67 research outputs found

    TinyML based Deep Learning Model for Activity Detection

    Get PDF
    Our physical and emotional well-being are directly impacted by our body positions. In addition to promoting a confident, upright image, maintaining good body posture during various activities also ensures that our musculoskeletal system is properly aligned. On the other side, bad posture can result in a number of musculoskeletal conditions, discomfort, and reduced productivity. Accurate systems that can detect posture in real time, activity detection, are required due to the rising use of wearable technology and the growing interest in health and fitness tracking. The goal of this project is to create a TinyML model for wearable activity detection that will allow users to assess their posture and make necessary corrections in order to improve their health and general well-being. The project intends to contribute to the creation of useful posture detection technologies that can be quickly implemented on wearable devices for widespread usage by leveraging machine learning algorithms and wearable sensor data. For reliable posture categorization, the model architecture combines deep neural networks (DNN) and LSTM layers. With the development and implementation of the TinyML model, a significant decrease in the model's power consumption, memory, and latency was achieved without any compromise in the accuracy. This work can be used in the fields of health, wellness, rehabilitation, corporate life, sports and fitness to keep track of calories burned, activity duration, distance traveled, posture analysis, and real-time tracking

    Effect of hydrogen bonding and solvent polarity on the fluorescence quenching and dipole moment of 2-methoxypyridin-3-yl-3-boronic acid

    Get PDF
    Two photophysical properties namely, fluorescence quenching and dipole moment (both ground state and excited state) of 2-methoxypyridin-3-yl-3-boronic acid (2MPBA) have been investigated in alcohol environment using steady state fluorescence technique at 300 K. In quenching studies, a rare but not unusual observation; negative Stern-Volmer (S-V) deviation has been noticed. It has been explained using the concept of solute’s conformational changes in the ground state due to inter-molecular and intra-molecular hydrogen bonding in alcohol environment. The spectroscopic data has been processed using Lehrer equation and thereby Stern-Volmer constant (KSV) has been evaluated. It has been found to be above 100 for most of the solvents used. The data related to dipole moment has been examined using different solvent polarity functions. Theoretical calculation of dipole moment in the ground state has been done using Gaussian software. The general solute–solvent interactions and hydrogen bond interactions have been found to be operative. An appreciable red shift of about 25 nm in the emission spectra has been identified with the rise in solvent polarity and decrease in molar mass of alcohols. It confirms the π→π* transition as well as the possibility of intra-molecular charge transfer (ICT) character in the emitting singlet state of 2MPBA

    The Renin Angiotensin System (RAS) mediates bifunctional growth regulation in melanoma and is a novel target for therapeutic intervention

    Get PDF
    Despite emergence of new systemic therapies, metastatic melanoma remains a challenging and often fatal form of skin cancer. The renin–angiotensin system (RAS) is a major physiological regulatory pathway controlling salt–water equilibrium, intravascular volume and blood pressure. Biological effects of the RAS are mediated by the vasoactive hormone angiotensin II (AngII) via two receptor subtypes, AT1R (encoded by AGTR1) and AT2R (encoded by AGTR2). We report decreasing expression and increasing CpG island methylation of AGTR1 in metastatic versus primary melanoma and detection in serum of methylated genomic DNA from the AGTR1 CpG island in metastatic melanoma implying that AGTR1 encodes a tumour suppressor function in melanoma. Consistent with this hypothesis, antagonism of AT1R using losartan or shRNA-mediated knockdown in melanoma cell lines expressing AGTR1 resulted in acquisition of the ability to proliferate in serum-free conditions. Conversely, ectopic expression of AGTR1 in cell lines lacking endogenous expression inhibits proliferation irrespective of the presence of AngII implying a ligand-independent suppressor function for AT1R. Treatment of melanoma cell lines expressing endogenous AT2R with either AngII or the AT2R-selective agonist Y6AII induces proliferation in serum-free conditions whereas the AT2R-specific antagonists PD123319 and EMA401 inhibit melanoma growth and angiogenesis and potentiate inhibitors of BRAF and MEK in cells with BRAF V600 mutations. Our results demonstrate that the RAS has both oncogenic and tumour suppressor functions in melanoma. Pharmacological inhibition of AT2R may provide therapeutic opportunities in melanomas expressing this receptor and AGTR1 CpG island methylation in serum may serve as a novel biomarker of metastatic melanoma

    Nutritional composition and quality of whole grain ready-to-eat breakfast cereals

    No full text
    Developing countries are witnessing an Increase in per capita availability of food and resultant quantitative and qualitative changes in the diet. Indian eating habits are undergoing tremendous changes especially in urban population, as people want value for time and money in terms of quality and variety. Due to the numerous health benefits cereals deliver, there is an increased consumption of cereals in the form of whole grain or other cereal based processed foods, one of which is the ready-to-eat (RTE) breakfast cereals. Breakfast cereals have become very common and important meal of the day as they provide one-fourth of the daily calories and protein needs
    corecore