728 research outputs found

    Evaluation of predictive models for post-fire debris flow occurrence in the western United States

    Get PDF
    Abstract. Rainfall-induced debris flows in recently burned mountainous areas cause significant economic losses and human casualties. Currently, prediction of post-fire debris flows is widely based on the use of power-law thresholds and logistic regression models. While these procedures have served with certain success in existing operational warning systems, in this study we investigate the potential to improve the efficiency of current predictive models with machine-learning approaches. Specifically, the performance of a predictive model based on the random forest algorithm is compared with current techniques for the prediction of post-fire debris flow occurrence in the western United States. The analysis is based on a database of post-fire debris flows recently published by the United States Geological Survey. Results show that predictive models based on random forest exhibit systematic and considerably improved performance with respect to the other models examined. In addition, the random-forest-based models demonstrated improvement in performance with increasing training sample size, indicating a clear advantage regarding their ability to successfully assimilate new information. Complexity, in terms of variables required for developing the predictive models, is deemed important but the choice of model used is shown to have a greater impact on the overall performance

    Quantifying and Maximising the Benefits of Crops After Rice

    Get PDF
    At the time this project was conceived, rising watertables and subsequent salinisation were considered to be the major threats to the sustainability of irrigated agriculture in the rice growing areas of southern NSW. The biggest threat to sustainability at present is the reduced availability and higher cost of water as a result of the water reforms, and more recently prolonged drought. The hypothesis of this project was that growing crops immediately after rice would increase water use efficiency and profitability of rice-based cropping systems while reducing net recharge. Field experiments were conducted from 1998 to 2000 on two soil types to evaluate the effect of non-irrigated wheat after rice on watertables and net recharge. Rainfall during the wheat season was reasonably similar in all 3 years (270-318 mm) and higher than average (220 mm). Yield and biomass production of early sown (24 April) wheat were higher than yield of late wheat (29 June) (grain yield 4.7 vs 3.8 t/ha at 12% moisture). In the absence of irrigation, the soil profile remained wet in fallow areas, whereas there was considerable drying in areas planted to wheat. The drying created capacity in the soil profile to capture and use winter rainfall. There was a general increase in depth to the watertable during the first half of the season where non-irrigated wheat was grown after rice, but not in the fallow areas. However, in all situations, the watertable rose around the time of rice sowing each year due to a rise in the regional groundwater level. The lumped water balance studies suggested net discharge of about 1 ML/ha between the time of sowing and harvesting wheat after rice in each of the three years, mostly due to higher upflow due to crop water use. In the fallow, net discharge/recharge was close to zero. The CERES Wheat and SWAGMAN® Destiny models performed very well in simulating a wide range of crop and soil water parameters, although the validation data sets were limited in that the yield range was smaller than desirable. Consistent with the field studies, yield of nonirrigated early sown wheat (median 3.8 t/ha) was usually much higher than yield of late sown wheat (median 1.8 t/ha). With one or two irrigations yields of both early and late sown wheat almost always increased, by around 1 t/ha with one irrigation at heading, and an additional 0.5 t/ha with a second irrigation during grain filling. It was only with frequent irrigation (whenever cumulative ETo-rain since the previous irrigation reached 60 mm) that yields of late sown wheat matched (or surpassed) yields of early sown wheat. However, the irrigation requirement for late wheat irrigated at ETo-rain 60 mm was almost always much higher than for early wheat with the same irrigation management (by >100 mm in most years). While irrigation increased yield, it also increased net recharge, with final watertables generally higher by 0.5 to 0.8 m for wheat after rice (wet initial soil) with irrigation at ETo-rain 60 mm compared with no irrigation. The model simulations showed that with wheat after rice, there was net discharge in almost all years, regardless of initial watertable depth (0.5-1.5 m). In comparison, net recharge occurred in 18 to 48% of years with fallow after rice, the amount of recharge increase as initial depth to the watertable increased. For non-irrigated wheat after rice, salinity of the watertable was 2 important where the watertable was shallow (0.5 m), with yield reductions in excess of 1 t/ha in most years. However for deeper watertables, there was no effect of watertable salinity for non-irrigated wheat. With irrigation, watertable salinity had no impact on yields. Growing wheat immediately after rice was financially beneficial, with an increase in Net Present Value (NPV) ranging from 31 to 126 /ha/yrdependingontherotation.Assumingthattherateofadoptionisdoubledover20yearsasaresultoftheproject,theNPVofbenefitswasestimatedtobe/ha/yr depending on the rotation. Assuming that the rate of adoption is doubled over 20 years as a result of the project, the NPV of benefits was estimated to be 5.6 million compared with costs of $1.1 million, resulting in a benefit cost ratio of 5.3

    Quantifying and Maximising the Benefits of Crops After Rice

    Get PDF
    At the time this project was conceived, rising watertables and subsequent salinisation were considered to be the major threats to the sustainability of irrigated agriculture in the rice growing areas of southern NSW. The biggest threat to sustainability at present is the reduced availability and higher cost of water as a result of the water reforms, and more recently prolonged drought. The hypothesis of this project was that growing crops immediately after rice would increase water use efficiency and profitability of rice-based cropping systems while reducing net recharge. Field experiments were conducted from 1998 to 2000 on two soil types to evaluate the effect of non-irrigated wheat after rice on watertables and net recharge. Rainfall during the wheat season was reasonably similar in all 3 years (270-318 mm) and higher than average (220 mm). Yield and biomass production of early sown (24 April) wheat were higher than yield of late wheat (29 June) (grain yield 4.7 vs 3.8 t/ha at 12% moisture). In the absence of irrigation, the soil profile remained wet in fallow areas, whereas there was considerable drying in areas planted to wheat. The drying created capacity in the soil profile to capture and use winter rainfall. There was a general increase in depth to the watertable during the first half of the season where non-irrigated wheat was grown after rice, but not in the fallow areas. However, in all situations, the watertable rose around the time of rice sowing each year due to a rise in the regional groundwater level. The lumped water balance studies suggested net discharge of about 1 ML/ha between the time of sowing and harvesting wheat after rice in each of the three years, mostly due to higher upflow due to crop water use. In the fallow, net discharge/recharge was close to zero. The CERES Wheat and SWAGMAN® Destiny models performed very well in simulating a wide range of crop and soil water parameters, although the validation data sets were limited in that the yield range was smaller than desirable. Consistent with the field studies, yield of nonirrigated early sown wheat (median 3.8 t/ha) was usually much higher than yield of late sown wheat (median 1.8 t/ha). With one or two irrigations yields of both early and late sown wheat almost always increased, by around 1 t/ha with one irrigation at heading, and an additional 0.5 t/ha with a second irrigation during grain filling. It was only with frequent irrigation (whenever cumulative ETo-rain since the previous irrigation reached 60 mm) that yields of late sown wheat matched (or surpassed) yields of early sown wheat. However, the irrigation requirement for late wheat irrigated at ETo-rain 60 mm was almost always much higher than for early wheat with the same irrigation management (by >100 mm in most years). While irrigation increased yield, it also increased net recharge, with final watertables generally higher by 0.5 to 0.8 m for wheat after rice (wet initial soil) with irrigation at ETo-rain 60 mm compared with no irrigation. The model simulations showed that with wheat after rice, there was net discharge in almost all years, regardless of initial watertable depth (0.5-1.5 m). In comparison, net recharge occurred in 18 to 48% of years with fallow after rice, the amount of recharge increase as initial depth to the watertable increased. For non-irrigated wheat after rice, salinity of the watertable was 2 important where the watertable was shallow (0.5 m), with yield reductions in excess of 1 t/ha in most years. However for deeper watertables, there was no effect of watertable salinity for non-irrigated wheat. With irrigation, watertable salinity had no impact on yields. Growing wheat immediately after rice was financially beneficial, with an increase in Net Present Value (NPV) ranging from 31 to 126 /ha/yrdependingontherotation.Assumingthattherateofadoptionisdoubledover20yearsasaresultoftheproject,theNPVofbenefitswasestimatedtobe/ha/yr depending on the rotation. Assuming that the rate of adoption is doubled over 20 years as a result of the project, the NPV of benefits was estimated to be 5.6 million compared with costs of $1.1 million, resulting in a benefit cost ratio of 5.3

    Dynamic Simulation of Unsteady Flow of Water in Unsaturated Soils and its Application to Subirrigation System Design

    Get PDF
    Two computer programs were developed. One simulated vertical unsteady infiltration through the surface into a homogeneous unsaturated soil. Simulation results were obtained for three different soils--Yolo light clay, Adelanto loam, and Pachappa loam. The results for Yolo light clay compared favorably with the available numerical solutions of Philip for the same soil and for identical boundary and initial conditions. The solutions for the other two soils demonstrated the workability of the model for soils having different hydraulic characteristics. The other computer model simulated unsteady vertical flow of water in an unsaturated homogeneous soil during infiltration from a buried source and through the following drying period, in a sequence. The consumption of water by plant roots, considered to be a nonlinear function of the time of day, was taken into account. The consumption rate at any given time was assumed to be distributed in a linearly decreasing manner with depth of the root zone. The model has the capacity to consider the source at any desired level. Simulation data for buried sources were obtained for Yolo light clay, using a soil depth as well as a root depth of 60 cm, in two sets. The first set had an initial uniform water content of 0.2375 (cm3/cm3), whereas 0.32 (cm3/cm3) was the value for the second set. A daily root consumption of 0.635 cm was used. In each set, three different depths of the source, i.e., 10, 20, and 30 cm, were used. For each source location, simulation results were obtained for varying durations of the irrigation and drying cycle which were controlled by a chosen water content value at a specified point in the soil mass. The whole svstem thus, worked like an automated subirrigation installation. The water content profiles with time were plotted for each simulation run. The patterns of water distribution with time for each source location were analyzed in light of two important criteria: (i) adequacy of the supply of water with respect to the need at different parts of the root zone, and (ii) overall irrigation efficiency. Two new concepts, avail ability coefficient and proportionality coefficient, which help evaluate the effectiveness of vertical water distribution in a subirrigation system, were defined and illustrated. For the assumed distribution of the root consumption with time and depth, the 10-cm depth source provided better distribution of water with time and space compared to the 20-cm and 30-cm source locations. Irrigation from zero depth, as in the case of trickle irrigation, appeared to be the best system for the given conditions. The S/360 CSMP language proved to be efficient in simulating the transient water flow phenomena in unsaturated soils. The principal advantage of the numerical procedure followed was in its complete generality and the ease with which numerical data on the hydraulic characteristics of the soil may be used without arbitrary assumptions and function fitting procedures. The models developed are capable of considering diverse boundary and initial conditions

    Intertemporal excess burden, bequest motives, and the budget deficit

    Get PDF
    The author aims to empirically determine the significant factors that affect the levels of budget deficits of central governments across time and across countries. He empirically tests two prominent theories of budget deficits-the Barro (1979) tax-smoothing approach, and the still-untested theory of negative bequest motives advocated by Cukierman and Meltzer (1989). The author uses econometric techniques including fixed-effects (both country and time) panel regressions spanning 87 countries over the period 1975 to 1992, and the Griliches treatment of missing data. The author finds relatively stronger statistical support for the tax-smoothing approach among developing countries but not in industrial countries. The existence of empirical evidence supporting the theory of negative bequest motives is indeterminate. The author also conducted post-regression analyses to assess the proportion of observed differences in budget deficits the factors were actually able to explain. These reveal that both theories are generally weak in accounting for inter-temporal changes in budget deficit shares for both industrial and developing countries. The theories performed significantly better in accounting for cross-section differences. The author has many contributions to the literature. First, he analyzes the question of what determines the size of central government budget deficits using cross-country time series data leading into the 1990s. Second, he provides empirical tests of the still-untested Cukierman-Meltzer (1989) negative bequest motive theory of budget deficits. By using the panel data, the author attempts to determine the factors that influence not only the inter-temporal differences in budget deficits but also those factors that lead to cross-country differences. Last but not least, he provides some preliminary evidence that poverty reduction is necessary for long-term government budget deficit reduction.Public Sector Economics&Finance,Environmental Economics&Policies,Economic Theory&Research,Banks&Banking Reform,Municipal Financial Management,Public Sector Economics&Finance,Economic Theory&Research,Economic Stabilization,Banks&Banking Reform,National Governance

    On the fluid-fluid phase separation in charged-stabilized colloidal suspensions

    Full text link
    We develop a thermodynamic description of particles held at a fixed surface potential. This system is of particular interest in view of the continuing controversy over the possibility of a fluid-fluid phase separation in aqueous colloidal suspensions with monovalent counterions. The condition of fixed surface potential allows in a natural way to account for the colloidal charge renormalization. In a first approach, we assess the importance of the so called ``volume terms'', and find that in the absence of salt, charge renormalization is sufficient to stabilize suspension against a fluid-fluid phase separation. Presence of salt, on the other hand, is found to lead to an instability. A very strong dependence on the approximations used, however, puts the reality of this phase transition in a serious doubt. To further understand the nature of the instability we next study a Jellium-like approximation, which does not lead to a phase separation and produces a relatively accurate analytical equation of state for a deionized suspensions of highly charged colloidal spheres. A critical analysis of various theories of strongly asymmetric electrolytes is presented to asses their reliability as compared to the Monte Carlo simulations

    Spin-orbit coupling and crystal-field splitting in the electronic and optical properties of nitride quantum dots with a wurtzite crystal structure

    Full text link
    We present an sp3sp^3 tight-binding model for the calculation of the electronic and optical properties of wurtzite semiconductor quantum dots (QDs). The tight-binding model takes into account strain, piezoelectricity, spin-orbit coupling and crystal-field splitting. Excitonic absorption spectra are calculated using the configuration interaction scheme. We study the electronic and optical properties of InN/GaN QDs and their dependence on structural properties, crystal-field splitting, and spin-orbit coupling.Comment: 9 pages, 6 figure

    GaN and InN nanowires grown by MBE: a comparison

    Full text link
    Morphological, optical and transport properties of GaN and InN nanowires grown by molecular beam epitaxy (MBE) have been studied. The differences between the two materials in respect to growth parameters and optimization procedure was stressed. The nanowires crystalline quality has been investigated by means of their optical properties. A comparison of the transport characteristics was given. For each material a band schema was shown, which takes into account transport and optical features and is based on Fermi level pinning at the surface.Comment: 5 pages, 5 figure
    • …
    corecore