2,565 research outputs found

    Bis(2,2′-bipyridine-κ2 N,N′)bis­(1H-indole-2-carboxyl­ato-κ2 O,O′)cadmium–2,2′-bipyridine–water (1/0.5/2)

    Get PDF
    The asymmetric unit of title compound, [Cd(C9H6NO2)2(C10H8N2)2]·0.5C10H8N2·2H2O, consists of one complex mol­ecule, one half of an uncoordinated 2,2′-bipyridine mol­ecule and two solvent water mol­ecules. The uncoordinated 2,2′-bipyridine mol­ecule is located on a center of symmetry. Within the complex mol­ecule, the CdII atom is coordinated by four N atoms from two 2,2′-bipyridine ligands and three O atoms from two 1H-indole-2-carboxyl­ate anion ligands, completing a distorted CdN4O3 penta­gonal bipyra­mid. The mol­ecules are assembled into one-dimensional chains along the [100] direction through classical hydrogen bonds (O—H⋯N, N—H⋯O and O—H⋯O). The resulting chains are further connected into two-dimensional supra­molecular layers parallel to the (110) direction by inter­molecular classical hydrogen bonds (N—H⋯O and O—H⋯O) from adjacent chains. A three-dimensional supra­molecular network is formed via interlayer and O—H⋯O hydrogen bonds

    mGluR5 antagonism inhibits cocaine reinforcement and relapse by elevation of extracellular glutamate in the nucleus accumbens via a CB1 receptor mechanism.

    Get PDF
    Metabotropic glutamate receptor 5 (mGluR5) antagonism inhibits cocaine self-administration and reinstatement of drug-seeking behavior. However, the cellular and molecular mechanisms underlying this action are poorly understood. Here we report a presynaptic glutamate/cannabinoid mechanism that may underlie this action. Systemic or intra-nucleus accumbens (NAc) administration of the mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) dose-dependently reduced cocaine (and sucrose) self-administration and cocaine-induced reinstatement of drug-seeking behavior. The reduction in cocaine-taking and cocaine-seeking was associated with a reduction in cocaine-enhanced extracellular glutamate, but not cocaine-enhanced extracellular dopamine (DA) in the NAc. MPEP alone, when administered systemically or locally into the NAc, elevated extracellular glutamate, but not DA. Similarly, the cannabinoid CB1 receptor antagonist, rimonabant, elevated NAc glutamate, not DA. mGluR5s were found mainly in striatal medium-spiny neurons, not in astrocytes, and MPEP-enhanced extracellular glutamate was blocked by a NAc CB1 receptor antagonist or N-type Ca++ channel blocker, suggesting that a retrograde endocannabinoid-signaling mechanism underlies MPEP-induced glutamate release. This interpretation was further supported by our findings that genetic deletion of CB1 receptors in CB1-knockout mice blocked both MPEP-enhanced extracellular glutamate and MPEP-induced reductions in cocaine self-administration. Together, these results indicate that the therapeutic anti-cocaine effects of mGluR5 antagonists are mediated by elevation of extracellular glutamate in the NAc via an endocannabinoid-CB1 receptor disinhibition mechanism

    Relationship between Carotid Artery Sclerosis and Blood Pressure Variability in Essential Hypertension Patients

    Get PDF
    Objectives: This study aimed to investigate the relationship between the presence of carotid arteriosclerosis (CAS) and blood pressure variability (BPV) in patients with essential hypertension. Methods: One hundred and forty four essential hypertension patients underwent ambulatory BP monitoring for 24 hours after hospitalization. Common BPV metrics were calculated. General clinical parameters, including age, gender, height, weight, history of coronary heart disease, stroke, diabetes, hypertension, smoking and drink, were recorded. Biochemical indices were obtained from a blood test. Carotid intima-media thickness (IMT) and carotid plaques were assessed to separate patients into a non-CAS group (IMT≤0.9 mm; n=82) and a CAS group (IMT>0.9 mm; n=62). BPV metrics and clinical parameters were analyzed and compared between the two groups. Multivariate logistic regression analysis was performed to determine the associated risk factors of CAS. Results: Multivariate logistic regression analysis revealed that two BPV metrics, the standard deviation of daytime systolic blood pressure (SSD) (OR: 1.587, 95%CI: 1.242–2.028), the difference between average daytime SBP and nighttime SBP (OR: 0.914, 95%CI: 0.855-0.977), as well as three clinical parameters (age, OR: 1.098, 95%CI: 1.034-1.167; smoking, OR: 4.072, 95%CI: 1.466–11.310, and fasting blood glucose, OR: 2.029, 95%CI: 1.407–2.928), were significant factors of CAS in essential hypertension patients. Conclusion: SSD, in combination with the ageing, smoking and FBG, has been identified as risk factors for CAS in patients with essential hypertension

    Aqua­(4-fluoro­benzoato-κO)bis­(1,10-phenanthroline-κ2 N,N′)manganese(II) 4-fluoro­benzoate trihydrate

    Get PDF
    In the title compound, [Mn(C7H4FO2)(C12H8N2)2(H2O)](C7H4FO2)·3H2O, the MnII atom is coordinated by four N atoms from two chelating 1,10-phenanthroline ligands and two O atoms from one monodentate 4-fluoro­benzoate ion and one water mol­ecule, forming a distorted octa­hedral geometry. In the crystal, the three components are assembled into a tape structure along the a axis by O—H⋯O and C—H⋯O hydrogen bonds. Between the tapes, a π–π inter­action with a centroid–centroid distance of 3.569 (3) Å and a weak C—H⋯F hydrogen bond are observed

    Ventral Visual Pathway-Cerebellar Circuit Deficits in Alcohol Dependence: Long- and Short-Range Functional Connectivity Density Study

    Get PDF
    Objective: To identify the underlying intrinsic functional connectome changes in patients with alcohol dependence.Methods: A functional connectivity density (FCD) analysis was used to report on the functional connectivity changes in 24 male patients with alcohol dependence (age, 47.83 ± 6.93 years) and 24 healthy male subjects (age, 47.67 ± 6.99 years). We defined the voxels with a correlated threshold of r > 0.25 inside their neighborhood (radius sphere ≤ 6 mm) as shortFCD, and radius sphere > 6 mm as longFCD. We repeated the network analysis using a range of correlation r thresholds (r = 0.30, 0.35, 0.40, 0.45, 0.50, 0.6, and 0.75) to determine whether between-group differences were substantially affected by the selection of the different R-value thresholds used. A ROC curve was used to test the ability of the FCD in discriminating between the two groups. Pearson's correlation was used to evaluate the relationships between the FCD differences in brain areas and demographic characteristics.Results: The covered differences in brain areas in binarized shortFCD were larger than binarized longFCD in both groups. The intra-group FCD differences did not depend on the selection of different thresholds used. Patients with alcohol dependence were associated with the longFCD deficit in the cerebellum posterior lobe, and shortFCD deficit in the ventral system of the visual pathway and increased shortFCD in the left precentral gyrus, right salience network and right cingulate gyrus. A ROC curve demonstrated that these specific brain areas alone discriminated between the two groups with a high degree of sensitivity and specificity. In the alcohol dependence group, the cerebellum posterior lobe, visual association cortex and the salience network displayed significant correlations with demographic characteristics.Conclusions: The shortFCD analysis was more sensitive than the longFCD analysis in finding differences in the brain areas. The ventral visual pathway-cerebellar circuit deficit appeared to be altered in patients with alcohol dependence

    High-performance large-area blade-coated perovskite solar cells with low ohmic loss for low lighting indoor applications

    Get PDF
    Emerging hybrid organic–inorganic perovskites with superior optoelectronic property demonstrate promising prospect for photovoltaic (PV) applications, in particular for low-lighting indoor applications e.g. within internet of things (IoT) networks or low-energy wireless communication devices. In order to prepare devices with high power output under low-illumination conditions, scalable fabrication techniques are preferred for large-area perovskite solar cells. In additions, one of the key parameters to achieve high-efficiency large-area perovskite solar cells is to minimize the ohmic loss to further boost the solar cell efficiency. Herein, a one-step blade-coating method assisted by hexafluorobenzene (HFB) was developed to deposit dense, large-area smooth and high- quality perovskite films with low ohmic loss. The as-fabricated devices demonstrated power conversion effi- ciency (PCE) of 20.7% (area of 0.2 cm2) and 16.5% (1 cm2), respectively, under standard (AM 1.5G) illumination conditions. Besides, the large-area (1 cm2) devices demonstrated a remarkable PCE of ~ 33.8% and ~ 30.0% under 1000 lx and 100 lx illumination provided by white light-emitting diode (LED) lamp, respectively. We exhibited a series-connected stack of large-area (totally active area ~ 4 cm2) perovskite photovoltaic device powering up a LED under common indoor environment as an indoor self-power indicator lamp. The analysis using a single diode model suggests that the high performance of the large-area devices under low-lighting in- door conditions is highly associated with the largely reduced ohmic losses, which particularly indicate that the perovskite films by a facile and scalable blade-coating method. The presented scalable approach paves the way to designing high-performance perovskite solar cells for a variety of emerging indoor PV application

    Electroacupuncture Ameliorates Learning and Memory and Improves Synaptic Plasticity via Activation of the PKA/CREB Signaling Pathway in Cerebral Hypoperfusion

    Get PDF
    Electroacupuncture (EA) has shown protective effects on cognitive decline. However, the underlying molecular mechanisms are ill-understood. The present study was undertaken to determine whether the cognitive function was ameliorated in cerebral hypoperfusion rats following EA and to investigate the role of PKA/CREB pathway. We used a rat 2-vessel occlusion (2VO) model and delivered EA at Baihui (GV20) and Dazhui (GV14) acupoints. Morris water maze (MWM) task, electrophysiological recording, Golgi silver stain, Nissl stain, Western blot, and real-time PCR were employed. EA significantly (1) ameliorated the spatial learning and memory deficits, (2) alleviated long-term potentiation (LTP) impairment and the reduction of dendritic spine density, (3) suppressed the decline of phospho-CREB (pCREB) protein, brain-derived neurotrophic factor (BDNF) protein, and microRNA132 (miR132), and (4) reduced the increase of p250GAP protein of 2VO rats. These changes were partially blocked by a selective protein kinase A (PKA) inhibitor, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline-sulfonamide (H89), suggesting that the PKA/CREB pathway is potentially involved in the effects of EA. Moreover, any significant damage to the pyramidal cell layer of CA1 subregion was absent. These results demonstrated that EA could ameliorate learning and memory deficits and alleviate hippocampal synaptic plasticity impairment of cerebral hypoperfusion rats, potentially mediated by PKA/CREB signaling pathway

    Epitaxial growth of high quality Mn3SnMn_3Sn thin films by pulsed laser deposition

    Full text link
    Non-collinear antiferromagnet Weyl semimetal Mn3SnMn_3Sn have attracted great research interest recently. Although large anomalous Hall effect, anomalous Nernst effect and magneto-optical effect have been observed in Mn3SnMn_3Sn, most studies are based on single crystals. So far, it is still challenging to grow high quality epitaxial Mn3SnMn_3Sn thin films with transport and optical properties comparable to their single crystal counterparts. Here, we report the structure, magneto-optical and transport properties of epitaxial Mn3SnMn_3Sn thin films fabricated by pulsed laser deposition (PLD). Highly oriented Mn3+xSn1xMn_{3+x}Sn_{1-x} (0001) and (112ˉ\bar20) epitaxial films are successfully growth on single crystalline Al2O3Al_2O_3 and MgO substrates. Large anomalous Hall effect (AHE) up to ΔRH\left| \Delta R_H\right|=3.02 μΩcm\mu\Omega\cdot cm, and longitudinal magneto-optical Kerr effect (LMOKE) with θK\theta_K = 38.1 mdeg at 633 nm wavelength are measured at 300 K temperature, which are comparable to Mn3SnMn_3Sn single crystals. Our work demonstrates that high quality Mn3SnMn_3Sn epitaxial thin films can be fabricated by PLD, paving the way for future device applications
    corecore