371 research outputs found

    A cross-sectional study of post-vaccination anti-HBs titer and knowledge of hepatitis B infection amongst medical students in a metropolitan city

    Get PDF
    Background: Medical students are at risk of acquiring hepatitis B virus infection due to occupational contact with patients’ blood or other body fluids. This study was conducted to determine knowledge of hepatitis B virus infection and anti-HBS antibody titer amongst medical students.Methods: This cross-sectional observational study was conducted on medical students who satisfied the intake criteria and gave written informed consent to participate in the study. After Institutional Ethics Committee clearance, written informed consent was obtained and a structured, pre-validated questionnaire (pre-test) was administered to the participants. After an educational session, an identical questionnaire was administered (post-test). For determining anti-HBs titer (vaccinated participants) and HBsAg (non-vaccinated participants), blood was aseptically collected by cubital venepuncture. HBsAg and anti-HBs antibody levels were determined by immuno-chromatographic assay and enzyme-linked immunosorbent assay, respectively.Results: 140 healthy, HBsAg-negative medical students (79 males; 61 females) participated in the present study. There was increased median correct response in the post-test with increased minimum and first quartile. 91 (65%) who were vaccinated against Hepatitis B were enrolled for anti-HBs titer estimation. There was no significant gender difference in mean antibody titer. 19 (20.9%) had inadequate levels of anti-HBS antibodies. 50% seroconversion was seen after single dose of hepatitis B vaccine.Conclusions: It is essential to delve into the logistic aspects of evaluating all medical students for hepatitis B infection, procuring and offering free vaccination and assessing anti-HBS titer of vaccinated individuals

    A Field-Based Approach for Determining ATOFMS Instrument Sensitivities to Ammonium and Nitrate

    Get PDF
    Aerosol time-of-flight mass spectrometry (ATOFMS) instruments measure the size and chemical composition of individual particles in real-time. ATOFMS chemical composition measurements are difficult to quantify, largely because the instrument sensitivities to different chemical species in mixed ambient aerosols are unknown. In this paper, we develop a field-based approach for determining ATOFMS instrument sensitivities to ammonium and nitrate in size-segregated atmospheric aerosols, using tandem ATOFMS-impactor sampling. ATOFMS measurements are compared with collocated impactor measurements taken at Riverside, CA, in September 1996, August 1997, and October 1997. This is the first comparison of ion signal intensities from a single-particle instrument with quantitative measurements of atmospheric aerosol chemical composition. The comparison reveals that ATOFMS instrument sensitivities to both NH_4^+ and NO_3^- decline with increasing particle aerodynamic diameter over a 0.32−1.8 μm calibration range. The stability of this particle size dependence is tested over the broad range of fine particle concentrations (PM_(1.8) = 17.6 ± 2.0−127.8 ± 1.8 μg m^(-3)), ambient temperatures (23−35 °C), and relative humidity conditions (21−69%), encountered during the field experiments. This paper describes a potentially generalizable methodology for increasing the temporal and size resolution of atmospheric aerosol chemical composition measurements, using tandem ATOFMS-impactor sampling

    How Should Diverse Stakeholder Interests Shape Evaluations of Complex Water Resources Systems Robustness When Confronting Deeply Uncertain Changes?

    Get PDF
    Robustness analysis can support the design and operation of large-scale water infrastructure projects confronting deeply uncertain futures. However, diverse actors, contextual specificities, sectoral interests, and risk attitudes make it difficult to identify an appropriate robustness metric to rank decision alternatives under deep uncertainty. Here, we clarify how methodological choices affect robustness evaluation using the multi-actor, multi-sector Inchampalli-Nagarjuna Sagar water transfer megaproject in Southern India. We compare a suite of water transfer strategies discovered using evolutionary multi-objective direct policy search (EMODPS), a strategy proposed by regional authorities and the status quo of no water transfer. We stress-test these strategies across scenarios that capture climatic and socioeconomic uncertainties and rank them using robustness metrics representing sectoral perspectives and priorities of different actors with varying risk attitudes. Results show a considerable impact of metric choices on robustness rankings of strategies, with compromise solution discovered via EMODPS as robust. The no-transfer strategy results in the worst water supply robustness with an average volumetric deficit of 17% of total historical demands but emerges as a robust alternative for 6 out of 12 combinations of actor-sectors with high risk aversion. Also, changes in the amplitude of the Indian Summer Monsoon is identified as the most important uncertain factor determining the failure of strategies. Our findings highlight that the selection of robust solutions should be guided by an understanding of how assumed risk attitudes shape stakeholders' perceptions of vulnerabilities. These findings are generalizable to large infrastructure projects with diverse stakeholders and multisectoral impacts

    N-trans-Feruloyltyramine from Tinospora cordifolia

    Get PDF
    837-83

    Coexistence and Phase Separation in Sheared Complex Fluids

    Full text link
    We demonstrate how to construct dynamic phase diagrams for complex fluids that undergo transitions under flow, in which the conserved composition variable and the broken-symmetry order parameter (nematic, smectic, crystalline, etc.) are coupled to shear rate. Our construction relies on a selection criterion, the existence of a steady interface connecting two stable homogeneous states. We use the (generalized) Doi model of lyotropic nematic liquid crystals as a model system, but the method can be easily applied to other systems, provided non-local effects are included.Comment: 4 pages REVTEX, 5 figures using epsf macros. To appear in Physical Review E (Rapid Communications

    Phase Separation of Rigid-Rod Suspensions in Shear Flow

    Full text link
    We analyze the behavior of a suspension of rigid rod-like particles in shear flow using a modified version of the Doi model, and construct diagrams for phase coexistence under conditions of constant imposed stress and constant imposed strain rate, among paranematic, flow-aligning nematic, and log-rolling nematic states. We calculate the effective constitutive relations that would be measured through the regime of phase separation into shear bands. We calculate phase coexistence by examining the stability of interfacial steady states and find a wide range of possible ``phase'' behaviors.Comment: 23 pages 19 figures, revised version to be published in Physical Review

    Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of particulate matter from wood-and dung-fueled cooking fires, garbage and crop residue burning, brick kilns, and other sources

    Get PDF
    The Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) characterized widespread and under-sampled combustion sources common to South Asia, including brick kilns, garbage burning, diesel and gasoline generators, diesel groundwater pumps, idling motorcycles, traditional and modern cooking stoves and fires, crop residue burning, and heating fire. Fuel-based emission factors (EFs; with units of pollutant mass emitted per kilogram of fuel combusted) were determined for fine particulate matter (PM2.5), organic carbon (OC), elemental carbon (EC), inorganic ions, trace metals, and organic species. For the forced-draft zigzag brick kiln, EFPM2.5 ranged from 12 to 19gkg-1 with major contributions from OC (7%), sulfate expected to be in the form of sulfuric acid (31.9%), and other chemicals not measured (e.g., particle-bound water). For the clamp kiln, EFPM2.5 ranged from 8 to 13gkg-1, with major contributions from OC (63.2%), sulfate (23.4%), and ammonium (16%). Our brick kiln EFPM2.5 values may exceed those previously reported, partly because we sampled emissions at ambient temperature after emission from the stack or kiln allowing some particle-phase OC and sulfate to form from gaseous precursors. The combustion of mixed household garbage under dry conditions had an EFPM2.5 of 7.4±1.2gkg-1, whereas damp conditions generated the highest EFPM2.5 of all combustion sources in this study, reaching up to 125±23gkg-1. Garbage burning emissions contained triphenylbenzene and relatively high concentrations of heavy metals (Cu, Pb, Sb), making these useful markers of this source. A variety of cooking stoves and fires fueled with dung, hardwood, twigs, and/or other biofuels were studied. The use of dung for cooking and heating produced higher EFPM2.5 than other biofuel sources and consistently emitted more PM2.5 and OC than burning hardwood and/or twigs; this trend was consistent across traditional mud stoves, chimney stoves, and three-stone cooking fires. The comparisons of different cooking stoves and cooking fires revealed the highest PM emissions from three-stone cooking fires (7.6-73gkg-1), followed by traditional mud stoves (5.3-19.7gkg-1), mud stoves with a chimney for exhaust (3.0-6.8gkg-1), rocket stoves (1.5-7.2gkg-1), induced-draft stoves (1.2-5.7gkg-1), and the bhuse chulo stove (3.2gkg-1), while biogas had no detectable PM emissions. Idling motorcycle emissions were evaluated before and after routine servicing at a local shop, which decreased EFPM2.5 from 8.8±1.3 to 0.71±0.45gkg-1 when averaged across five motorcycles. Organic species analysis indicated that this reduction in PM2.5 was largely due to a decrease in emission of motor oil, probably from the crankcase. The EF and chemical emissions profiles developed in this study may be used for source apportionment and to update regional emission inventories

    A Field-Based Approach for Determining ATOFMS Instrument Sensitivities to Ammonium and Nitrate

    Get PDF
    Aerosol time-of-flight mass spectrometry (ATOFMS) instruments measure the size and chemical composition of individual particles in real-time. ATOFMS chemical composition measurements are difficult to quantify, largely because the instrument sensitivities to different chemical species in mixed ambient aerosols are unknown. In this paper, we develop a field-based approach for determining ATOFMS instrument sensitivities to ammonium and nitrate in size-segregated atmospheric aerosols, using tandem ATOFMS-impactor sampling. ATOFMS measurements are compared with collocated impactor measurements taken at Riverside, CA, in September 1996, August 1997, and October 1997. This is the first comparison of ion signal intensities from a single-particle instrument with quantitative measurements of atmospheric aerosol chemical composition. The comparison reveals that ATOFMS instrument sensitivities to both NH_4^+ and NO_3^- decline with increasing particle aerodynamic diameter over a 0.32−1.8 μm calibration range. The stability of this particle size dependence is tested over the broad range of fine particle concentrations (PM_(1.8) = 17.6 ± 2.0−127.8 ± 1.8 μg m^(-3)), ambient temperatures (23−35 °C), and relative humidity conditions (21−69%), encountered during the field experiments. This paper describes a potentially generalizable methodology for increasing the temporal and size resolution of atmospheric aerosol chemical composition measurements, using tandem ATOFMS-impactor sampling
    corecore