153 research outputs found

    PCR Based Genotyping of Lulu Cattle of Nepal for A1, A2 Type Beta-caseins

    Full text link
    Lulu is an indigenous breed of cattle (Bos taurus) found in high altitude regions of western Nepal. Population of Lulu cattle has been declining due to introgression with other exotic breeds to increase milk productivity. Here we aimed at finding potential approach for conserving Lulu cattle and its assets by studying the milk contents and investigating which variant of beta-casein protein is present in this breed. Beta caseins are an abundant protein in cow milk with A1 and A2 being the most common genetic variants of this protein. Consumption of A1 type of milk has numerous health-related complications whereas A2 type of milk has numerous human health promoting factors. We used restriction fragment length polymorphism (RFLP) for determining the A1 and A2 variant of beta casein in Lulu cattle. For performing DNA extraction, we collected (n = 18) blood samples of Lulu from Mustang and (n=17) Nepal Agriculture research council farm. The amplified fragments in 3% agarose at 251bp and 213bp respectively confirmed the presence of both A1 and A2 gene in Lulu; however, A2 was of greater abundance. Our study indicated that Lulu has A2 variant of beta-casein predominantly. The gene frequency of A1A1 is 0, A1A2 is 0.06 and A2A2 is 0.94. We further found that the allele frequency of A1 and A2 is 0.03 and 0.97 respectively. We designed special primer for sequencing CSN2 genes since A2 type beta casein gene was predominantly seen on Lulu. The sequencing result further supports our RFLP result as most of our samples have β€œC” nucleotide SNP in amplified CSN2 gene sequence. The Chi-square value of the current study is 0.04 which supports Hardy-Weinberg equilibrium inferring that Lulu cattle are still in the pure state, where there is no genetic introgression with the exotic breed for the sake of improvement of productivity

    Novel truncating mutations in CTNND1 cause a dominant craniofacial and cardiac syndrome.

    Get PDF
    CTNND1 encodes the p120-catenin (p120) protein, which has a wide range of functions, including the maintenance of cell-cell junctions, regulation of the epithelial-mesenchymal transition and transcriptional signalling. Due to advances in next-generation sequencing, CTNND1 has been implicated in human diseases including cleft palate and blepharocheilodontic (BCD) syndrome albeit only recently. In this study, we identify eight novel protein-truncating variants, six de novo, in 13 participants from nine families presenting with craniofacial dysmorphisms including cleft palate and hypodontia, as well as congenital cardiac anomalies, limb dysmorphologies and neurodevelopmental disorders. Using conditional deletions in mice as well as CRISPR/Cas9 approaches to target CTNND1 in Xenopus, we identified a subset of phenotypes that can be linked to p120-catenin in epithelial integrity and turnover, and additional phenotypes that suggest mesenchymal roles of CTNND1. We propose that CTNND1 variants have a wider developmental role than previously described and that variations in this gene underlie not only cleft palate and BCD but may be expanded to a broader velocardiofacial-like syndrome

    Simulation of the discharge propagation in a capillary tube in air at atmospheric pressure

    Full text link
    International audienceThis paper presents simulations of an air plasma discharge at atmospheric pressure initiated by a needle anode set inside a dielectric capillary tube. We have studied the influence of the tube inner radius and its relative permittivity Ξ΅ r on the discharge structure and dynamics. As a reference, we have used a relative permittivity Ξ΅ r = 1 to study only the influence of the cylindrical constraint of the tube on the discharge. For a tube radius of 100 Β΅m and Ξ΅ r = 1, we have shown that the discharge fills the tube during its propagation and is rather homogeneous behind the discharge front. When the radius of the tube is in the range 300 to 600 Β΅m, the discharge structure is tubular with peak values of electric field and electron density close to the dielectric surface. When the radius of the tube is larger than 700 Β΅m, the tube has no influence on the discharge which propagates axially. For a tube radius of 100 Β΅m, when Ξ΅ r increases from 1 to 10, the discharge structure becomes tubular. We have noted that the velocity of propagation of the discharge in the tube increases when the front is more homogeneous and then, the discharge velocity increases with the decrease of the tube radius and Ξ΅ r. Then, we have compared the relative influence of the value of tube radius and Ξ΅ r on the discharge characteristics. Our simulations indicate that the geometrical constraint of the cylindrical tube has more influence than the value of Ξ΅ r on the discharge structure and dynamics. Finally, we have studied the influence of photoemission processes on the discharge structure by varying the photoemission coefficient. As expected, we have shown that photoemission, as it increases the number of secondary electrons close to the dielectric surface, promotes the tubular structure of the discharge

    Inhibition of Interferon Induction and Action by the Nairovirus Nairobi Sheep Disease Virus/Ganjam Virus

    Get PDF
    The Nairoviruses are an important group of tick-borne viruses that includes pathogens of man (Crimean Congo hemorrhagic fever virus) and livestock animals (Dugbe virus, Nairobi sheep disease virus (NSDV)). NSDV is found in large parts of East Africa and the Indian subcontinent (where it is known as Ganjam virus). We have investigated the ability of NSDV to antagonise the induction and actions of interferon. Both pathogenic and apathogenic isolates could actively inhibit the induction of type 1 interferon, and also blocked the signalling pathways of both type 1 and type 2 interferons. Using transient expression of viral proteins or sections of viral proteins, these activities all mapped to the ovarian tumour-like protease domain (OTU) found in the viral RNA polymerase. Virus infection, or expression of this OTU domain in transfected cells, led to a great reduction in the incorporation of ubiquitin or ISG15 protein into host cell proteins. Point mutations in the OTU that inhibited the protease activity also prevented it from antagonising interferon induction and action. Interestingly, a mutation at a peripheral site, which had little apparent effect on the ability of the OTU to inhibit ubiquitination and ISG15ylation, removed the ability of the OTU to block the induction of type 1 and the action of type 2 interferons, but had a lesser effect on the ability to block type 1 interferon action, suggesting that targets other than ubiquitin and ISG15 may be involved in the actions of the viral OTU

    Ubiquitin-Specific Protease 4 Inhibits Mono-Ubiquitination of the Master Growth Factor Signaling Kinase PDK1

    Get PDF
    BACKGROUND: Phosphorylation by the phospho-inositide-dependent kinase 1 (PDK1) is essential for many growth factor-activated kinases and thus plays a critical role in various processes such as cell proliferation and metabolism. However, the mechanisms that control PDK1 have not been fully explored and this is of great importance as interfering with PDK1 signaling may be useful to treat diseases, including cancer and diabetes. METHODOLOGY/PRINCIPAL FINDINGS: In human cells, few mono-ubiquitinated proteins have been described but in all cases this post-translational modification has a key regulatory function. Unexpectedly, we find that PDK1 is mono-ubiquitinated in a variety of human cell lines, indicating that PDK1 ubiquitination is a common and regulated process. Ubiquitination occurs in the kinase domain of PDK1 yet is independent of its kinase activity. By screening a library of ubiquitin proteases, we further identify the Ubiquitin-Specific Protease 4 (USP4) as an enzyme that removes ubiquitin from PDK1 in vivo and in vitro and co-localizes with PDK1 at the plasma membrane when the two proteins are overexpressed, indicating direct deubiquitination. CONCLUSIONS: The regulated mono-ubiquitination of PDK1 provides an unanticipated layer of complexity in this central signaling network and offers potential novel avenues for drug discovery

    Coronavirus Papain-like Proteases Negatively Regulate Antiviral Innate Immune Response through Disruption of STING-Mediated Signaling

    Get PDF
    Viruses have evolved elaborate mechanisms to evade or inactivate the complex system of sensors and signaling molecules that make up the host innate immune response. Here we show that human coronavirus (HCoV) NL63 and severe acute respiratory syndrome (SARS) CoV papain-like proteases (PLP) antagonize innate immune signaling mediated by STING (stimulator of interferon genes, also known as MITA/ERIS/MYPS). STING resides in the endoplasmic reticulum and upon activation, forms dimers which assemble with MAVS, TBK-1 and IKKΞ΅, leading to IRF-3 activation and subsequent induction of interferon (IFN). We found that expression of the membrane anchored PLP domain from human HCoV-NL63 (PLP2-TM) or SARS-CoV (PLpro-TM) inhibits STING-mediated activation of IRF-3 nuclear translocation and induction of IRF-3 dependent promoters. Both catalytically active and inactive forms of CoV PLPs co-immunoprecipitated with STING, and viral replicase proteins co-localize with STING in HCoV-NL63-infected cells. Ectopic expression of catalytically active PLP2-TM blocks STING dimer formation and negatively regulates assembly of STING-MAVS-TBK1/IKKΞ΅ complexes required for activation of IRF-3. STING dimerization was also substantially reduced in cells infected with SARS-CoV. Furthermore, the level of ubiquitinated forms of STING, RIG-I, TBK1 and IRF-3 are reduced in cells expressing wild type or catalytic mutants of PLP2-TM, likely contributing to disruption of signaling required for IFN induction. These results describe a new mechanism used by CoVs in which CoV PLPs negatively regulate antiviral defenses by disrupting the STING-mediated IFN induction
    • …
    corecore