, E.: Determinism in the one-way model. Physical Review A 74(5), 052310 (2006)
47. Aaronson, S., Cojocaru, A., Gheorghiu, A., Kashefi, E.: On the implausibility of classical client blind

quantum computing. arXiv:1704.08482 (2017)
48. Dunjko, V., Kashefi, E.: Blind quantum computing with two almost identical states.

arXiv:1604.01586 (2016)
49. Dunjko, V., Fitzsimons, J.F., Portmann, C., Renner, R.: Composable security of delegated quan-

tum computation. In: International Conference on the Theory and Application of Cryptology and
Information Security, pp. 406–425. Springer (2014)

50. Kashefi, E., Wallden, P.: Garbled quantum computation. Cryptography 1(1), 6 (2017)
51. Kapourniotis, T., Dunjko, V., Kashefi, E.: On optimising quantum communication in verifiable

quantum computing. arXiv:1506.06943 (2015)
52. Barnum, H., Crėpeau, C., Gottesman, D., Smith, A.D., Tapp, A.: Authentication of quantum mes-

sages. In: 43rd Symposium on Foundations of Computer Science (FOCS 2002), 16–19 November
2002, Vancouver, BC, Canada, Proceedings, pp. 449–458 (2002)

53. Aharonov, D., Ben-Or, M.: Fault-tolerant quantum computation with constant error rate. SIAM J.
Comput. 38(4), 1207–1282 (2008)

54. Gottesman, D., Chuang, I.L.: Demonstrating the viability of universal quantum computation using
teleportation and single-qubit operations. Nature 402(6760), 390–393 (1999)

55. Broadbent, A., Gutoski, G., Stebila, D.: Quantum one-time programs. In: Advances in Cryptology–
CRYPTO 2013, pp. 344–360. Springer (2013)

56. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: 42nd
IEEE Symposium on Foundations of Computer Science, 2001. Proceedings, pp. 136–145. IEEE
(2001)

57. Kashefi, E., Wallden, P.: Optimised resource construction for verifiable quantum computation. J.
Phys. A: Math. Theor. 50(14), 145306 (2017)

58. Raussendorf, R., Harrington, J., Goyal, K.: A fault-tolerant one-way quantum computer. Ann. Phys.
321(9), 2242–2270 (2006)

59. Raussendorf, R., Harrington, J., Goyal, K.: Topological fault-tolerance in cluster state quantum
computation. J. Phys. 9(6), 199 (2007)

60. Fisher, K., Broadbent, A., Shalm, L., Yan, Z., Lavoie, J., Prevedel, R., Jennewein, T., Resch, K.:
Quantum computing on encrypted data. Nat. Commun. 5, 3074 (2014)

61. Fitzsimons, J.F., Hajdušek, M., Morimae, T.: Post hoc verification of quantum computation. Phys.
Rev. Lett. 120(4), 040501 (2018)

62. Crépeau, C.: Cut-and-choose protocol. In: Encyclopedia of Cryptography and Security, pp. 290–291.
Springer (2011)

63. Kashefi, E., Music, L., Wallden, P.: The quantum cut-and-choose technique and quantum two-party
computation. arXiv:1703.03754 (2017)

64. Kempe, J., Kitaev, A., Regev, O.: The complexity of the local hamiltonian problem. SIAM J.
Comput. 35(5), 1070–1097 (2006)

65. Morimae, T., Nagaj, D., Schuch, N.: Quantum proofs can be verified using only single-qubit
measurements. Phys. Rev. A 93(2), 022326 (2016)

66. Kitaev, A.Y., Shen, A., Vyalyi, M.N.: Classical and Quantum Computation, vol. 47. American
Mathematical Society, Providence (2002)

http://arxiv.org/abs/1704.08482
http://arxiv.org/abs/1604.01586
http://arXiv.org/abs/1506.06943
http://arXiv.org/abs/1703.03754

Theory Comput Syst

67. Biamonte, J.D., Love, P.J.: Realizable Hamiltonians for universal adiabatic quantum computers.
Phys. Rev. A 78, 012352 (2008)

68. Bausch, J., Crosson, E.: Increasing the quantum unsat penalty of the circuit-to-Hamiltonian
construction. arXiv:1609.08571 (2016)

69. Mayers, D., Yao, A.: Self testing quantum apparatus. Quant. Info. Comput. 4(4), 273–286 (2004)
70. Coladangelo, A., Stark, J.: Separation of finite and infinite-dimensional quantum correlations, with

infinite question or answer sets. arXiv:1708.06522 (2017)
71. Cirel’son, B.: Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4(2), 93–100 (1980)
72. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-

variable theories. Phys. Rev. Lett. 23, 880–884 (1969)
73. McKague, M., Yang, T.H., Scarani, V.: Robust self-testing of the singlet. J. Phys. A: Math. Theor.

45(45), 455304 (2012)
74. Huang, H.L., Zhao, Q., Ma, X., Liu, C., Su, Z.E., Wang, X.L., Li, L., Liu, N.L., Sanders, B.C., Lu,

C.Y., et al.: Experimental blind quantum computing for a classical client. Phys. Rev. Lett. 119(5),
050503 (2017)

75. Barrett, J., Hardy, L., Kent, A.: No signaling and quantum key distribution. Phys. Rev. Lett. 95(1),
010503 (2005)

76. Acı́n, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of
quantum cryptography against collective attacks. Phys. Rev. Lett. 98(23), 230501 (2007)

77. Schrödinger, E.: Probability relations between separated systems. Math. Proc. Cambridge Philos.
Soc. 32(10), 446–452 (1936)

78. MHALLA, M., PERDRIX, S.: Graph states, pivot minor, and universality of (x, z)-measurements.
Int. J. Unconv. Comput., 9 (2013)

79. Fitzsimons, J., Vidick, T.: A multiprover interactive proof system for the local hamiltonian problem.
In: Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science, pp. 103–
112. ACM (2015)

80. Laflamme, R., Miquel, C., Paz, J.P., Zurek, W.H.: Perfect quantum error correcting code. Phys. Rev.
Lett. 77(1), 198 (1996)

81. Ji, Z.: Classical verification of quantum proofs. In: Proceedings of the Forty-Eighth Annual ACM
Symposium on Theory of Computing, pp. 885–898. ACM (2016)

82. Mermin, N.D.: Simple unified form for the major no-hidden-variables theorems. Phys. Rev. Lett.
65(27), 3373 (1990)

83. Peres, A.: Incompatible results of quantum measurements. Phys. Lett. A 151(3-4), 107–108 (1990)
84. Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81(25), 5672

(1998)
85. Kapourniotis, T., Kashefi, E., Datta, A.: Verified delegated quantum computing with one pure qubit.

arXiv:1403.1438 (2014)
86. Bremner, M.J., Jozsa, R., Shepherd, D.J.: Classical simulation of commuting quantum computations

implies collapse of the polynomial hierarchy. In: Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences, The Royal Society, rspa20100301 (2010)

87. Mills, D., Pappa, A., Kapourniotis, T., Kashefi, E.: Information theoretically secure hypothesis test
for temporally unstructured quantum computation. arXiv:1704.01998 (2017)

88. Kapourniotis, T., Datta, A.: Nonadaptive fault-tolerant verification of quantum supremacy with
noise. arXiv:1703.09568 (2017)

89. Ising, E.: Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik A Hadrons and Nuclei
31(1), 253–258 (1925)

90. Gao, X., Wang, S.T., Duan, L.M.: Quantum supremacy for simulating a translation-invariant ising
spin model. Phys. Rev. Lett. 118(4), 040502 (2017)

91. Disilvestro, L., Markham, D.: Quantum protocols within Spekkens’ toy model. Phys. Rev. A 95(5),
052324 (2017)

92. Spekkens, R.W.: Evidence for the epistemic view of quantum states: A toy theory. Phys. Rev. A
75(3), 032110 (2007)

93. Nielsen, M.A., Chuang, I.L. Quantum Computation and Quantum Information: 10th Anniversary
Edition, 10th edn. Cambridge University Press, New York (2011)

94. Buhrman, H., Cleve, R., Laurent, M., Linden, N., Schrijver, A., Unger, F.: New limits on fault-
tolerant quantum computation. In: 47th Annual IEEE Symposium on Foundations of Computer
Science, 2006. FOCS’06, pp. 411–419. IEEE (2006)

http://arXiv.org/abs/1609.08571
http://arXiv.org/abs/1708.06522
http://arXiv.org/abs/1403.1438
http://arXiv.org/abs/1704.01998
http://arXiv.org/abs/1703.09568

Theory Comput Syst

95. Fujii, K., Hayashi, M.: Verifiable fault-tolerance in measurement-based quantum computation.
arXiv:1610.05216 (2016)

96. Barz, S., Fitzsimons, J.F., Kashefi, E., Walther, P.: Experimental verification of quantum computa-
tion. Nat. Phys. 9(11), 727–731 (2013). Article

97. Barz, S., Kashefi, E., Broadbent, A., Fitzsimons, J.F., Zeilinger, A., Walther, P.: Demonstration of
blind quantum computing. Science 335(6066), 303–308 (2012)

98. Greganti, C., Roehsner, M.C., Barz, S., Morimae, T., Walther, P.: Demonstration of measurement-
only blind quantum computing. J. Phys. 18(1), 013020 (2016)

99. Greganti, C., Roehsner, M.C., Barz, S., Waegell, M., Walther, P.: Practical and efficient experimental
characterization of multiqubit stabilizer states. Phys. Rev. A 91(2), 022325 (2015)

100. Ibm quantum experience. http://research.ibm.com/ibm-q/
101. Ibm 16-qubit processor. https://developer.ibm.com/dwblog/2017/quantum-computing-16-qubit-

processor/
102. Google 49-qubit chip. https://spectrum.ieee.org/computing/hardware/google-plans-to-demonstrate-

the-supremacy-of-quantum-computing
103. Broadbent, A., Jeffery, S.: Quantum homomorphic encryption for circuits of low T-gate complexity.

In: Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 16-20, 2015. Proceedings. Part II, pp. 609–629 (2015)

104. Dulek, Y., Schaffner, C., Speelman, F.: Quantum Homomorphic Encryption for Polynomial-Sized
Circuits, pp. 3–32. Springer, Berlin (2016)

105. Alagic, G., Dulek, Y., Schaffner, C., Speelman, F.: Quantum fully homomorphic encryption with
verification. arXiv:1708.09156 (2017)

106. Mahadev, U.: Classical homomorphic encryption for quantum circuits. arXiv:1708.02130 (2017)
107. Shamir, A.: Ip= pspace. J. ACM (JACM) 39(4), 869–877 (1992)
108. Aharonov, D., Arad, I., Vidick, T.: Guest column: The quantum pcp conjecture. ACM Sigact News

44(2), 47–79 (2013)
109. Watrous, J.: Guest column: An introduction to quantum information and quantum circuits 1. SIGACT

News 42(2), 52–67 (2011)
110. Watrous, J.: Quantum computational complexity. In: Encyclopedia of Complexity and Systems

Science, pp 7174–7201. Springer (2009)
111. Harrigan, N., Spekkens, R.W.: Einstein, incompleteness, and the epistemic view of quantum states.

Found. Phys. 40(2), 125–157 (2010)
112. Gottesman, D.: An introduction to quantum error correction and fault-tolerant quantum computation.

In: Quantum Information Science and its Contributions to Mathematics, Proceedings of Symposia in
Applied Mathematics, vol 68, pp 13–58 (2009)

113. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)
114. Briegel, H.J., Browne, D.E., Dur, W., Raussendorf, R., Van den Nest, M.: Measurement-based

quantum computation. Nat. Phys., 19–26 (2009)
115. Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation on cluster

states. Phys. Rev. A 68(2), 022312 (2003)
116. Complexity Zoo. https://complexityzoo.uwaterloo.ca/Complexity Zoo
117. Arora, S., Barak, B. Computational Complexity: A Modern Approach, 1st edn. Cambridge Univer-

sity Press, New York (2009)
118. Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A.: Multi-prover interactive proofs: How to

remove intractability assumptions. In: Proceedings of the Twentieth Annual ACM Symposium on
Theory of Computing, pp. 113–131. ACM (1988)

119. Cleve, R., Hoyer, P., Toner, B., Watrous, J.: Consequences and limits of nonlocal strategies. In: 19th
IEEE Annual Conference on Computational Complexity, 2004. Proceedings, pp. 236–249. IEEE
(2004)

http://arXiv.org/abs/1610.05216
http://research.ibm.com/ibm-q/
https://developer.ibm.com/dwblog/2017/quantum-computing-16-qubit-processor/
https://developer.ibm.com/dwblog/2017/quantum-computing-16-qubit-processor/
https://spectrum.ieee.org/computing/hardware/google-plans-to-demonstrate-the-supremacy-of-quantum-computing
https://spectrum.ieee.org/computing/hardware/google-plans-to-demonstrate-the-supremacy-of-quantum-computing
http://arXiv.org/abs/1708.09156
http://arXiv.org/abs/1708.02130
https://complexityzoo.uwaterloo.ca/Complexity_Zoo

	Verification of Quantum Computation: An Overview of Existing Approaches
	Abstract
	Introduction
	Blind Quantum Computing
	Quantum One-Time Pad
	Childs' Protocol for Blind Computation
	Universal Blind Quantum Computation (UBQC)

	Prepare-and-Send Protocols
	Quantum Authentication-Based Verification
	Clifford-QAS VQC
	Poly-QAS VQC

	Trap-Based Verification
	Verification Based on Repeated Runs
	Summary of Prepare-and-Send Protocols

	Receive-and-Measure Protocols
	Measurement-Only Verification
	Post Hoc Verification
	Summary of Receive-and-Measure Protocols

	Entanglement-Based Protocols
	Verification Based on CHSH Rigidity
	RUV Protocol
	GKW Protocol
	HPDF Protocol

	Verification Based on Self-Testing Graph States
	Post Hoc Verification
	FH Protocol
	NV Protocol

	Summary of Entanglement-Based Protocols

	Outlook
	Sub-Universal Protocols
	Fault Tolerance
	Experiments and Implementations

	Conclusions
	Acknowledgements
	Open Access
	Appendix 1
	Quantum Information and Computation
	Basics of Quantum Mechanics
	Density Matrices
	Purification
	CPTP Maps and Isometries
	Trace Distance
	Quantum Computation
	Bloch Sphere
	Quantum Error Correction

	Measurement-Based Quantum Computation
	Complexity Theory
	Publisher's Note
	References

