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Abstract— Our physical and emotional well-being are directly impacted by our body positions. In addition to promoting a confident, upright 

image, maintaining good body posture during various activities also ensures that our musculoskeletal system is properly aligned. On the other 

side, bad posture can result in a number of musculoskeletal conditions, discomfort, and reduced productivity. Accurate systems that can detect 

posture in real time, activity detection, are required due to the rising use of wearable technology and the growing interest in health and fitness 

tracking. The goal of this project is to create a TinyML model for wearable activity detection that will allow users to assess their posture and 

make necessary corrections in order to improve their health and general well-being. The project intends to contribute to the creation of useful 

posture detection technologies that can be quickly implemented on wearable devices for widespread usage by leveraging machine learning 

algorithms and wearable sensor data. For reliable posture categorization, the model architecture combines deep neural networks (DNN) and 

LSTM layers. With the development and implementation of the TinyML model, a significant decrease in the model's power consumption, 

memory, and latency was achieved without any compromise in the accuracy. This work can be used in the fields of health, wellness, 

rehabilitation, corporate life, sports and fitness to keep track of calories burned, activity duration, distance traveled, posture analysis, and real-

time tracking.  
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I.  INTRODUCTION 

Activity Detection, Real-time posture detection, involves the 

automatic identification of human body positions and 

movements. This technology recognizes different postures or 

activities by evaluating data from sensors providing 

applications in health monitoring, fitness tracking, ergonomic 

assessment, and more. Posture has an impact in maintaining 

musculoskeletal health and preventing various disorders and 

injuries. With the increasing prevalence of sedentary lifestyles 

and the rise in musculoskeletal issues, the need for accurate and 

real-time posture detection systems has become more 

significant. Wearable devices equipped with sensors and 

machine learning algorithms have shown promise in monitoring 

and analyzing human posture. In recent years, the emergence of 

TinyML [5], which focuses on deploying machine learning 

models on resource-constrained devices, has opened up new 

possibilities for developing efficient and low-power posture 

detection solutions. 

This paper aims to explore the application of TinyML models 

for posture detection on wearables. We present a 

comprehensive analysis of the existing literature and research 

advancements in this domain, focusing on the development and 

deployment of TinyML models specifically designed for 

posture detection. The challenges associated with posture 

detection on wearable devices, including limited computational 

resources, power constraints, and the need for real-time 

inference is overcome by converting the ML model into 

TinyML [49].  

To develop a TinyML model for posture detection on 

wearables, we utilize a combination of deep neural networks 

(DNN) and long short-term memory (LSTM) models [20]. 

Once the ML model is trained, it is converted to a TinyML 

model using TensorFlow Lite. TensorFlow Lite [9] is a 

lightweight framework specifically designed for deploying 

machine learning models on resource-constrained devices, such 

as wearables. It enables efficient execution of models with 
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minimal memory footprint and low computational 

requirements, making it an ideal choice for implementing 

TinyML models for posture detection. With TensorFlow Lite, 

we can leverage the power of deep learning models while 

ensuring optimal performance and energy efficiency on 

wearables. By integrating TensorFlow Lite into our posture 

detection system, we can take advantage of its capabilities to 

run the converted ML model seamlessly on wearable devices. 

This conversion process optimizes the model for deployment on 

resource-constrained wearable devices while maintaining its 

performance.  

The converted model is then integrated into a Java-based Wear 

OS application developed using Android Studio.To set up the 

Wear OS application, we include the TensorFlow Lite 

interpreter and TensorFlow Select OP dependency [49] in the 

Gradle build file. Additionally, we create an emulator for the 

Wear OS application to run on, simulating the functionality on 

a virtual device. 

During runtime, the application takes input, such as sensor 

readings from wearable devices. The TensorFlow Lite model 

performs inference on this input, predicting the posture based 

on the learned patterns and features. The output of the inference, 

which represents the detected posture, is then displayed on the 

Wear OS watch through text and animation, providing real-time 

detection to the user. 

By implementing this pipeline, we enable real-time posture 

detection on wearable devices, leveraging the power of TinyML 

models and the versatility of Wear OS. This implementation 

showcases the feasibility and practicality of deploying posture 

detection systems on resource-constrained wearables, 

empowering users to monitor and improve their posture for 

healthcare purposes. 

 
Figure 1.  High level design for posture detection using wearable 

data. 

By investigating the advancements and challenges in the field 

of TinyML-based posture detection on wearables, this paper 

aims to contribute to the growing body of knowledge and 

provide insights for researchers, developers, and practitioners 

interested in developing efficient and effective posture 

detection systems. The findings presented in this paper can 

serve as a foundation for further research and innovation in the 

field, ultimately leading to improved posture monitoring 

solutions that promote musculoskeletal health and enhance 

overall well-being. 

 

Our key contributions are stated as follows: 

A. Model Design (Posture Detection): The model design 

incorporates a DNN architecture [20] for posture detection. The 

input data includes accelerometer and gyroscope readings. 

LSTM layers are used to establish temporal dependencies, 

addressing the gradient problem. The neural network consists 

of two LSTM layers, a dense layer, and employs activation 

functions such as tanh and SoftMax. The model is trained using 

Stochastic Gradient Descent optimizer [20], with a loss function 

of Sparse Categorical Cross Entropy [20]. Accuracy is 

monitored during training, which spans 52 epochs. 

 

B. Data Fusion: The dataset required preprocessing before 

training the model. The text files were transformed into a 

pandas DataFrame, and data fusion was performed by 

combining accelerometer and gyroscope readings based on the 

common timestamp parameter. This fusion allowed for a larger 

and more diverse dataset from multiple users. For the 

implementation, only five main activities were selected, 

including Jogging, Sitting, Climbing stairs, Standing, and 

Walking. The data was further transformed from a pandas 

DataFrame to a numpy array to serve as input for the neural 

network model in TensorFlow. 

 

C. Conversion to TinyML: The trained TensorFlow model is 

converted to TinyML using TensorFlow Lite, which is well-

suited for performing inference on the Android platform. Since 

the regular TensorFlow runtime does not satisfy the 

dependencies of the RNN, an advanced conversion technique is 

used. Two additional libraries, TFLITE_BUILTINS and 

SELECT_TF_OPS OpsSets, are added to enable the 

conversion. Once the conversion is complete, the file is saved 

for future use. 

 

D. Performance Measure: The performance of the project was 

evaluated using various metrics to assess the accuracy and 

effectiveness of the posture detection model. The metrics used 

were precision, recall and F1 score. The accuracy reported by 

our model was 87.4%. 

II. RELATED WORK 

A. ML in wearables 

ML techniques have gained significant attention in the field of 

wearables due to their ability to process sensor data and extract 

meaningful insights. One study focused on utilizing ML in the 

development of a multi-label TinyML machine learning model 

for greenhouse microclimate control. The model was trained on 

multivariate sensed data and successfully optimized the 
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greenhouse environment for better plant growth. Another 

research work explored the application of ML in healthcare 

wearables, providing a big picture overview of the use of ML 

for wearable devices in the healthcare domain. The study 

highlighted the potential of ML algorithms for analyzing health 

data collected by wearables and facilitating personalized 

healthcare monitoring. 

 

B. TinyML in wearables  

The emergence of ultra-low-power IoT edge devices has 

opened up possibilities for deploying TinyML models on 

resource-constrained wearables. Several studies focused on 

enabling TinyML inference on these devices. For instance, one 

study developed an algorithm for compressing TinyML models 

specifically for IoT environments. The algorithm effectively 

reduced model size without compromising accuracy, making it 

suitable for deployment on low-power wearables. Another 

study explored the use of TinyDL, employing wearable sensors 

for edge computing and hand gesture recognition. The research 

demonstrated the feasibility of using TinyML for real-time 

gesture recognition, paving the way for intuitive human-

computer interactions through wearables. 

 

C. Wearables in healthcare 

Wearable devices have revolutionized healthcare by providing 

continuous monitoring and personalized insights. One study 

reviewed wearable IoT devices for healthcare, emphasizing the 

potential of these devices in improving heart health through data 

sharing and telehealth engagement. The research highlighted 

the benefits of commercial wearable devices in collecting data 

for healthcare applications, enabling better management of 

conditions like atrial fibrillation. Another research work 

investigated the performance of wearable motion sensors for 

fall detection and daily activity recognition using machine 

learning. The study demonstrated the effectiveness of wearable 

devices in accurately detecting falls and monitoring daily 

activities, thereby enhancing the safety and well-being of 

individuals, particularly the elderly. 

 

D. Low power consumption in wearables 

The power consumption of wearable devices is a critical factor 

in their usability and practicality. To address this challenge, one 

study focused on training neural networks at the edge, 

considering the practical implications of power consumption in 

wearable ML applications. The research discussed strategies for 

reducing power consumption during model training, making it 

feasible to deploy ML models on low-power wearables. 

Another study explored the use of TinyML systems for real-

time quality inspection in smart manufacturing. The integration 

of wearable smart devices and deep learning enabled real-time 

monitoring and quality control, minimizing energy 

consumption while ensuring high accuracy. 

 

E. Posture detection 

Posture detection using wearable devices has gained attention 

as a means to promote musculoskeletal health. One study 

investigated the use of deep learning-based models for complex 

activity recognition using wrist-worn wearable sensor data. The 

research demonstrated the effectiveness of deep convolutional 

neural networks (CNNs) and recurrent neural networks (RNNs) 

in accurately recognizing different activities related to posture. 

Another study focused on contactless posture detection using 

smartwatch sensor data and deep learning techniques in an 

Internet of Things (IoT) environment. The research proposed a 

model based on restricted Boltzmann machines (RBMs) for 

detecting human activities, including posture, and showcased 

the potential of IoT and wearable devices in monitoring and 

improving posture. 

These literature surveys provide an overview of the research 

conducted in each categorized topic, showcasing the 

advancements and potential applications of ML, TinyML, 

wearables, and posture detection. The studies highlight the 

benefits of using ML and TinyML techniques in wearable 

devices, particularly in healthcare monitoring, gesture 

recognition, quality inspection, and musculoskeletal health. 

They also emphasize the need for further research in optimizing 

power consumption, exploring different sensor configurations. 

III. METHODOLOGY 

A.  Sensor Description  

Two sensors were used to record the data. The description of 

the sensors is as follows -  

Accelerometer: A sensor called an accelerometer [42,43] 

measures appropriate acceleration, or the acceleration that an 

item experiences in relation to free fall. Static (due to gravity) 

and dynamic (due to movement) linear acceleration variations 

are detected and measured. The mass of the accelerometer is 

coupled to a spring, and its displacement varies according to the 

applied acceleration. The accelerometer can offer real-time 

measurements of acceleration in three axes: X, Y, and Z since 

this displacement is turned into an electrical signal. 

 
Fig 2. Example of Accelerometer Graphs for various activities 

Gyroscope: A gyroscope [42,43] is a sensor that detects 

rotational motion or angular velocity. It can recognize changes 
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in orientation and can tell you how quickly the three axes (roll, 

pitch, and yaw) are rotating. A rotating disc or a vibrating 

structure that maintains its rotational axis in the presence of 

outside forces makes up a gyroscope. The Coriolis effect 

generates a deflection in the vibrating structure when the 

gyroscope is rotating, producing an electrical output that is 

proportional to the angular velocity. 

 
Fig 3. Example of Gyroscope Graph for various activities 

 

B. Dataset description 

The dataset that is being used is the WISDM dataset [51] which 

contains the data from sensors on both watches and mobile 

phones. The main data collected were from 2 main sensors in 

the watch, that is the gyroscope and the accelerometer. The 

dataset had collected the data from each sensor for a total of 51 

persons or subjects and had recorded for 18 activities each. The 

dataset was well structured to differentiate the data for each user 

and on which device the sensor values were recorded from. The 

files related to the accelerometer sensor includes the following 

columns: 

● First column: Subject ID of each user.  

● Second column: Activity code which identifies each 

activity uniquely. 

● Third column: Timestamp of each data acquired in 

milliseconds (ms). 

● Fourth column: Value of the x-axis of the accelerometer 

(m/s2). 

● Fifth column: Value of the y-axis of the accelerometer 

(m/s2). 

● Sixth column: Value of the z-axis of the accelerometer 

(m/s2). 

Next, the files related to the gyroscope sensor includes the 

following columns: 

• First column: Subject ID of each user.  

• Second column: Activity code which identifies each 

activity uniquely. 

• Third column: Timestamp of each data acquired in 

milliseconds (ms). 

• Fourth column: Value of the x-axis of the accelerometer 

(m/s2). 

• Fifth column: Value of the y-axis of the accelerometer 

(m/s2). 

• Sixth column: Value of the z-axis of the accelerometer 

(m/s2). 

 

C. Data Fusion 

The dataset was not available for direct use in the csv format. 

There was some pre-processing and data fusion that had to be 

done in order to make it fit for the training of the model. The 

files were in text document format and had to be formatted and 

transformed to a pandas Dataframe. The accelerometer and 

gyroscope readings also were in separate files on which data 

fusion had to be done in order to combine the sensor data for a 

single user. The time stamp was used as a common parameter 

to perform the data fusion. This way the data fusion was 

performed for multiple users to get a good volume and variety 

of data. In our implementation we had decided to only pick 5 

main and common activities to train the Recurrent Neural 

Network. The data therefore had to be transformed to pick only 

5 main activities. These activities include Jogging, Sitting, 

Climbing stairs, Standing and Walking. The data input to the 

neural network had to be transformed from a pandas data frame 

to an numpy array in order to train the TensorFlow model. 

  

D. Recurrent Neural network design 

The data input for the neural network is of the format accel[X], 

accel[Y], accel[Z], gyro[X], gyro[Y], gyro[Z]. The Recurrent 

neural network was used to provide a connection between one 

node to another which allows the output of one node to 

influence the input of the next node. In the project we are using 

LSTM or Long short-term memory layers [20] for the recurrent 

neural network as they provide a solution to the vanishing or 

exploding gradient problem. The RNN experiences the weight 

of the nodes to become very small or very large which limits the 

effectiveness of the model. The neural network mainly consists 

of 3 layers. The first 2 layers are the LSTM layers with each 

layer having 6 nodes each.  

 
Fig 4. Architecture of Neural Network 
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Each of the LSTM layers have the tanh activation function 

which has been found to converge to the correct output. LSTM 

layers also have GlorotNormal initialization which are used to 

randomize weights which is essential for the training process. 

The last layer is a dense layer with 5 nodes as output with the 

SoftMax activation function which provides the probability of 

the output classes which corresponds to the number of activities. 

The entire model is compiled with the Stochastic Gradient 

Descent optimizer [20] function with the learning rate and 

momentum set at 0.08 and 0.85 respectively. The loss function 

used was the Sparse Categorical Cross Entropy which is mainly 

used when there are more than two labels. The accuracy of the 

model is used as the main metrics to monitor the training of the 

model. The model is then trained for a total of 52 epochs and 

there is a validation dataset that is provided which ensures that 

the model is not being overfitted. The model then is saved as a 

TensorFlow saved model to be used in the future. 

 

E.  Conversion of DNN to TinyML 

The TensorFlow model saved model trained previously is used 

for the conversion to TinyML [49]. The TinyML framework 

used is TensorFlow lite as it is very compatible with the android 

platform to perform inference. The conversion of the model was 

not possible directly as the RNN had various dependencies 

which were not satisfied by the regular TensorFlow runtime. 

Therefore, the advanced conversion technique had to be 

employed and two additional libraries were added, namely the 

TFLITE_BUILTINS and SELECT_TF_OPS OpsSets. The file 

is then saved for future use.  

 

 
Fig 5. TensorFlow Lite conversion 

 

F. Deployment of TinyML model on wear OS  

The converted tensorflow based TinyML model is to be used on 

the Android based wear OS device. An Java based Wear OS 

Application is to be written and an emulator was used to run 

inference on the same.  

 

 
Fig 6. Deployment of TinyML model on wear OS 

 

The Wear OS application is then split into the layout file and 

Java file. Since the conversion to TinyML was based on the 

advanced runtime we had to add an additional dependency: the 

TensorFlow SelectOps dependency along with the regular 

TensorFlow lite interpreter [9]. 

The Wear OS application functions were to take input values 

from the accelerometer and gyroscope sensors that are based on 

the watch and provide that as an input to perform inference on 

the same TinyML model. The output from the tensorflow lite 

model is an array of probability of each of the activities and 

there in order to provide the appropriate output we need to pick 

the output with the highest probability and then map the same 

to activities. To make the interface of the watch attractive we 

have added animations matching each activity. Once the output 

from the model is ready, we then display the result on the watch 

interface. 

IV. RESULTS AND DISCUSSION 

A.  Evaluation of Neural Network 

The whole dataset is divided in the ratio of 80:20 which 

corresponds to the training and validation set for the purpose of 

training. The validation set determines the performance of the 

neural network each epoch. For later use, the model that 

produces the highest validation accuracy is kept. Additionally, 
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after training, the accuracy of each class is then determined 

using the validation set. Each class accuracy is determined by 

using the below formulas: 

Accuracy: (TP +TN)/ (TP +FP +FN +TN) 

TP: True Positive 

TN: True Negative 

FP: False Positive 

FN: False Negative 

 

Validation accuracy: In the validation phase, a machine 

learning model's performance on untried data is assessed using 

a statistic called validation accuracy. It gauges the model's 

accuracy in predictions produced using a different validation 

dataset. Better generalization and the capacity to correctly 

forecast outcomes on novel, untested data are shown by higher 

validation accuracy. It aids in comparing and choosing the best 

model among several versions at the same time, tracking the 

model's development throughout training. The model's 

performance on new data can be improved and overfitting or 

underfitting problems can be avoided by optimizing the model 

based on validation accuracy. 

 

 
Fig 7. Training accuracy vs Validation Accuracy 

 

Training accuracy: The training accuracy is used to monitor the 

model’s performance while the model is in the training phase. 

The training data is used to count the proportion of accurate 

predictions. The model's training accuracy reveals how well it 

has internalized or learnt the input set of training data and how 

well it can categorize or predict the target variable. A model that 

can fit training data well and generate accurate predictions 

based on data it has already seen is said to have a greater training 

accuracy. It's crucial to remember that measuring training 

accuracy alone is insufficient to determine how well the model 

performs with fresh, untested data. Overfitting, when the model 

performs well on the data with which it was trained but fails to 

generalize to new data, can result from overemphasizing 

training accuracy without taking validation accuracy into 

account or testing on unknown data. 

 

Validation loss: A machine learning model's projected outputs 

and the actual values in the validation dataset are measured by 

a statistic called validation loss. The model's effectiveness and 

generalizability to unobserved data can be evaluated by using 

the validation loss. The training loss can be reduced by 

changing the model's parameters training. A validation dataset, 

which contains data the model hasn't seen during training, is 

used to separately calculate the validation loss. We can identify 

overfitting, which happens when the model becomes overly 

focused on identifying the patterns within the training dataset 

and struggles to generalize, by keeping an eye on the validation 

loss. The objective is to strike a balance between a low 

validation loss, which indicates strong generalization, and a low 

training loss, which provides an insight into the learning of the 

model. 

 
Fig 8. Training Loss vs Validation Loss 

 

Training loss: A machine learning model's anticipated outputs 

and the actual values in the training dataset are measured using 

a metric called training loss. It displays how well the model fits 

the training set of data during training. To increase the model's 

capacity for precise prediction, the parameters are altered 

through the use of an optimization procedure like gradient 

descent. The training loss, which represents the average error 

made by the model on the training examples, is derived by 

comparing the model's predictions with the true labels in the 

training dataset. The model's learning progress is monitored by 

the training loss, but overfitting must be avoided by assessing 

the model's performance on a separate validation or test 

datasets. 

 

Precision:  TP / (TP + FP)  

A classification model's precision, or ability to accurately 

identify positive examples, is evaluated as a performance 

metric. It determines whether the percentage of the total 

anticipated positive occurrences are real positive predictions 

(positive examples that were successfully categorized). In other 

words, precision assesses how accurate or precise the model's 

optimistic forecasts are. A high precision score means that the 

model reliably detects positive cases and has a low rate of false 

positives. In instances when the cost of false positives is large, 

like in medical diagnostics or spam email identification, 

precision is crucial. Since false negatives are not taken into 

consideration, accuracy alone might not give a full view of a 

model's performance.  
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Recall:  TP / (TP + FN) 

Recall, sometimes referred to as sensitivity or the percentage of 

true positives in a dataset, is a performance indicator used to 

assess how well a classification model distinguishes between 

positive and false positive occurrences. Out of the total real 

positive occurrences, it determines the percentage of true 

positive predictions (positive examples that were correctly 

categorized). Recall thus assesses the comprehensiveness or 

scope of the model's optimistic predictions. With a low 

incidence of false negatives and a high recall value, the model 

is able to properly identify a high percentage of positive 

examples. In situations where the cost of false negatives is large, 

such as in medical diagnostics or fraud detection, where it is 

critical not to miss positive instances, recall is particularly 

important. A high recall value, meanwhile, may also be 

associated with a higher likelihood of false positives. To have a 

thorough evaluation of the model's performance, recall is 

frequently required in conjunction with other measures, such as 

precision or F1 Score. 

 

F1 Score:  2 * TP / (2 * TP + FP + FN) 

The F1 Score is a performance indicator used to assess a 

classification model's efficacy by combining precision and 

recall into a single number. Calculating the harmonic mean of 

precision and recall yields a fair assessment of the model's 

accuracy. While recall reflects the model's capacity to properly 

identify positive cases, precision reflects the accuracy of 

positive predictions. An increase in the F1 Score from 0 to 1 

denotes improved model performance. As a benchmark 

indicator for model comparison and improvement, it is 

especially helpful in datasets with imbalances. 

TABLE I.  METRICS FOR NEURAL NETWORK 

Accuracy  Precision Recall F1 Score 

0.874029 0.875194 0.872000 0.872719 

 

B. Comparison between ML models and TinyML models 

Model Size: Due to the use of complex frameworks and 

parameters, ML models frequently have higher sizes. On the 

other hand, TinyML models are designed to be compact, light, 

and to consume very little space. This enables them to function 

on devices with constrained memory and processing capability. 

 
Fig 9. Model Size comparison 

 

Power Consumption: ML models frequently use greater 

computing resources, which leads to higher power usage. 

TinyML models, on the other hand, are optimized for low-

power consumption, allowing them to operate effectively on 

battery-powered or IoT edge devices without rapidly depleting 

the battery. 

 

 
Fig 10. Wear OS application energy consumption to run TinyML 

model. 

 

Latency: Due to their greater size and processing demands, ML 

models may have a higher latency. TinyML models are made to 

be less latency-intensive, allowing for real-time or almost real-

time inference on edge devices without a lot of delays. 

 

 
Fig 11. Latency comparison 

 

Deployment flexibility: ML models are frequently deployed and 

inferred using powerful hardware or cloud infrastructure. On 

the contrary, TinyML models can be installed directly on edge 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 11s 

DOI: https://doi.org/10.17762/ijritcc.v11i11s.8081 

Article Received: 25 June 2023 Revised: 18 August 2023 Accepted: 04 September 2023 

___________________________________________________________________________________________________________________ 

 

    156 

IJRITCC | October 2023, Available @ http://www.ijritcc.org 

devices, eliminating the requirement for ongoing cloud contact 

and ensuring data protection and privacy. 

TABLE II.  COMPARISON:  ML MODEL VS TINYML 

 ML Model (RNN 

- Tensorflow) 

TinyML 

(Tensorflow Lite) 

Memory  1400 KB 19 KB 

Accuracy 0.874029 0.874029 

Latency 0.08731245995 

sec 

0.0009715557098 

sec 

 

Development Process: Working with high-level frameworks 

and libraries when developing ML models usually requires 

machine learning knowledge and computational resources. 

TinyML models need specialized tools and frameworks that 

concentrate on model optimization, deployment, and 

compression which is essential for devices that have low 

computational energy and power. 

V. CONCLUSION 

Posture of a person critical aspects for one's well-being. In our 

project we would like to help a person correct their posture 

before any serious adversities. This project has demonstrated 

the potential of using a TinyML model for posture detection on 

wearables. By leveraging deep learning techniques, specifically 

DNN and LSTM models, we were able to develop an accurate 

posture detection system. The implementation of the model 

using TensorFlow Lite allowed for efficient deployment on 

wearable devices, making it practical for real-time monitoring. 

VI.  FUTURE WORK 

In future work, the project can focus on enhancing model 

accuracy for all users by gathering a diverse dataset, using other 

sensors present in the wearable device and refining the model 

architecture. Increasing the subset of postures would make the 

system more versatile and adaptable to different activities. 

Adding more sensors can improve performance by providing 

comprehensive data on posture. Customization and features for 

the healthcare sector can be developed to aid healthcare 

professionals and provide personalized guidance. Implementing 

a recommendation system would give users feedback to 

improve posture and overall health. 
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