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Abstract 

Xenin-25 undergoes rapid enzyme metabolism following secretion. Early studies demonstrated 

bioactivity of a C-terminal hexapeptide fragment of xenin-25, namely xenin-6, which were 

enhanced through introduction of a reduced N-terminal peptide bond, to yield Ψ-xenin-6. The 

present study was undertaken to define the biological actions and potential antidiabetic 

properties of Ψ-xenin-6. In vitro enzymatic stability, insulin and glucagon secretory activity, 

as well as effects on beta-cell survival were determined. Studies in mice were used to assess 

the impact of Ψ-xenin-6 on glucose homeostasis and satiety. Ψ-xenin-6 was resistant to murine 

plasma degradation. In BRIN-BD11 cells and isolated murine islets, Ψ-xenin-6 significantly 

stimulated insulin secretion, and prominently enhanced the insulinotropic actions of GIP.  

Xenin-6 and Ψ-xenin-6 had no impact on glucagon secretion, although xenin-6 partially 

reversed the glucagonotropic action of GIP. Further in vitro investigations revealed that, similar 

to GLP-1, Ψ-xenin-6 significantly augmented proliferation of human and rodent clonal beta-

cells, whilst also fully protecting against cytokine-induced beta-cell cytotoxicity, with greater 

potency than xenin-25 and xenin-6. When administered to mice in combination with glucose, 

Ψ-xenin-6 significantly reduced glucose levels and enhanced glucose-induced insulin release, 

with a duration of biological action beyond 8 hours. Ψ-xenin-6 also significantly enhanced the 

glucose-lowering action of GIP in vivo. In overnight fasted mice, Ψ-xenin-6 exhibited satiety 

actions at both 25 and 250 nmol/kg. These data demonstrates that Ψ-xenin-6 is a metabolically 

stable C-terminal fragment analogue of xenin-25, with a metabolic action profile that merits 

further study as a potential antidiabetic compound. 
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1. Introduction 

The gut-derived hormone xenin-25, a 25 amino-acid peptide co-secreted from enteroendocrine 

K-cells with the incretin hormone glucose-dependent insulinotropic polypeptide (GIP), has 

previously been shown to reduce gastrointestinal transit and modulate energy balance (Cline et 

al., 2007; Leckstrom et al., 2009; Kerbel et al., 2018). Additional reports also suggest a role for 

xenin-25 in the regulation of pancreatic islet function and survival (Silvestre et al., 2003; Taylor 

et al., 2010; Martin et al., 2012; 2014; Gault et al., 2015; Parthsarathy et al., 2016; Khan et al., 

2017). In this regard, xenin-25 has also been shown to potentiate the insulinotropic actions of 

GIP (Wice et al., 2010; 2012), with suggested therapeutic potential for diabetes (Craig et al., 

2018). Notwithstanding this, the evident physiological importance of xenin-25 has been 

somewhat overlooked to date (Maryanovich et al., 2018), as well as the consequence of xenin-

25 enzymatic degradation. For instance, numerous regulatory gut-derived peptide hormones 

possess a dramatically altered biological action profile following enzymatic degradation in the 

circulation (Deacon, 2004; Mayorov et al., 2008; Lafferty et al., 2018).  

 For xenin-25, a number of C-terminally truncated metabolites have been characterised 

including, xenin 9-25, xenin 11-25, xenin 14-25 and xenin 18-25 (Martin et al., 2014). The 

biological significance of xenin 9-25, xenin 11-25 and xenin 14-25 is largely unknown (Martin 

et al., 2014). Interestingly, xenin 18-25, also referred to as xenin-8, has been shown to 

recapitulate the effects of the parent peptide at the level of the endocrine pancreas (Silvestre et 

al., 2003; Gault et al., 2015) and duodenum (Kaji et al., 2017), as well as potentiating the 

biological actions of GIP (Martin et al., 2014; 2016). This is extremely encouraging in terms 

of potential therapeutic application of xenin, since smaller peptide size will lead to reduced 

production costs, promote simpler drug formulation, which together will dramatically increase 

the overall commercial attractiveness. Following on from this, two very early studies in the 

xenin field had demonstrated bioactivity of a C-terminal hexapeptide of xenin-25, xenin-20-25 
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or also known as xenin-6 (Feurle et al., 1996; 2003). Encouragingly, enzymatic stability and 

biological efficacy of this xenin hexapeptide was substantially enhanced through the 

introduction of a reduced pseudopeptide bond (CH2NH) between Lys20 and Arg21 amino acid 

residues, to yield a Psi (Ψ) pseudopeptide analogue named Ψ-xenin-6 (Feurle et al., 2003). 

However, further application of these exciting observations with Ψ-xenin-6 have been missing 

until now. 

Therefore, the present study was conducted to further characterise Ψ-xenin-6, with a 

view to potential therapeutic application in the field of diabetes. As such, we initially confirmed 

enzymatic stability of Ψ-xenin-6 in plasma. In vitro and ex vivo effects of Ψ-xenin-6 on insulin 

and glucagon secretion from pancreatic BRIN-BD11 beta-cells, alpha TC1.9 cells as well as 

isolated mouse islets, as appropriate, were then evaluated. In addition, effects on rodent and 

human beta-cell proliferation and protection against cytokine-induced apoptosis were also 

assessed. Finally, the impact of Ψ-xenin-6 on glucose homeostasis, insulin section and satiety 

were examined in mice. Taken together, the results support further investigation of the potential 

therapeutic promise of Ψ-xenin-6 for diabetes.  

 

2. Materials and Methods 

 

2.1 Peptide synthesis and assessment of plasma enzymatic stability 

All peptides were purchased at greater than 95% purity. Native xenin-25 and xenin-6 was 

synthesised by GL Biochem (Shanghai, China). Ψ-xenin-6 was obtained from Saxon 

Biochemicals (Hannover, Germany). Before experimentation, peptides were characterised in-

house using HPLC and Matrix-assisted laser desorption ionisation time-of-flight (MALDI-

TOF) mass spectrometry (MS), as previously described (Gault et al., 2003). Enzymatic stability 

of peptides was evaluated in vitro using 18 h fasted murine plasma, as outlined previously 
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(Martin et al., 2012). Concisely, peptides (50 μg) were incubated with mouse plasma (50 μl) in 

the buffering agent triethanolamine–HCl (50 mM, pH 7.8) at 37 °C for 0, 120, 240 and 360 min 

and degradation profiles followed by HPLC, with MALDI-TOF MS analyses of collected 

HPLC peaks. 

 

2.2 In vitro and ex vivo insulin secretion 

In vitro insulin releasing activity of test peptides were assessed in rodent BRIN-BD11 beta-

cells, cultured and maintained as described (McClenaghan et al., 1996), using RPMI 1640 

media (Gibco Life Technologies Ltd), supplemented with 10% v/v foetal bovine serum 

(Gibco), 1% v/v antibiotics (0.1 mg/ml streptomycin and 100 U/ml penicillin) at 37oC in 5% 

atmospheric CO2. BRIN-BD11 cells were seeded into 24-well plates (150,000 cells per well) 

and allowed to attach overnight at 37oC. Prior to tests, cells were pre-incubated in Krebs–

Ringer bicarbonate buffer (KRBB) (pH 7.4) supplemented with 0.5% (w/v) BSA and 1.1 mM 

glucose (40 min; 37 °C). In the first set of experiments, cells were incubated (20 min) with test 

peptides (10-12 – 10-6 M) at 5.6 and 16.7 mM glucose, as appropriate. In a second set of 

experiments, BRIN-BD11 cells were incubated with peptides (10−12 to 10−6 M) in the presence 

of GIP (10−6 M) at 5.6 mM glucose for 20 mins. In a final set of experiments, BRIN BD11 cells 

were cultured for 48 hours under glucotoxic (22.2 mM glucose) conditions and insulinotropic 

effects  of GIP and xenin peptides (10−6 M) determined (n=8, 20 min incubation), as described 

previously from our laboratory (Pathak et al., 2014). After test incubations, aliquots of assay 

buffer (200 μl) were collected and stored at -20 °C prior to assessment of insulin 

concentrations. In a separate set of experiments, ex vivo insulinotropic effects of test peptides 

were assessed in NIH Swiss mouse islets, isolated using a collagenase-based method as 

previously described (McKillop et al., 2014). The experimental approach was similar to above 

at 16.7 mM glucose, but with a 60 min incubation period. In addition, at the end of the 
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experiment, 500 μl of acid-ethanol solution (1.5% [v/v] HCl, 75% [v/v] ethanol, 23.5% [v/v] 

H2O) was added (18 h, 4°C) to extract total islet cellular insulin content. All samples were 

stored at -20 °C prior to assessment of insulin concentrations by an in-house radioimmunoassay 

(RIA) (Flatt and Bailey, 1982). 

 

2.3 In vitro and ex vivo glucagon secretion 

α-TC1.9 cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) containing 25 

mM glucose and 2 mM L-glutamine supplemented with 10% (v/v) FCS and antibiotics (100 

U/ml penicillin and 0.1 g/l streptomycin). For experimentation, cells were cultured for 48 h in 

24-well plates at a cell density of 150,000 per well, to ensure attachment. Before 

commencement of secretory studies, cells were pre-incubated with 1 ml KRBB supplemented 

with 20 mM glucose for 1 h at 37°C. Following pre-incubation, cells were incubated (2 h, 37°C, 

1.4 mM glucose) with test peptides (10−6 M) alone or in combination with GIP (10−6 M). 

Supernatant (900 μl) was removed from each well and stored at -20°C until glucagon 

measurement.  Glucagon secretion from isolated mouse islets was conducted as described 

above, at 1.4 mM ambient glucose levels. Arginine (10 mM) was used as a positive control. 

All glucagon concentrations were measured by a commercially available chemiluminescent 

enzyme-linked immunosorbent assay (Millipore, Watford, UK), as previously described 

(Mohan et al., 2019).  

 

2.4 Cytotoxicity  

Toxicity of test peptides (10-6 M, 20 min) was determined by assessing levels of lactate 

dehydrogenase (LDH) release in BRIN-BD11 cells, as previously described (Srinivasan et al., 

2014), with dimethyl sulfoxide (DMSO, Sigma-Aldrich, UK) as a positive control. 

Concentrations of LDH were measured using a CytoTox96 non-radioactive cytotoxicity assay 
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kit (Promega, Madison, WI) according to the manufacturer’s protocol. This assay is highly 

sensitive and capable of accurately measuring the lower levels of LDH known to be present 

within pancreatic beta-cells (Schuit et al. 2001).  

 

2.5 In vitro beta-cell proliferation and apoptosis 

Rodent BRIN-BD11 and human 1.1B4 beta-cells were used to investigate effects of test 

peptides on beta-cell proliferation and protection against cytokine-induced apoptosis. GLP-1 

(10-8 and 10-6 M) was employed as a positive control for all studies. Ki-67 immunostaining was 

used to assess effects on proliferation. Briefly, cells were seeded onto coverslips at a density 

of 40,000 cells per coverslip and cultured overnight (18 h) at 37 °C, in the presence of peptides 

(10-8 and 10-6 M). Cells were then washed with PBS, and fixed using 4% paraformaldehyde. 

Following antigen retrieval with citrate buffer at 90 °C for 20 min, tissues were blocked using 

1.1% BSA for 30 min. Cells were then incubated with Ki-67 primary antibody, followed by 

Alexa Fluor® 594 secondary antibody. Coverslips were washed with PBS, mounted on slides 

for viewing using a fluorescent microscope (Olympus System Microscope) and photographed 

by DP70 camera adapter system. Proliferation frequency was expressed as percentage of total 

cells analysed.  For analysis of the ability of test peptides to protect against cytokine-induced 

apoptosis, cells were seeded as above. However, cells were also exposed to a cytokine-cocktail 

(IL-1β 300U/ml, IFN-γ 300 U/ml, TNF-α 40 U/ml; (Vasu et al., 2014) in the presence or 

absence of test peptides (10-8 and 10-6 M) for 2 h, with hydrogen peroxide as an additional 

control. TUNEL staining (Roche Diagnostics Ltd, UK) was performed to quantify beta-cell 

apoptosis, as previously described (Vasu et al., 2014). Apoptosis was expressed as percentage 

of total cells analysed. Approximately 150 cells were analysed per group. 

 

2.6 Animals 
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All animal studies were carried out using male NIH Swiss mice (12–14 weeks old, Envigo Ltd, 

UK), all housed individually in an air-conditioned room at 22 ± 2 °C with a 12 h light:12 h dark 

cycle. Animals were maintained on a standard rodent chow diet (10% fat, 30% protein and 

60% carbohydrate, Trouw Nutrition, UK), with ad libitum access to diet and water. All animal 

experiments were carried out in accordance with the UK Animal Scientific Procedures Act 

1986 and approved by the Ulster University Animal Welfare and Ethical Review Body 

(AWERB). 

 

2.7 Acute food intake studies 

Cumulative food intake was assessed in overnight fasted (18 h) mice following i.p. injection 

of saline vehicle (0.9% w/v NaCl) or test peptide (25 or 250 nmol/kg bw), and food intake 

measured at 30 min intervals for 180 mins. These doses were chosen based on the  observed 

appetite suppressive effects of xenin-25, and related metabolites, following peripheral 

administration in rodents (Taylor et al. 2010; Martin et al. 2014).    

 

2.8 Acute and persistent effects of peptides on glucose tolerance and insulin secretion  

Blood glucose and plasma insulin concentrations were determined immediately prior to and 

15, 30, 60 and 105 min after i.p. injection of glucose alone (18 mmol/kg bw) or in combination 

with test peptides (25 nmol/kg bw), as well as test peptides together with GIP (25 nmol/kg bw) 

in 4 h fasted mice. To assess duration of peptide action, mice were administered saline vehicle 

or test peptides (25 nmol/kg bw) at 2, 4, 8 or 12 h prior to an i.p. glucose challenge (18 mmol/kg 

bw) and blood glucose measured. 

 

2.9 Biochemical analysis  
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Blood samples were collected from the cut tip on the tail vein of conscious mice into chilled 

fluoride/heparin glucose micro-centrifuge tubes (Sarstedt, Numbrecht, Germany). Blood 

glucose was measured directly using a Contour blood glucose meter. For plasma insulin 

analysis, blood samples were collected into chilled fluoride/heparin glucose micro-centrifuge 

tubes (Sarstedt, Numbrecht, Germany) and immediately centrifuged using a Beckman 

microcentrifuge (Beckman Instruments, Galway, Ireland) for 1 min at 13,000 x g and stored at 

-20°C prior to insulin RIA (Flatt and Bailey, 1982). 

 

2.10 Statistical analysis  

Statistical analysis was completed using GraphPad PRISM (Version 5). Results are expressed 

as means ± SEM and data compared using repeated measures ANOVA followed by Student-

Newman-Keuls post-hoc test. Unpaired Student t-test was used where appropriate. Incremental 

plasma insulin and glucose area under the curve (AUC) were calculated using the trapezoidal 

rule with baseline subtraction. Groups of data were considered significant if p < 0.05. 

 

3. Results 

3.1 Peptide characterisation and plasma enzymatic stability  

In-house characterisation confirmed successful synthesis of test peptides (Table 1). In addition, 

Ψ-xenin-6 was completely resistant to plasma degradation following a 6 h incubation, whereas 

native xenin-6 had an estimated in vitro half-life of less than 2 h (Table 1). 

 

3.2 Insulin secretory actions  

In BRIN-BD11 cells, both xenin-6 and Ψ-xenin-6 displayed significant (p < 0.05 to p < 0.001) 

dose-dependent insulin secretory actions at 5.6 and 16.7 mM glucose concentrations when 

compared to respective glucose controls (Fig. 1A,B). Interestingly, at 5.6 mM glucose, Ψ-
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xenin-6 exhibited superior (p < 0.05) insulinotropic effects than native xenin-6 at all peptide 

concentrations tested, barring 10-8 M, and at 10−6 M in 16.7 mM glucose (Fig. 1A,B). The 

potent insulin-releasing actions of Ψ-xenin-6, with superiority (p < 0.01) over native xenin-6, 

were then confirmed in fully functional isolated murine islets (Fig. 1C). When xenin peptides 

were co-incubated with GIP in BRIN-BD11 cells, both xenin-6 and Ψ-xenin-6 significantly (p 

< 0.05 to p < 0.001) augmented the insulinotropic actions of GIP (Fig. 1D). In this regard, Ψ-

xenin-6 exhibited superior (p < 0.01 to p < 0.001) GIP-potentiating efficacy than xenin-6 at all 

concentrations examined (Fig. 1D). Under glucotoxic culture conditions, the insulin secretory 

responses of GIP, xenin-6 and Ψ-xenin-6 were significantly (p < 0.05 to p < 0.01) impaired 

(Fig. 1E). Interestingly, when xenin-6 was co-incubated with GIP, the insulinotropic response 

was not significantly different in BRIN BD11 cells cultured under normal or glucotoxic culture 

conditions (Fig. 1E). In contrast, although co-incubation with Ψ-xenin-6 and GIP under 

glucotoxic conditions augmented insulin secretion to a higher degree than co-incubation with 

xenin-6 and GIP, insulin secretion was reduced (p < 0.01) when compared to control cultures 

(Fig. 1E). None of the xenin peptides compromised BRIN-BD11 cell plasma membrane 

integrity, as displayed by lack of effects on lactate dehydrogenase levels following a 20-minute 

incubation at the highest (10-6 M) peptide concentration used in normal cells (Fig. 1F). 

 

3.3 Glucagon secretory actions  

As expected, arginine (10 mM) and native GIP (10-6 M) augmented (p < 0.001) glucagon 

secretion from α-TC1.9 cells at 1.4 mM glucose levels (Fig. 2A). Neither xenin-6 nor Ψ-xenin-

6 (both at 10-6 M) altered glucagon secretion (Fig. 2A). However, xenin-6 partially reversed 

the glucagonotropic actions of GIP, whereas Ψ-xenin-6 did not (Fig. 2A). The observations on 

glucagon secretion following incubation of arginine, GIP, xenin-6 and Ψ-xenin-6 in α-TC1.9 

cells were paralleled in isolated murine islets (Fig. 2B). In addition, whilst the ability of xenin-
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6 to reverse GIP-induced elevations of glucagon secretion was again apparent, this failed to 

reach significance in mouse islets (Fig. 2B). 

 

3.4 Beta-cell proliferation and protection against apoptosis 

Similar to GLP-1, Ψ-xenin-6 significantly (p < 0.001) augmented BRIN-BD11 and 1.1B4 beta-

cell proliferation at both 10-8 and 10-6 M (Fig. 3A,B). Xenin-25 only displayed beta-cell 

proliferative effects in BRIN-BD11 cells at a concentration of 10-8 M (Fig. 3A). Native xenin-

6 displayed no proliferative actions in 1.1B4 beta-cells (Fig. 3A,B), with a slight (p < 0.05) 

increase noted at 10-6 M in BRIN-BD11 cells (Fig. 3A). In relation to protection against 

cytokine-induced apoptosis, all test peptides reversed the detrimental DNA damaging effects 

of co-incubation with cytokines in BRIN-BD11 cells, but only at the highest concentration 

employed (Fig. 3C). In 1.1B4 beta-cells, Ψ-xenin-6 offered full protection against cytokine-

induced apoptosis at both 10-8 and 10-6 M, with benefits of GLP-1, xenin-25 and xenin-6 only 

observed at 10-6 M (Fig. 3D). In 1.1B4 cells Ψ-xenin-6 (10-6 M) reduced (p < 0.05) cytokine-

induced elevations of TUNEL staining to below control levels (Fig. 3D).  

 

3.5 Acute in vivo food intake  

At a dose of 25 nmol/kg, xenin-25 and Ψ-xenin-6 induced a significant (p < 0.05) reduction in 

food intake at 180 min post-injection in overnight fasted mice, when compared to saline 

controls (Fig. 4A). Interestingly, at a dose of 250 nmol/kg, only Ψ-xenin-6 exhibited appetite 

suppressive actions, evident at both 30 (p < 0.01) and 180 (p < 0.05) min post-injection (Fig. 

4B). Native xenin-6 had no effect on feeding at either of the doses employed (Fig. 4A,B). 

 

3.6 Acute glucose lowering and insulin releasing effects in mice 
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Administration xenin-6 or Ψ-xenin-6 in combination with glucose resulted in significantly (p 

< 0.05 to p < 0.001) decreased individual and overall 0-105 min AUC plasma glucose levels 

when compared to glucose alone control (Fig. 5A,B). Native GIP did decrease (p < 0.05) 

glucose levels at 30 min post-injection (Fig. 5A), but this did not translate to significant 

reductions in AUC values (Fig. 5B). When xenin-6 and Ψ-xenin-6 were administered in 

combination with GIP, there was a significant (p < 0.01 to p < 0.001) reduction in glucose 

levels at 15 and 30 min post-injection when compared to GIP alone (Fig. 5A). Reductions in 

overall AUC values when compared to GIP alone were only observed when GIP was combined 

with Ψ-xenin-6 (p < 0.05), but not xenin-6 (Fig. 5B). All treatments elevated (p < 0.05 to p < 

0.01) corresponding 0-105 min AUC plasma insulin concentrations (Fig. 5D). However, only 

Ψ-xenin-6 significantly (p < 0.01) increased individual plasma insulin levels, although this was 

only apparent at 105 min post-injection (Fig. 5C). There was no obvious augmentation of the 

insulinotropic actions of GIP by either xenin-6 or Ψ-xenin-6 (Fig. 5C,D). 

 

3.7 Persistent glucose lowering and insulin releasing effects in mice 

Administration of either xenin-6 or Ψ-xenin-6 2 h prior to glucose load, resulted in significantly 

reduced individual (p < 0.05 to p < 0.01) and AUC overall (p < 0.001) blood glucose levels 

when compared to saline control mice (Fig. 6A,B). Comparable observations were made when 

the peptides were injected 4 h before the glucose challenge (Fig. 6C,D), although Ψ-xenin-6 

was significantly (p < 0.05) more effective than xenin-6 (Fig. 6D). When administered 8 h prior 

to the glucose load, both xenin-6 and Ψ-xenin-6 reduced (p < 0.05 to p < 0.01) individual 

glucose levels at 30 min post-injection, but only Ψ-xenin-6 significantly (p < 0.01) decreased 

overall AUC glucose values (Fig. 6E,F). Both peptides failed to elicit any significant glucose-

lowering actions when delivered 12 h prior to a glucose challenge (Fig. 6G,H).  
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4. Discussion 

Previous reports have established that chemical manipulation of the C-terminal hexapeptide of 

xenin-25, namely xenin-6, through introduction of a reduced pseudopeptide bond between 

Lys20 and Arg21, yields an enzymatically stabilised peptide with enhanced biological activity 

(Feurle et al., 2003). Similar enhanced metabolic stability and bioactivity has been observed 

following introduction of a reduced pseudopeptide bond in neurotensin (Lugrin et al., 1991), a 

peptide closely related to xenin (Feurle et al., 2002). Such effects are in complete harmony 

with previous studies from our laboratory, demonstrating enhanced stability and biological 

activity of an octapeptide C-terminal fragment of xenin-25 following rationally introduced 

amino-acid modifications (Parthsarathy et al., 2016; Martin et al., 2016). 

Consistent with this knowledge, in the present study xenin-25, xenin-6 and especially 

Ψ-xenin-6 evoked clear increases of insulin secretion from pancreatic BRIN-BD11 cells 

(Feurle et al., 1992; Taylor et al., 2010). Indeed, both xenin hexapeptides had comparable, or 

even enhanced, efficacy when compared to the parent peptide. Notably, Ψ-xenin-6 was 

significantly more efficacious than xenin-6 at 5.6 mM glucose, expect at 10-8 M, which is 

interesting and may require further study. The insulinotropic potency of the xenin peptides 

appeared to be somewhat reduced at higher glucose concentrations in BRIN BD11 cells, and 

this may be due to difficulties in assessing additive peptide effects in the face of increased 

insulin output by elevated glucose. Nonetheless, these observations corroborate that the C-

terminal hexapeptide of xenin-25 is capable of activating xenin related beta-cell signalling 

pathways. Indeed, insulin secretory studies using functional isolated mouse islets fully 

confirmed this concept. GIP-potentiating actions of xenin-25 are recognised at the level of the 

beta-cell (Wice et al., 2010; 2012 Martin et al., 2012; Parthsarathy et al., 2016), which were 

reproduced by xenin-6, and to a significantly greater magnitude by Ψ-xenin-6. In BRIN BD11 

cells cultured under glucotoxic conditions to mimic beta-cell stress encountered in diabetes 
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(Pathak et al., 2014), as would be expected, there was an impairment of the insulin‐releasing 

action of GIP and xenin-6 peptides. GIP-augmenting actions of the truncated xenin peptides 

were still observed under glucotoxic culture, especially in the case of xenin-6. Nonetheless, the 

more effective of the two compounds in terms of GIP-potentiation was Ψ-xenin-6, albeit with 

notably less efficacy than in normal beta-cells. In addition, Ψ-xenin-6 was the only peptide 

examined that significantly enhanced the glucose-lowering action of GIP in mice. Whilst the 

exact mechanism of xenin-induced GIP potentiation remains to be elucidated (Clemens et al., 

1997; Wice et al., 2010; Mazella et al., 2012), it does substantiate the idea that Ψ-xenin-6 

possess enhanced biological potency over xenin-6 (Feurle et al., 2003). It is also encouraging 

to note that the reduced pseudopeptide bond present within Ψ-xenin-6 had no detrimental 

impact in terms of beta-cell cytotoxicity.  

Based on previous observations of glucagonotropic effects of a C-terminal octapeptide 

fragment of xenin-25 (Silvestre et al., 2003), and evidence that GIP induces glucagon secretion 

under fasting glycaemic levels (Christensen et al., 2011), we sought to further examine this 

concept with Ψ-xenin-6. Unlike GIP, both xenin-6 and Ψ-xenin-6 were devoid of 

glucagonotropic actions in αTC1.9 cells and isolated rodent islets. This does slightly contrast 

with previous studies using xenin-8 in rodent islets, although in situ perfusion as opposed to 

static incubations was employed for this earlier study (Silvestre et al., 2003). In addition, the 

most prominent secretory effect of xenin-8 was noted to be potentiation of arginine- and 

carbachol-induced glucagon elevations (Silvestre et al., 2003). Given this, and the notable 

interactions between xenin and GIP (Martin et al., 2012; Wice et al., 2012; Chowdhury et al., 

2013; Hasib et al., 2016), the impact of co-incubation with the xenin-6 fragment peptides and 

GIP was considered. Interestingly, xenin-6, but not Ψ-xenin-6, had a strong tendency to reverse 

GIP-mediated increases in glucagon release. This is interesting, as both augmentation and 

blockade of glucagon receptor signalling has been advocated as being beneficial in diabetes 
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(Pathak et al., 2015; McShane et al., 2016). The difference in biological activity between the 

two xenin C-terminal hexapeptides is intriguing and presumably not related to the enhanced 

stability of Ψ-xenin-6 noted here and elsewhere (Feurle et al., 2002). It could also relate to 

structure/function complexities between the peptides, which would require more in-depth 

study.  However, the overall impact of xenin on GIP-induced alterations of glucagon secretion 

is of significant interest, since GIP infusion has been shown to prevent insulin-induced 

hypoglycaemia in humans (Christensen, 2016). Indeed, this may represent an important 

homeostatic metabolic mechanism of GIP (Christensen et al., 2011), where xenin may also 

play a key role, and could have particular relevance in the diabetes setting.  

Further to this, previous studies with xenin-25 have clearly highlighted potential 

benefits at the level of the pancreatic beta-cell. As well as enhancing insulin release and 

potentiating GIP-induced insulin release (Taylor et al., 2010; Wice et al., 2010; Martin et al., 

2012; 2014), the parent xenin peptide has been shown to promote pancreatic beta-cell growth 

and survival (Khan et al., 2017). Promisingly, Ψ-xenin-6 had similar, or even enhanced, beta-

cell proliferative and survival beneficial effects in both rodent BRIN-BD11 and human 1.1B4 

beta-cells. This is encouraging given that type 2 diabetes is a disease characterised by beta-cell 

loss (Halban et al., 2014), although the exact mechanisms of these xenin-induced beneficial 

effects still needs to be elucidated. Similar to previous reports (Mohan et al., 2018; 2019), 

baseline apoptosis rates were somewhat elevated in both beta-cell lines, representing a 

particularly challenging environment. As such, it may have been interesting to assess beta-cell 

survival benefits of Ψ-xenin-6 and xenin-6 under less severe beta-cell insults. However, the 

aforementioned positive effects of Ψ-xenin-6 on glucose homeostasis, insulin release and GIP 

potentiation, coupled with an in vivo duration of approximately 8 hours in mice, further 

promote its potential therapeutic value for diabetes. The observation of enhanced glucose 

homeostatic actions of combined GIP and Ψ-xenin-6 administration in mice, despite no 
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obvious augmentation of insulin secretion, likely reflects enhancement of the notable 

extrapancreatic glucose-lowering effects of GIP and xenin (Irwin and Flatt, 2015; Craig et al., 

2018). Furthermore, xenin has been suggested to supress food intake (Craig et al., 2018) and 

delay gastric emptying rate (Kim and Mizuno, 2010), which would also be complementary in 

the type 2 diabetes setting (Al-Goblan et al., 2014). In our hands, Ψ-xenin-6 induced small, but 

significant, appetite suppressive effects in mice at doses of 25 and 250 nmol/kg, whereas xenin-

6 was ineffective. Notably, physiological circulating concentrations of xenin are not well 

defined, and local tissue production of xenin has been documented outside of the gut (Khan et 

al., 2017). In addition, previous studies demonstrating prominent efficacy of xenin peptides to 

inhibit feeding have largely employed intracerebroventricular administration (Alexiou et al., 

1998; Cooke et al., 2009; Leckstrom et al., 2009; Bhavya et al., 2017; Kerbel et al., 2018), as 

opposed to peripheral application in the present study. This may suggest that efficient passage 

through the blood-brain barrier is critical for xenin-based peptides to positively modulate 

energy balance.  

In conclusion, these data substantiate the notion that Ψ-xenin-6 is a stable, long-acting 

xenin analogue that retains the full biological action profile of the parent peptide. Benefits of 

Ψ-xenin-6 on pancreatic islet cell function and survival, appetite suppression and GIP-

potentiation, coupled with a prolonged half-life, emphasise prospective therapeutic potential of 

this peptide for diabetes. Future studies should therefore evaluate the preclinical utility of Ψ-

xenin-6 in appropriate models of diabetes, both alone and in combination with established 

antidiabetic drugs.  
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Table 1. Amino acid sequence, theoretical and experimental masses as well as murine plasma half-lives of xenin peptides 

 

Peptide Amino acid sequence Theoretical 
mass (Da) 

Experimental 
mass (Da) 

In vitro half-life 
(murine plasma) 

Xenin-6 H‐LYS‐ARG‐PRO‐TRP‐ILE‐LEU‐OH 812.2 812.0 < 2 h 

Ψ-xenin-6 H‐LYS-ψ‐ARG‐PRO‐TRP‐ILE‐LEU‐OH 798.1 798.5 > 6 h 

 

Amino acid sequence of peptides using three letter amino acid nomenclature. Peptide masses were calculated using MALDI-MS, as previously 

described (Gault et al., 2003). In vitro stability of peptides was evaluated using 18-h fasted murine plasma. Xenin-6 and Ψ-xenin-6 (50 μg) were 

incubated with mouse plasma (50 μl) in 50 mM triethanolamine–HCl for 0, 2, 4 and 6 h and degradation profiles followed by HPLC, with MALDI-

TOF MS analyses of collected HPLC peaks. 
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Figure legends 

Fig. 1. Effects of Ψ-xenin-6 on insulin release from BRIN-BD11 cells (A,B,D,E) and isolated 

mouse islets (C) as well as LDH accumulation (F) in BRIN-BD11 cells. (A,B,D) BRIN-BD11 

were incubated (20 min) with a range of concentrations (10-12 to 10-6 M) of xenin-6 and Ψ-

xenin-6 alone (A,B) or in combination with GIP (D) in the presence of (A,D) 5.6 or (B) 16.7 

mM glucose. (C) Insulin release was measured in isolated mouse islets incubated (60 min) with 

of xenin-6 and Ψ-xenin-6 (10-8 and 10-6 M) at 16.7 mM glucose. (E) BRIN BD11 cells were 

cultured under glucotoxic (22.2 mM glucose) culture conditions for 48 h and then incubated 

(20 min) with (10-6 M) GIP, xenin-6 and Ψ-xenin-6 alone or in combination, as appropriate, in 

the presence of 5.6 mM glucose. (A-E) Insulin was measured using a RIA. (F) LDH 

accumulation was assessed in BRIN-BD11 cells following a 20 min incubation with 10-6 M 

xenin-25, xenin-6 or Ψ-xenin-6. Values represent means ± SEM (A,B,D n=8; C,E and n=4). 

*p < 0.05, **p < 0.01, ***p < 0.001 compared to respective glucose controls. ∆p < 0.05, ∆∆p < 

0.01 compared to (A,B) respective xenin-25 control or (E) same concentration of respective 

peptide treatment under normal culture conditions. πp < 0.05, ππp < 0.01, πππp < 0.001 compared 

to xenin-6. Φp < 0.05, ΦΦp < 0.01, ΦΦΦp < 0.001 compared to respective GIP control. 

 

Fig. 2. Effect of Ψ-xenin-6 on glucagon secretion from (A) αTC 1.9 cells and (B) isolated 

mouse islets. The effects of xenin-6 and Ψ-xenin-6 alone (10-6 M) or in combination with GIP 

(10-6 M) on glucagon secretion from (A) αTC 1.9 cells (120 min incubation) and (B) isolated 

mouse islets (60 min incubation) was assessed at 1.4 mM glucose. Glucagon was measured 

using an ELISA. Values represent means ± SEM (n=4). *p < 0.05, **p < 0.01, ***p < 0.001 

compared to 1.4 mM glucose control. ∆p < 0.05 compared to respective GIP control. 
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Fig. 3. Effect of Ψ-xenin-6 on proliferation and protection against apoptosis in rodent BRIN-

BD11 and human 1.1B4 beta cells. (A) BRIN-BD11 and (B) 1.1B4 beta-cells were incubated 

overnight (18 hours) with GLP-1, xenin-25, xenin-6 or Ψ-xenin-6 (each at 10-8 and 10-6 M). 

Proliferation was measured using Ki-67 immunocytochemistry. (C,D) TUNEL positive 

apoptotic cells were assessed following 2 h exposure to a cytokine cocktail (IL-1β 100 U/mL, 

IFN-γ 20 U/mL, TNF-α 200 U/mL) with or without co-culture in the presence of GLP-1, xenin-

25, xenin-6 or Ψ-xenin-6 (each at 10-8 and 10-6 M) in (C) BRIN-BD11 and (D) 1.1B4 beta-

cells. Values represent means ± SEM (n=4). *p < 0.05, **p < 0.01, ***p < 0.001 compared to 

respective media control.  

 

Fig. 4. Effects of Ψ-xenin-6 on cumulative food intake in 18 hour fasted mice. Cumulative 

food intake was measured in 18 h fasted mice at 30, 60, 90, 120, 150, 180 min after i.p. injection 

of saline vehicle (0.9% w/v NaCl), xenin-25, xenin-6 or Ψ-xenin-6 at (A) 25 and (B) 250 

nmol/kg bw. Values represent means ± SEM (n=8). *p < 0.05, **p < 0.01 compared to 

respective saline control. 

 

Fig. 5. Effects of xenin-6 and Ψ-xenin-6 alone as well as in combination with GIP on plasma 

glucose and insulin concentrations in mice. (A) Blood glucose and (C) plasma insulin 

concentrations were measured immediately before and 15, 30, 60 and 105 min after i.p. 

injection of glucose alone (18 mmol/kg bw) or in combination with GIP, xenin-6 or Ψ-xenin-

6, as well as combined injection of GIP and xenin-6 or Ψ-xenin-6 (each peptide injected at 25 

nmol/kg bw) in 4 h fasted mice. (B,D) Blood glucose and plasma insulin area under the curve 

(AUC) values for 0-105 min post injection are also shown. Values represent mean ± SEM for 

6 mice. *p < 0.05, **p < 0.01, ***p < 0.001 compared to glucose alone. ∆p < 0.05, ∆∆p < 0.01, 

∆∆∆p < 0.001 compared to GIP control. 
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Fig. 6. Persistent glucose lowering effects of Ψ-xenin-6 in mice. (A,C,E,G) Blood glucose 

concentrations were measured immediately before and 15, 30, 60 and 105 min following an 

i.p. glucose load (18 mmol/kg bw) in 4 h fasted mice injected with saline vehicle (0.9% w/v 

NaCl), xenin-6 or Ψ-xenin-6 (each at 25 nmol/kg bw) 2 (A), 4 (C), 8 (E) or 12 h (G) previously. 

(B,D,F,H) Blood glucose AUC values for 0-105 min post injection are also shown. Values 

represent mean ± SEM for 6 mice. *p < 0.05, **p < 0.01, ***p < 0.001 compared to glucose 

alone. ∆p < 0.05 compared to xenin-6. 
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	α-TC1.9 cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) containing 25 mM glucose and 2 mM L-glutamine supplemented with 10% (v/v) FCS and antibiotics (100 U/ml penicillin and 0.1 g/l streptomycin). For experimentation, cells were cultur...
	Rodent BRIN-BD11 and human 1.1B4 beta-cells were used to investigate effects of test peptides on beta-cell proliferation and protection against cytokine-induced apoptosis. GLP-1 (10-8 and 10-6 M) was employed as a positive control for all studies. Ki-...
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