
1. Introduction
Water resources in many parts of the world face growing hydroclimatic and socio-economic pressures (Bijl 
et al., 2018; Kummu et al., 2010; Mekonnen & Hoekstra, 2016). Globally, water scarcity is projected to increase 
due to climate change impacts on mean temperature and precipitation variability, as well as increasingly extreme 
floods and droughts (Greve et al., 2018; Masson-Delmotte et al., 2021). The economic consequences of water 
scarcity are highly uncertain and sensitive to regions' capacities to adapt to these deeply uncertain hydro-climatic 
changes (Dolan et al., 2021). Deep uncertainty refers to conditions where parties to a decision lack a consensus 

Abstract Robustness analysis can support the design and operation of large-scale water infrastructure 
projects confronting deeply uncertain futures. However, diverse actors, contextual specificities, sectoral 
interests, and risk attitudes make it difficult to identify an appropriate robustness metric to rank decision 
alternatives under deep uncertainty. Here, we clarify how methodological choices affect robustness evaluation 
using the multi-actor, multi-sector Inchampalli-Nagarjuna Sagar water transfer megaproject in Southern India. 
We compare a suite of water transfer strategies discovered using evolutionary multi-objective direct policy 
search (EMODPS), a strategy proposed by regional authorities and the status quo of no water transfer. We 
stress-test these strategies across scenarios that capture climatic and socioeconomic uncertainties and rank 
them using robustness metrics representing sectoral perspectives and priorities of different actors with varying 
risk attitudes. Results show a considerable impact of metric choices on robustness rankings of strategies, with 
compromise solution discovered via EMODPS as robust. The no-transfer strategy results in the worst water 
supply robustness with an average volumetric deficit of 17% of total historical demands but emerges as a robust 
alternative for 6 out of 12 combinations of actor-sectors with high risk aversion. Also, changes in the amplitude 
of the Indian Summer Monsoon is identified as the most important uncertain factor determining the failure of 
strategies. Our findings highlight that the selection of robust solutions should be guided by an understanding of 
how assumed risk attitudes shape stakeholders' perceptions of vulnerabilities. These findings are generalizable 
to large infrastructure projects with diverse stakeholders and multisectoral impacts.

Plain Language Summary Climate change and growing multi-sectoral competition for water 
resources are motivating the design and evaluation of infrastructure-based adaptation actions. Here, we explore 
the Inchampalli-Nagarjuna Sagar (INS) mega water transfer project; a multi-actor and a multi-sector project that 
aims to transfer water from the Godavari basin to the Krishna basin in Southern India. The project will affect 
multiple sectors including agriculture, domestic water supply, and downstream aquatic ecology of both rivers 
and involves multiple actors—the donor, recipient basin and the combined system. It is critical to understand if 
the INS mega water transfer can robustly meet its intended benefits while limiting unintended consequences in 
the future. We formally explore different combinations of actors and sectors' objectives, their risk attitudes, and 
scenario sampling strategies providing a rich context for understanding conflicts and limiting the unintended 
consequences of myopic analyses. Results show emergent tradeoffs between the ecological requirements of the 
donor and the water supply needs of the recipient. Our analysis indicates that large-scale water infrastructure 
projects need to employ broad exploratory robustness analyses that better engage with conflicting stakeholder 
objectives and that help to clarify how differences in risk aversion shape the vulnerabilities of preferred actions.
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on the likelihoods and/or distributional forms of key system inputs (Knight,  1921; Lempert,  2002; Lempert 
et al., 2006; Marchau et al., 2019). Large scale water infrastructure projects have a critical role in addressing 
these challenges (Bhaduri et al., 2008; Gohari et al., 2013; Grigg, 2019). Among them, inter-basin water trans-
fer (IBWTs) megaprojects with investments of approximately $2.7 trillion form a major global focus and pose 
severely challenging decision contexts (Shumilova et al., 2018).

IBWTs must balance irrigation needs, domestic water supply, hydro-electricity generation, and other uses across 
multiple participating river basins, requiring their design evaluation to consider the diverse interests of a broad 
array of sectors. Some IBWTs have been criticized for their ecological consequences and over-exploitation of 
donor basin's water resources, indicating that traditional evaluations are perhaps myopic about the long-term 
impacts on the impacted stakeholders (Gohari et al., 2013; Wu et al., 2020; Zhuang, 2016). These multi-decadal 
megaprojects require an understanding of the dynamic co-evolution of the coupled human-natural systems in 
which they are placed, especially in key drivers of climate and demands. Projections of these drivers are often 
deeply uncertain, challenging the traditional use of aggregated cost-benefit analysis to discover transfer policies. 
At the local scale, future runoff changes are deeply uncertain due to uncertainties associated with projections 
of potential future temperature and precipitation changes (Bhave et  al.,  2018; Douville et  al.,  2021; Schewe 
et al., 2014). Concurrent changes in socio-economic conditions are also deeply uncertain, as they are a conse-
quence of a multitude of factors pertaining to the coupled human-natural system, changes in water demand 
priorities, and changing policy landscapes (Moallemi, Kwakkel, et al., 2020; Quinn et al., 2018). Deep uncer-
tainty compounds existing challenges to traditional design approaches for IBWTs. For example, a recent ex post 
evaluation of traditional design approaches for IBWTs have shown that they often systematically underestimate 
water scarcity in the donor basin and overestimate the demands within the recipient basin (Huang et al., 2021).

Exploratory modeling-based frameworks such as Robust Decision Making, Many-Objective Robust Decision 
Making (MORDM), Information Gap theory and Decision Scaling seek to discover robust alternatives that 
perform well across a range of deeply uncertain futures (Ben-Haim, 2006; Brown et al., 2012; Gold et al., 2019; 
Hadjimichael et al., 2020; Kwakkel & Haasnoot, 2019; Lamontagne et al., 2018; Moallemi, Zare, et al., 2020; 
Moallemi et  al.,  2021; Singh,  2023). Robustness evaluation of IBWTs requires the analyst to decide how to 
represent the multiple stakeholders involved. Although challenging, robustness definition(s) should be identi-
fied through co-production of knowledge that includes all relevant stakeholders (Bhave et  al.,  2022; Eriksen 
et  al., 2021; Moallemi, Zare, et  al.,  2020; Wyborn et  al., 2019). This would be best achieved by stakeholder 
workshops, an iterative process that results in co-production of knowledge (Voinov et al., 2018). This remains 
highly challenging for large-scale infrastructure projects as by their very nature, they involve multiple actors 
spread across spatio-temporal and socio-economic gradients. There may also be socio-political limitations in 
engaging a diverse group of stakeholders due to differences in ideologies and varying degrees of understanding 
of the decision process (Eriksen et al., 2021).

The emerging field of Decision Making Under Deep Uncertainty (DMDU) provides a starting point to frame 
robustness definitions for the design and evaluation of IBWTs (Marchau et al., 2019). Recent literature highlights 
a rapid proliferation of robustness metrics and their impact on the preferential rank ordering of proposed alter-
native designs and/or operational strategies (Bartholomew & Kwakkel, 2020; Borgomeo et al., 2018; Herman 
et al., 2015; Kwakkel, Eker, & Pruyt, 2016; McPhail et al., 2018). There have been an increasing number of appli-
cations of decision-making under deep uncertainty approaches globally (see Marchau et al., 2019). Kaatz (2015) 
reviews several applications of robust decision-making methods in planning water systems. A specific example 
is the Colorado River; where MOEAs and MORDM methods have been utilized in decision-making (Smith 
et  al.,  2019,  2022). Deep uncertainty is assessed and used for climate adaptation planning in New Zealand 
(Lawrence et al., 2018). Other major examples include the development of the Louisiana Coastal Master Plan 
(Fischbach et al., 2012), delta management in the Netherlands (Bloemen et al., 2019), and the Colorado Water 
Conservation Board's efforts to manage vulnerabilities to drought (Hadjimichael et al., 2020). These examples 
show the potential of using the methods related to planning under deep uncertainties (DU) in the real world. In the 
Indian context, IBWTs have been assessed using historically observed streamflows and assumed future demand 
scenarios. Thus, so far stochastic uncertainty or deeply uncertain factors have not been explicitly considered in 
the planning of these projects (NWDA, 2021). Therefore, there is a necessity to assess these projects perfor-
mance under uncertainties associated with climatic and socioeconomic changes during their lifetime of multiple 
decades. In addition, understanding how the value of the project varies across different actors/sectors and their 
risk attitudes would provide information for future dialogs between the participating basins.

 23284277, 2023, 8, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022E

F003469 by T
est, W

iley O
nline L

ibrary on [03/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Earth’s Future

SUNKARA ET AL.

10.1029/2022EF003469

3 of 20

In general, robustness quantification requires the specification of methods for generating deeply uncertain 
futures and aggregating evaluations of strategy performance across these futures (Herman et al., 2015; McPhail 
et al., 2021). Generating deeply uncertain futures requires an understanding and careful exploration of important 
system drivers as well as their feasible ranges and plausible statistical properties (McPhail et al., 2020; Quinn 
et al., 2018, 2020). The aggregate rank evaluations of robustness require an explicit consideration of risk atti-
tudes. Aggregation of robustness performance across sampled scenarios for the future can be based on expected 
value analysis (Wald, 1950); higher-order moments (Kwakkel, Haasnoot, & Walker, 2016); regret (Savage, 1951) 
or satisficing criteria (Simon,  1956). Building on the general framework proposed by Herman et  al.  (2015), 
McPhail et  al.  (2018, 2020) show that several underlying methodological choices tacit to measuring robust-
ness can substantially influence robustness-based rankings of decision alternatives. For example, performance 
aggregation across scenarios embeds assumptions regarding levels of risk aversion of stakeholders. Measur-
ing robustness using traditional expected value focused metrics tacitly assumes risk neutrality, while minimax 
or worst-case performance across scenarios represents high levels of risk aversion. Thus, robustness criteria 
require a careful elicitation of requirements (or performance acceptability limits) from stakeholders (Herman 
et al., 2015; Kwakkel, Eker, & Pruyt, 2016).

In this study, we propose a framework to address the principal challenge of capturing diverse stakeholder 
views in robustness assessments for large multi-actor infrastructure projects, a central concern when seeking to 
support co-production processes. Our framework contextualizes how exploratory analysis of multiple robust-
ness metrics can better contextualize the implications of a broad range candidate robustness framings in captur-
ing diverse stakeholder preferences and shaping performance evaluations. Our proposed exploratory robustness 
assessment provides a mechanism for formally broadening dialog and the inclusion of diverse and potentially 
under-represented stakeholders. We apply this framework to the proposed Inchampalli-Nagarjuna Sagar (INS) 
IBWT in Southern India, which aims to transfer water from the Godavari (donor) to the Krishna (recipient) river 
basin with significant implications for millions of farmers as well as the pharmaceutical and software hub of 
Hyderabad, India. We extensively assess potential impacts on the participating basins and their water related 
sectors considering deeply uncertain changes in precipitation patterns and river flows due to uncertain potential 
future changes in Indian Summer Monsoon and anthropogenic water demands.

2. The Decision Context of the INS IBWT Megaproject
India faces a daunting challenge of ensuring water, food and energy security in a changing climate and rapidly 
evolving socio-economic conditions. India's National River Linking Project (NRLP) aims to improve water and 
food security via expansion of irrigated area by ≈350,000 km 2 using 30 water transfer projects totaling in length 
of ≈14,900  km and a network of 3,000 storage structures (Bagla,  2014; Joshi,  2013). If implemented fully, 
the NRLP will incur massive water infrastructure investment of >$2 trillion, greater than 60% of the Indian 
economy of $3.17 trillion. Within NRLP, the INS IBWT proposes to transfer water from the Godavari (donor) 
to the Krishna (recipient) basin, the two largest river basins of Southern India (Figure 1). The INS IBWT by 
itself has been justified due to a growing disparity between demand and supply between its participating basins. 
With a proposed 16,000 Mm 3 annual water transfer over 299 km classified the INS IBWT as a megaproject 
(NWDA, 2021; Shumilova et al., 2018; Veena et al., 2021). The water transfer is a major socio-economic devel-
opment intervention for the Nagarjuna Sagar reservoir, which is stressed due to increasing agricultural and urban 
(primarily Hyderabad city) water demand, as well as demands from another regional political capital, Vijay-
awada. The INS IBWT is also going to impact the aquatic ecosystems downstream of the donor and local tribal 
populations that rely on the maintenance of minimum environmental flows (MEF).

Given the high stakes, deep uncertainty, and multi-stakeholder context, the INS IBWT requires a comprehensive 
evaluation to avoid potential decision lock-ins (Moallemi, Zare, et al., 2020). Average Godavari annual inflows at 
Perur gage station (77,017 Mm 3) are more than double those at Nagarjuna Sagar on the river Krishna (29,625 Mm 3) 
(Figure 1b), while their respective command area water demands are ≈603 and ≈8,535 Mm 3(Figure 1c) (Veena 
et al., 2021). Mean annual precipitation (temperature) is projected to increase by 20%–50% (1°–5°C) in both 
basins by the end of century (Mishra & Lilhare, 2016), but future water availability and demand dynamics will 
evolve in complex ways with changes in population as well as the efficiency of the multisectoral water dependent 
systems that evolve to meet the concomitant increasing human demands (Singh & Kumar, 2019), leading to deep 
uncertainty.
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In this study, we employ the systems model and cooperative adaptive strategies contributed by Veena et al. (2021). 
Their original analysis focused on the stationary historical uncertainties affecting Godavari and Krishna inflows, 
exploiting a water balance model to track reservoir related fluxes, and assessed water transfer strategies against 
different priorities for environmental flows, domestic water supply and irrigation (please see Veena et al. (2021) 
for further details). The study formulated cooperative state-aware water transfer strategies where water transfers 
are decided based on the storage states of both the donor and the recipient reservoirs. Both the donor and the 
recipient reservoirs are also committed to transfer water to other reservoirs, which impose additional demands on 
the INS IBWT. These transfers are termed as “predefined transfers” (PT). In this study, we further evaluate the 
cooperative adaptive INS IBWT operational strategies under deeply uncertain futures and contribute an explora-
tory framework to guide assessments of their robustness.

Large scale water infrastructure projects such as the INS IBWT involve a number of actors and sectors, each 
with their own preferences and risk attitudes. Thus, multiple world views are invariably involved in its decision 
context. Prior literature has explored the consequences of multiple world views using multiple problem framings 
(Kasprzyk et al., 2013; Lempert & Turner, 2021; Quinn et al., 2017; Singh et al., 2015). Here, we propose a 
framework to support diverse stakeholders in exploring how they may define the robustness of an operational 
strategy. This framework can be used for deliberative analysis of candidate stakeholder preferences and/or as an 
exploratory modeling strategy for discovering the conflicts between stakeholders. The main actors involved in 
the INS IBWT are the donor (Godavari) basin, the recipient (Krishna) basin, and other basins dependent on water 
transfers from either of these (i.e., PT). We also define a baseline system level actor that captures a risk neutral 
rational social planner acting on the expected value of performance objectives averaged over donor and recipient 
outcomes, following a standard assumption in simulation-optimization literature (Giuliani & Castelletti, 2016; 
Loucks & Van Beek, 2017; McPhail et al., 2018). Similarly, requirements of all other basins that depend upon the 
donor (Godavari) and recipient (Krishna) are represented by a system level PT actor.

The different sectors impacted by the INS IBWT are domestic, industrial, agricultural, and ecological. Domestic, 
industrial and agricultural sectors together constitute the water supply sector. Ecology is affected in two ways. 
First, MEF downstream of both reservoirs are dependent upon the transfer and reservoir operation rules. MEF has 
direct consequence on tribal communities downstream of the donor (Godavari) basin that depend upon fishing, 
thus it is also included here to represent the interests of the marginalized communities (Eriksen et al., 2021). 
Second, the volume of water transferred (transferred volume, TV) is also considered as a proxy of ecological 
impact. The lower the amount of water transferred, the lower the potential ecological impact of mixing waters 

Figure 1. (a) Location of the Inchampalli-Nagarjunsagar (INS) water transfer project connecting the donor (Godavari) and recipient (Krishna) basins. The irrigated 
command areas for each basin is represented by shades of green and yellow for the link command area. The predefined transfer (PT) from donor and recipient basins 
are also shown by dot-dashed and dashed line respectively. Historical observed precipitation in the basins is shown in shades of blue (b) Monthly stochastic inflows in 
donor basin (blue) and recipient basin (orange). (c) Monthly demands and PT for both basins.
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of diverse quality and aquatic compositions. Using this rationale, we constructed two ecology related sectors: 
ecology-TV, and ecology-MEF. Thus, we envisage 12 actor-sector combinations that may emerge in the decision 
context of the INS IBWT (Table 1). The performance requirements for these are quantified using definitions 
discussed in the methods section below.

2.1. Data Sources

The inflow data to the Inchampalli reservoir (donor basin) obtained from Central Water Commission for the time 
period 1967–2012 is measured at the Perur gauge station. Whereas, inflow to the Nagarjuna Sagar Dam (recipient 
basin) is obtained from the irrigation and computer-aided design (CAD) department of Telangana, India for the 
period 1967–2012. This historical inflow data is used for generating multiple realizations of synthetic inflows. 
The process of stochastic generation of flows is added in the Text S2 in Supporting Information S1. Future projec-
tions were created using stochastic generation and deep uncertain factors; the procedure explained in Section 3.2.

3. Methodology
Our main contribution is a formal exploratory modeling framework for better understanding and transparently 
mapping the consequences of diverse actor and sector preferences as well as risk attitudes when defining robust-
ness metrics within the MORDM framework (highlighted boxes in Figure 2). As is typical for the MORDM 
framework (Kasprzyk et al., 2013), our exploration of the INS IBWT begins with the identification of the deci-
sion context, alternative candidate problem formulations, and generation of alternatives using many-objective 
optimization considering historical well-characterized uncertainties (WCU) (Section 3.1). In Step I, the term 
WCU refers to stochastically generated hydroclimatic scenarios that provide a more careful stationary statistical 
characterization of the internal variability of streamflows and potential drought extremes beyond the limits of the 
available observation record. Deeply uncertain factors that shape the performance of the alternative operational 
designs of the transfer are then identified and sampled in Step II (Section 3.2). We then explore tradeoffs across 
potential combinations of stakeholder preferences across multiple actors and sectors involved in or affected by the 
decision process (Section 3.3). These preference combinations together with risk attitude specification are used to 
re-evaluate the Pareto approximate operational transfer design strategies from Step I across scenarios identified in 
Step II (Section 3.4). In addition to evaluating robustness under DU, we also analyze robustness under the internal 
hydroclimatic variability in the stochastic WCU baseline. The multivariate robustness estimates thus obtained are 
further analyzed to identify key actor/sector tradeoffs with a specific focus on the stability of alternatives ranking 

Combination of actor-sector

Actor Sector

Donor Recipient System PT system Water supply Ecology-TV Ecology-MEF

1 X X

2 X X

3 X X

4 X X

5 X X

6 X X

7 X X

8 X X X

9 X X X

10 X X

11 X X X

12 X X X X X X X

Note. In each row, the X's identify which actor-sector combinations are used in robustness calculations. PT, predefined 
transfers for other reservoirs; TV, transfer volume; MEF, minimum environmental flows.

Table 1 
Multiple Actor-Sector Combinations Explored for the Inchampalli-Nagarjuna Sagar Inter-Basin Water Transfer
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(Section 3.5). Finally, we identify the main drivers of system failure from uncertainties explored and clarifying 
how choice of robustness definitions affect inferences related to consequential tradeoffs/vulnerabilities across 
stakeholder interests (Section 3.6).

Building on and extending McPhail et al. (2018), Figure 3 elaborates key steps in the exploratory evaluation of 
robustness considering candidate choices associated with stakeholder preferences, their risk attitudes and scenario 
generation methods. Robustness calculations require specification of deeply uncertain factors and their sampling 
strategies (ψ, purple boxes). Each deeply uncertain world will be characterized by stochasticity (s, green boxes). 
Each decision alternative, θ, is re-evaluated using the systems model to quantify values of multiple performance 
objectives (f, dark green boxes) representing preferences of various actors and sectors. The vectors of performance 
objectives can be combined in different ways to represent combinations of stakeholder preferences (m1, m2, …, mn, 
yellow boxes). Finally, alternative representations of risk-attitudes in candidate robustness metrics are explored in 
terms of how they aggregate the performance of a decision alternative across sampled deeply uncertain states-of-the-
world (SOWs, R1, R2, … Rm, orange box). In this way, we explore the influence of the choice of actor and sector 
combinations, decision alternatives, robustness metrics, number of scenarios, and type of spread of scenarios on 
robustness estimates. As noted by Hadjimichael et al. (2020), it is difficult in insti tutionally complex large-scale 
water resources systems for stakeholders to define and understand the implications of the alternative framings of 
robustness that could be considered. This study addresses this challenge by providing an exploratory framework that 
can broaden the representation of concerns while clarifying the consequences of incorporating them into alternative 
metrics of robustness. The following sections detail each of the key steps used to compute robustness.

3.1. Many-Objective Optimization

Veena et al. (2021) explored four problem formulations for the INS IBWT that quantified the tradeoffs across five 
system level objectives. The term “system-level” refers to the fact that the performance objectives were regionally 
averaged across the participating basins. The objectives included reliability, resilience, and vulnerability of water 

Figure 2. The six main stages in applying the Many-Objective Robust Decision Making (MORDM) framework to a decision 
problem. Black outlines highlight stages that include stakeholder preferences and their risk attitudes in the robustness 
assessment. This figure illustrates extension of MORDM framework adapted from the taxonomy of robustness frameworks 
presented in Herman et al. (2015).
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demand satisfaction, reliability of maintaining MEF, and reliability of avoiding high flow exceedances. The formu-
lations compare dynamic and adaptive rule-based operational designs against the status quo of no water transfer 
and a regional operational rule that has been suggested by the regional authorities, referred to as the proposed rule 
throughout the paper. To better understand the value of information coordination across the donor and recipient 
basins, two types of dynamic rules were formulated by Veena et al. (2021): noncooperative that only condition the 
transfer decisions on the states of the donor reservoir and cooperative that condition them on the states of both the 
donor and recipient reservoirs. Pareto approximate strategies were generated using evolutionary multi-objective 
direct policy search (EMODPS) considering stochastic uncertainty (or WCU) of inflows. Stochasticity is represented 
using 10,000 realizations of synthetic inflows (s1, s2, …, s10,000) generated from historical inflows (1967–2012) 
(Herman et al., 2015; Kirsch et al., 2013; Veena et al., 2021) (Text S4 in Supporting Information S1). The proce-
dure uses Cholesky decomposition to preserve the autocorrelation of inflows between the donor and recipient sites. 
Cooperative adaptive strategies outperformed all others indicating the importance of coordination between donor 
and recipient basins for managing water transfers and are, therefore, used in this study (79 in number) (Veena 
et al., 2021). Thus, we considered 81 INS IBWT operational design alternatives including the proposed and the 
status quo of no-transfer. These strategies are decisions (Step I in Figure 2, θ in Figure 3) to transfer water used for 
re-evaluating their performance under changing climates and demands to understand the long-term consequences 
of the INS IBWT for all the stakeholders involved. A brief overview of the model, objective functions, constraints 
and optimization procedure is included in Text S1–S3 and Table S1 in Supporting Information S1.

3.2. Sampling of Deeply Uncertain Factors

Here, we explore eight deeply uncertain factors (ψ, Figure 3) to capture potential impacts on river flows due to 
uncertain future changes in Indian Summer Monsoon precipitation patterns and demands; six related to inflows 
and two related to demands (Table 2, ψ in Figure 3). Demand factors are applied as multipliers to the historical 

Figure 3. Evaluating the impact of metric definitions representing risk attitudes (orange), performance objectives (dark green), and their combinations (yellow) 
representing different stakeholders, and sampling strategies for stochastic (green) and deep (blue, purple) uncertainties on resultant robustness values. Shown are steps 
to quantify robustness under (a) well-characterized, and (b) deep uncertainties. Pareto-approximate alternatives (gray) are generated by many-objective optimization 
using stochastic streamflow realizations in (a). Each alternative is re-evaluated for a vector of performance objectives across a much larger stochastic set in (a). Deeply 
uncertain states-of-the-world cover the multi-dimensional factor space using uniform, target, and diverse scenario spread types (blue box in b).
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demands to represent candidate increases in the future. Six factors are used to generate different monsoon dynam-
ics in the inflows including changes in log-space annual mean, log-space standard deviation and interannual 
variability of inflows. The equations to generate inflows from monsoon factor ranges are adapted from Quinn 
et al. (2018). Each deeply uncertain inflow defined by a combination of six monsoon related factors is paired with 
10,000 realizations of inflows that represent WCU. The generated inflows are evaluated using available climate 
projections for the study region from the Inter-Sectoral Impact Model Intercomparison Project. These span five 
GCMs and four representative concentration pathways (RCPs) (Singh & Kumar, 2019; Warszawski et al., 2014) 
(Figure S1 in Supporting Information S1). These five GCMs cover a wide range of uncertainty for precipita-
tion and temperature projections across the entire CMIP5 ensemble (Text S5 in Supporting Information  S1) 
(McSweeney & Jones, 2016).

Deeply uncertain futures are sampled from within the space of plausible ranges of uncertain factors. We explore 
alternative sampling approaches that vary in how they focus on specific regions of the space or cover the entire 
space following McPhail et al.  (2020). Vectors of the eight factors listed in Table 2 are generated using three 
sampling strategies—diverse, target, and uniform. Diverse sampling identifies locations of interest within the  feasi-
ble range of uncertain factors, then generate samples around those locations (Anghileri et al., 2018; Giuliani & 
Castelletti, 2016; Haasnoot et al., 2012; Huskova et al., 2016; McPhail et al., 2018). This represents the general 
scenario generation approach followed in climate change impact studies where, first specific carbon emissions 
trajectories are specified, followed by using multiple climate models to generate possible climates for each trajec-
tory. On the other hand, the targeted approach samples the scenario space such that different uncertain factors 
increase or decrease together monotonically (Beh et al., 2014, 2015a, 2015b). It follows that targeted sampling 
is useful in contexts where, changes in uncertain factors are highly correlated and would cover a smaller region 
of the overall feasible space. Finally, uniform sampling explores the entire multi-dimensional scenario space by 
sampling points within this space using Latin hypercube sampling (Herman et al., 2015; Kasprzyk et al., 2013; 
Kwakkel, 2017; Kwakkel et al., 2015; McPhail et al., 2018; Quinn et al., 2018; Singh et al., 2015). Further details 
on the generation of samples are provided in Figure S2 in Supporting Information S1. For each sampling scheme, 
20, 40, 60, 80, and 100 samples of vectors are generated. The reader is encouraged to refer to McPhail et al. (2020) 
for more details on the distributional sampling of scenarios for targeted spread and diverse futures.

3.3. Sampling Combinations of Stakeholder Preferences

As detailed in Section 2, we explore 12 actor-sector combinations that represent the diverse stakeholders involved 
in the INS IBWT. To quantify the water supply related sectoral performances, the vulnerability measure (Vul) is 
used as follows,

𝑉𝑉 𝑉𝑉𝑉𝑉 =

∑𝑇𝑇

𝑡𝑡=1
(𝑎𝑎𝑎𝑎𝑡𝑡 − 𝑎𝑎𝑡𝑡)

∑T

𝑡𝑡=1
𝑎𝑎𝑎𝑎𝑡𝑡

× 100 (1)

In Equation 1, dt is the demand satisfied, adt is the actual demand, for each time period t, and T is the total number 
of time periods. The vulnerability measure can also be expressed in terms of average volumetric deficits by 
multiplying with the total demand. Preferences of the ecology-TV sector is quantified as the mean annual transfer 

Deeply uncertain factors Lower bound Upper bound Remarks

Log-space mean multiplier, inflows 0.95 1.05 Annual increase or decrease in mean annual inflows

Log-space std multiplier, inflows 0.5 1.5 Change in interannual variability of inflows

Log-space C1 multiplier, inflows 0.5 1.5 Change in amplitude of annual monsoon

Log-space C2 multiplier, inflows 0.5 1.5 Change in amplitude of semiannual monsoon

Log-space ϕ1 delta (radians), inflows −2π/12 +2π/12 Shift of annual monsoon

Log-space ϕ2 delta (radians), inflows −2π12 +2π12 Shift of semiannual monsoon

Demand factor, donor basin 1 1.5 Relative increase in donor demand

Demand factor, recipient basin 1 1.5 Relative increase in recipient demand

Table 2 
List of Deep Uncertain Factors Used to Generate Scenarios With Change in Monsoonal Dynamics and Socio-Economic 
Changes
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volumes for a water transfer alternative. The performance for the Ecology-MEF (JEF) sector is 
quantified using a reliability measure as,

𝐽𝐽𝐸𝐸𝐸𝐸 =

(

1 −

∑T

𝑡𝑡=1
𝐸𝐸𝐸𝐸𝑡𝑡

𝑇𝑇

)

 (2)

��� =

⎧

⎪

⎨

⎪

⎩

1 �� (��� < ����)

0 ����
 (3)

where eft is the flow released as environmental flow and meft is the MEF at time t. MEF to be 
released downstream are set at 30% of the mean historical flow following recommendation by 
Smakhtin (2006). These sectoral performances are evaluated at the donor, recipient, and system 
level.

3.4. Robustness Metrics

Several robustness metrics have been developed and applied to analyze performance of 
complex water resources systems, each representing a unique way to attain aggregate perfor-
mance rankings for alternative solution strategies across a large number of uncertain SOWs 
(Giuliani & Castelletti,  2016; Herman et  al.,  2015; Kwakkel, Eker, & Pruyt,  2016; McPhail 
et al., 2018, 2020). The means of computing these aggregations are important in how they tacitly 
indicate the risk attitude of the decision maker(s). Here, we illustrate four aggregation strategies 
for robustness metrics that have been commonly used in the literature and represent a range of 
risk-attitudes (in order of increasing risk aversion): the maximax, Laplace, minimax regret, and 
maximin metrics (Table 3). The maximax metric (i.e., “best”) represents a low inherent level of 
risk aversion, as its calculation is only based on the best performance over all the scenarios. In 
contrast, the maximin metric (i.e., “worst”) has a very high level of intrinsic risk aversion as it 
only considers the worst performance of all scenarios, leading to a very conservative solution 
(Bertsimas & Sim,  2004). Thus, across all decision alternatives, the alternative that has the 
maximum worst-off performance across all deeply uncertain scenarios is deemed to be most 
robust. Similarly, the minimax regret metric assumes that the selected decision alternative will 
minimize the largest regret possible, focusing again on the worst-case relative performance. 
Laplace's principle of insufficient reason, referred to as Laplace from hereon, is representative 
of a risk neutral metric as its calculation is based on the mean performance over all the scenarios 
considered. For each performance objective, values are estimated and rescaled between 0 and 1 
to allow a comparison between objectives in calculation of robustness metrics.

When multiple actors and sectors are involved, the implications of performance aggregation 
across the actor-sector combinations as well as scenarios need to be explored carefully. Stakehold-
ers and decision makers are not likely to know a priori the complex effects of aggregation or how 
to specify robustness metrics as noted in Hadjimichael et al. (2020). To better aid stakeholders 
in understanding the relative implications of alternative robustness metrics, we more carefully 
distinguish the conceptual definition of candidate metrics across how they are aggregated with 
respect to scenarios as well as performance objectives. For example, when applied to a single 
performance objective, the maximin metric would focus on the minimum (“worst”) performance 
value across all scenarios. The multi-objective version of maximin selects the worst performing 
objective across all of the performance objectives as well as scenarios considered (Table 3). This 
version of the metric tracks maximal regret or loss across the four performance objectives across 
alternatives and scenarios. A total of 12 actor-sector combinations along with four levels of risk 
aversion result in 48 combinations of stakeholder interests and risk attitude assumptions.

3.5. Impact of Multivariate Robustness

A total of 432,000,000 robustness evaluations were carried out for each of the 81 alternatives. 
These result from a combination of 12 performance objectives, four robustness metrics, 300 M
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(20 + 40+60 + 80+100) scenario sample sizes, 10,000 stochastic realizations, and three scenario spread types 
(Figure 3). Rank stability of alternatives across the candidate specifications of robustness definitions is evaluated 
720 times, representing 12 performance objectives, four robustness metrics, five scenario sample sizes, and three 
scenario spread types. An alternative is ranked 81 if it attains the highest robustness value and 1 for the least 
robustness value. We summarize the rankings via the median and the interquartile range (IQR) of the ranks under 
WCU and DU sampling cases. A strategy is defined as having a stable ranking if there is little or no change in 
median rank defined under WCU and DU. We classify a strategy as having an unstable ranking when the differ-
ence in median rank between WCU and DU is greater than 20 or has high (>60) IQR rank under DU. We also 
explore the impact of these choices on the inferred stability of a strategy.

Along with the rank stability of a strategy, the degree of change in the quantified robustness of a transfer strategy 
when moving from the internal variability focus of WCU sampling to broader DU sampling could also be of inter-
est to stakeholders. We define this change in terms of median and IQR rank of strategies. We classify the strategy 
as “improving” for an increase in median rank or decrease in IQR rank, “deteriorating” for a decrease in median 
rank or increase in IQR rank, or “similar” for a difference in median or IQR rank that falls within ±2 ranked 
slots of original WCU value. We also assess the impact of using various actor-sector combinations on resultant 
robustness perception of strategies. For the transfer strategies identified, we perform a detailed assessment of 
robustness controls to identify which factors among the many considered are driving robustness gradients across 
deeply uncertain scenarios (Step V, Figure 2).

3.6. Identification of Robustness Controls

This step identifies which deeply uncertain factors are most responsible for the failure of alternatives to meet the perfor-
mance requirements implied for each of the different robustness metrics (robustness controls). We use Classification 
and Regression Trees (CART) (Breiman, 2017) to identify the relative importance of different factors for meeting 
performance requirements specified across alternative robustness metrics across sampled scenarios. CART requires 
input of the uncertain factors of focus and their performance outcomes (success or failure) (Step VI, Figure 2). The 
method then recursively partitions the factor space into subgroups to explain variation in failure or success outcomes 
(e.g., identifying the combinations of uncertain factors as well as their specific values that result in performance 
failures). Given that CART identifies the region of factor space that leads to failures, it facilitates scenario discovery 
where decision makers can more carefully pinpoint the most consequential scenarios of concern for a given INS 
IBWT operational design alternative. This step was completed using the “rpart” package to generate pruned trees and 
prevent overfitting using a ten-fold cross-validation process (Breiman et al., 1984; Therneau et al., 2010).

4. Results
4.1. Multi-Sectoral Performance of Transfer Strategies

We first analyze the multi-sector tradeoffs across the 81 water transfer strategies for the INS IBWT for the three 
sectors: ecology-TV, water supply, and ecology-MEF. Their performance is analyzed at the system level by estimat-
ing the average performances across both donor (Godavari) and recipient (Krishna) basins (Figures 4a and 4b). The 
system level performance of each strategy across all SOWs under WCU (DU) is plotted as a line crossing the three 
vertical axes, each representing a sectoral performance in Figure 4a (b). Across the 79 Pareto-approximate strategies, 
the average volumetric deficits ranged from 222 to 348 Mm 3 (2.4%–3.8% of total demands) for the water supply 
sector under WCU (Figure 4a). For these strategies, the reliability of maintaining MEF ranged from 97% to 98% for 
the ecology-MEF sector, while mean annual transfer volumes ranged from 4,985 to 7,730 Mm 3 for the ecology-TV 
sector, under WCU. Notable is the tradeoff between the ecology-MEF and water supply sectors at the system level, 
a 1% increase in MEF reliability requires a concurrent increase of 118 Mm 3 in average volumetric deficits. The 
proposed strategy results in the worst performance for the ecology-MEF (MEF reliability of 96.3%) and ecology-TV 
(mean annual transfer volume of 13,437 Mm 3) sectors. The no-transfer strategy results in the worst performance of 
the water supply sector with an average volumetric deficit of 1,547 Mm 3 (17% of total demands), respectively, at 
the system level. We surmise that the transfer of water between the Godavari and Krishna basins is likely to force 
decision makers to consider the significant tradeoffs between the water supply and ecology sectors in both basins.

On further analyzing these strategies under deeply uncertain futures, we find a substantial deterioration in the 
performance of the water supply and ecology-MEF sectors when compared to the narrower evaluation of perfor-
mance under WCU (DU, Figure 4b). The average volumetric deficits across the Pareto-approximate strategies 
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increase from 222–348 to 1,593–1,820 Mm 3 as we transition from an emphasis on hydroclimatic internal vari-
ability in the WCU evaluations to the broader uncertainties posed by climate and demand changes. Similarly, 
the reliability of maintaining MEFs reduces from 97% to 98% under WCU to 90%–91% under DU. The mean 
annual transfer volume reduces from 13,437 Mm 3 under WCU to 8,302 Mm 3 under DU for the proposed strategy. 
However, the annual volumetric transfers do not change substantially for the 79 dynamic state-aware solutions as 
they adapt to changing inflow and demand conditions under the DU SOWs. The proposed strategy attains a 90% 
reliability of maintaining MEF, the worst performance for the ecology-MEF sector under the DU SOWs across all 
strategies. The no-transfer strategy attains the highest performance for the ecology-MEF sector under DU futures 
but still results in the lowest performance for the water supply sector. Thus, even under the more challenging DU 
SOWs, the Pareto approximate strategies deteriorate less than the proposed and no-transfer strategies.

We further identify four strategies that represent different possible compromises between the three sectors at the 
system level. The Best Water Supply strategy attains the highest performance in the water supply sector from the 
system perspective under WCU (red line, Figure 4). This strategy is likely to be of high interest to all water users 
including farmers and urban centers as well as regional water planners who typically prioritize augmentation of 
freshwater supply. The Best Ecology-MEF strategy attains the highest performance for the ecology-MEF sector at 
the system level under both the WCU and DU SOWs (purple line, Figure 4). Considering the ecological services 
provided by the Godavari River downstream of the proposed Inchampalli dam site, these strategies would be of 
interest to ecologists and dependent downstream water users. The Best Ecology-TV strategy results in the lowest 
annual volumetric transfers from the Godavari to the Krishna river under both the WCU and DU SOWs (yellow 
line, Figure 4). This strategy would be of interest to stakeholders who would be concerned about the potential 
implications of mixing the waters of the Godavari with the Krishna, resulting in the introduction of new aquatic 
species in the Krishna River. It will also be of interest to stakeholders concerned with the cost of constructing and 
maintaining of the INS IBWT itself. The Compromise strategy represents the willingness of stakeholders to nego-
tiate across sectors under both the WCU and DU SOWs (blue line, Figure 4). Together, these four strategies along 
with the proposed and no-transfer strategies, represent a range of stakeholders' interests including regional plan-
ning authorities, environmentalists, ecologists, water users, tribal populations dependent on MEFs, etc. We further 
examine these in more detail w.r.t to implied actor-sector tradeoffs as well as implications of robustness definitions.

4.1.1. Key Actor-Sector Tradeoffs Under WCU and DU

We now examine the tradeoffs between the three sectors for each actor perspective (donor-Godavari, 
recipient-Krishna, and system) associated with the INS IBWT to further understand the compromises faced by 
the participating basins (Figure 5). The average demand deficits for the water supply sector under WCU ranged 
from 24 to 33, 415–672, and 222–348 Mm 3 for the donor, recipient and system, respectively. The reliability of 
maintaining MEF, representing the ecology-MEF sector, ranges from 94% to 97%, 99% to 99%, and 97% to 98% 
under WCU for the donor, recipient, and system, respectively. A key tradeoff emerges between the ecology-MEF 

Figure 4. (a) Parallel coordinate plots showing performance of each sector for the system actor for all strategies under well-characterized uncertainty. Each vertical axis 
represents sectoral performance ranging from lowest (bottom) to highest (top) performance. Each strategy is represented by a line crossing the three axes. (b) Same as 
(a) but for all strategies reevaluated under deeply uncertain futures.
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and water supply sectors of the donor basin where increasing demand satisfaction by 9 Mm 3 is attained at the 
cost of 2% reduction in MEF requirements under WCU. Notably, the proposed strategy attains the highest perfor-
mance (99.4%) in the ecology-MEF sector for the recipient-Krishna basin, but it does so by incurring a concur-
rent loss of MEF reliability in the donor-Godavari basin (93%). This results in the proposed strategy performing 
the worst for the ecology-MEF sector at the system level (96.3%). Thus, gains by sharing water between the 
Godavari and Krishna basins will entail a tradeoff between the water supply sector of the recipient-Krishna basin 
and ecology-MEF sector of the donor-Godavari basin, even when considering historical hydroclimatic variability.

The ecology-MEF sector witnesses a substantial system level performance reduction under DU futures, which 
is primarily due to the deteriorating MEF reliability of the donor-Godavari basin. Under DU futures, we observe 
a small reduction in MEF reliability for the recipient-Krishna basin despite an overall reduction in mean annual 
water transferred. This suggests that water transfers may alleviate some MEF shortages in the recipient basin. We 
also find a reduction in system level water supply performance under DU futures, driven primarily by substantial 
reduction in for the recipient-Krishna basin. Historically, the donor-Godavari basin has had lower demand and 
hence the impact on water supply performance is limited. Importantly, for all strategies, including proposed and 
no-transfer, a reduced performance for water supply and ecology-MEF sectors for all actors, and an increased 
performance for ecology-TV sector, is observed under DU futures compared to WCU. Reduced transfer volumes 
under DU compared to WCU is due to change in water availability and increased demands in both the basins.

4.2. Rank Stability of Strategies

Decision analysis frameworks should provide insights for how problem framing influences the preferential 
ordering of suggested actions across the diverse actors and sectors that have stakes. In our study, differ-
ent robustness metrics represent alternative world views by exploring candidate performance goals across 

Figure 5. Trade-off between (a–c) vulnerability of water supply and reliability of maintaining MEF; (d–f) vulnerability of water supply and mean annual transfer 
volumes for (b, e) donor, (c, f) recipient and (a, d) system. The Pareto-approximate strategies are highlighted by circles. Performance under well-characterized 
uncertainties is shown by light gray circles while deep uncertainties in dark gray. MEF: minimum environmental flows.
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actor-sector combinations and their risk attitudes. It further follows that each robustness metric is likely to 
result in a different rank ordering of decision alternatives. The rank stability of the decision alternatives may 
thus be an additional feature of interest to planners, especially in decision contexts where it is conceptually 
challenging to define the appropriate robustness metrics such as the INS IBWT. To investigate this, we plot 
the median and inter-quartile range (IQR) of the rank obtained by a strategy across all 720 robustness metric 
definitions under both WCU and DU (Figures 6a and 6b). A strategy with highest median rank and lowest IQR 
of rank indicates a high robustness irrespective of the choice of robustness definitions. The plausible highest 
rank in this study is 81 as there are 81 strategies and lowest is rank 1. Note that a strategy with high rank under 
WCU may not maintain its rank under DU. This can occur when a strategy is overly trained on historical data 
and exhibits a high-performance deterioration when exposed to DU futures. We further define a strategy as 
stable when the difference in median rank of WCU and DU is less than 20 or IQR rank of strategy is smaller 
than 60 under DU (shaded regions in Figures 6a and 6b). This choice of thresholds was determined after inves-
tigating the impact of different thresholds on resultant inferences of solution stability (Figure S3 in Supporting 
Information S1).

We find that the ranking of strategies is quite stable across the WCU and DU SOWs indicating that strategies 
tend to maintain similar relative performance under both cases (see also supplementary Figure S3 in Supporting 
Information S1). The stability of a strategy implies that the alternative robustness-based preferential ordering 
of that strategy is largely consistent across multiple worldviews. The proposed strategy attains low median rank 
and high IQR of rank suggesting an overall low robustness with high variability across robustness definitions. 
The no-transfer strategy attains the highest median rank across all robustness definitions under both WCU and 
DU SOWs but also exhibits a greater instability in ranking as indicated by its highest IQR in both cases. Table 4 
summarizes the median rank, IQR of rank, as well as the stability ranking outcomes for the selected water transfer 
strategies. The Pareto-approximate strategies attain lower median ranks (i.e., higher median rank is preferred over 
lower ranks) when compared to the no-transfer strategy. They also maintain higher rank stability as exhibited by 
their low IQR (i.e., low IQR is preferred) as well as consistency of ranking between the WCU and DU SOWs. 
The Best Ecology-MEF strategy attains the highest median rank among the Pareto approximate strategies and 
has low IQR. The Compromise strategy has a relatively high median ranking, as well as lower IQR of rank under 
both WCU and DU SOWs. The Best Ecology-TV strategy is found to be unstable based on the criteria discussed 
above, which is mainly attributed to the poor performance of this strategy for the water supply sector. Overall, 
the selected strategies display advantages over one another either w.r.t individual sectoral performance or in rank 
stability across robustness choices. Ideally, a strategy with the highest median rank and lowest IQR of rank across 
the robustness definitions should be preferred. Such a strategy would maintain performance irrespective of the 
choice of actor-sector combinations and risk attitudes. However, we find that the median rank and IQR of rank 
have a trade-off across the set of strategies analyzed here. This indicates that strategies that attain a high rank 
across robustness metrics also display greater variability of ranking, resulting in lower performances in certain 
actor-sector combinations. Thus, choosing an appropriate water transfer strategy for the INS IBWT would be 
difficult and require careful consideration of involved tradeoffs under deeply uncertain futures.

Figure 6. The (a) median and (b) interquartile range (IQR) of rank for a strategy under well-characterized uncertainties 
(WCU) (x-axis) and deep uncertainties (DU) (y-axis). A total of 81 strategies are ranked using 720 robustness metrics under 
both WCU and DU. The ideal point with highest median rank and lowest IQR is highlighted by a plus symbol in both panels. 
Gray shading represents regions of instability w.r.t strategy ranking. See text for more details.
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4.3. Impact of Stakeholder(s) Interests and Risk-Attitudes on Perceived Robustness

A key objective of this study is to demonstrate how decision makers may explore different risk attitudes or stake-
holders' interests in the evaluation of design alternatives robustness using the complex context of the INS IBWT. 
The exploratory evaluation of the consequences of the different risk attitudes across candidate robustness metrics 
can provide a broader context for how outcomes may be classified as being consequential across the range from 
full optimism to extreme pessimism. We visualize the variation of robustness values across actor-sector combi-
nations, and risk attitudes for six selected strategies under DU SOWs as bar plots in Figure 7. We reiterate that 
across the candidate operational strategies for the INS IBWT, the preferred robustness for the Maximax, Laplace, 
and maximin metrics assumes maximization. Similarly, to choose the best robustness value for the minimax 
regret metric, the robustness values are subtracted from a value of 1 for consistency as this regret measure is mini-
mized. Across all robustness metrics, the highest robustness value is attained by a variety of strategies depending 
upon the choice of actor-sector combination is emphasized. This shows that a single robust INS IBWT opera-
tional strategy cannot easily be identified without a deeper engagement with the trade-offs between different risk 
attitudes and carefully evaluating the choice of which actor-sectors that have a central role in decision making.

Figure 7 shows that the no-transfer strategy attains the highest robustness value compared to the other strategies 
across all levels of risk aversion for actor-sector combinations of donor water supply, donor ecology-MEF and 
system ecology-TV. It is expected that the no-transfer strategy results as being robust for the donor (Inchampalli) 
water supply and donor ecology-MEF combination as it avoids conflicts in resource sharing with the recipient 
basin. The proposed strategy is found to be robust for the recipient (Nagarjuna Sagar dam) water supply across 
all metrics and recipient ecology-MEF except for minimax regret. In summary, for donor related combinations, 
the no-transfer strategy is robust, while for recipient related combinations the highest metric value is attained by 
the proposed strategy. Not opting for the water transfer would be in the best interest of donor's water supply and 
ecology goals, while the proposed strategy entails the highest possible value of annual volumetric transfers. Simi-
larly, for system ecology-TV which focuses on minimizing the transfer volume, the no-transfer strategy attains the 
highest robustness as the transfer volume is set to the minimum value of zero. Alternatively, system level actors 
for the INS IBWT are mainly decision makers focused on the overall average benefits across both the Inchampalli 
and Nagarjuna Sagar command areas.

As expected, the INS IBWT increases the robustness of water supply at the system level. Across all levels of 
risk aversion, the Pareto optimal strategies display greater robustness when compared to the no-transfer strategy 
for the water supply sector at the system level. Note also that at the system level, the robustness of strategies for 
Ecology-MEF sector is markedly different than for the water supply sector suggesting that stakeholders with a 
high preference toward the water supply sector may select strategies that pose higher risks for violating MEFs. 
The no-transfer strategy attains greater robustness compared to other strategies for the Laplace and maximin 
metrics at the system level for the ecology-MEF sector as well as across all actors and sectors (“All” in Figure 7). 
The Laplace metric captures risk-neutral mean performance across scenarios while the maximin metric captures 

Strategy name Selection criteria

Median rank IQR rank Comment on stability

Whether median 
(IQR rank) 

improves from 
WCU to DUWCU DU WCU DU

Difference in 
median rank 
of WCU and 

DU

Based 
on IQR 
rank of 
strategy

Proposed Baseline strategy 1.5 1 79 63 Stable Instable Similar (Improving)

No-transfer Status quo 80 80 80 79 Stable Instable Same (Similar)

Best Ecology-TV Strategy with minimum transfer volume under WCU and DU 17.5 43.5 70.5 63.5 Instable Instable Improving 
(Improving)

Best Ecology-MEF Best performance for ecology-MEF under DU 69 69 43.5 30.5 Stable Stable Same (Improving)

Best Water Supply Best performance for water supply under WCU and DU 41 50 36.5 34 Stable Stable Improving 
(Improving)

Compromise Strategy with compromise performance across sectors 50 52 44.5 40 Stable Stable Similar (Improving)

Table 4 
The Median and Interquartile Range (IQR) of Rank for Selected Strategies Under Well-Characterized Uncertainties (WCU) and Deep Uncertainties (DU)
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risk averse performance. Among the optimal strategies, the Best Ecology MEF strategy attains high robustness for 
the maximin metric. The Best Ecology TV strategy attains the highest robustness when considering the minimax 
regret metric  across all actors and sectors. Recall that this metric emphasizes alternative INS IBWT operational 
strategies that have minimal deterioration in their performance from an optimal baseline.

Metric combination number 12 (Table 4) represented as “All” in Figure 7 considers all actors and sectors related 
to the INS IBWT. This robustness assessment metric is more stringent and difficult to attain high levels of 
performance compared to other actor-sector combinations. However, it does identify INS IBWT operational 
strategies that are consistently classified as robust across the different levels of risk aversion. This consistency 
is partially an artifact of the compensatory effects of combining actors and sectors in the measure of robustness. 

Figure 7. Robustness of selected strategies (from Table 1) for each combination of actor-sector and varying levels of risk 
aversion for uniform type sampling of scenarios. The arrow represents the increasing level of risk aversion with Maximax as 
least risk averse and maximin as highest risk averse.
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For example, the water supply sector may fail in certain scenarios, but those 
failures are in aggregate countered by increasing levels of success for the 
ecology-MEF sector. Overall, we find that assumed levels of risk aversion 
has a far more dominant effect on candidate robustness measures than the 
number of samples and type of sampling strategy (Figure S4 in Support-
ing Information  S1). In summary, we find that the no-transfer strategy 
remains robust when considering donor water supply, donor ecology-MEF 
and system ecology-TV actor-sector combinations, across all deeply uncer-
tain futures. On the other hand, the best water supply strategy performs the 
best for system water supply and donor, recipient water supply actor-sector 
combinations (Figure 7). Furthermore, when considered the most risk averse 
metric, the no-transfer strategy emerges as the most robust as it balances the 
deterioration in recipient water supply actor-sector against improvement in 
donor ecology-MEF and system ecology-TV actor-sector.

4.4. Influence of Deeply Uncertain Factors

Scenario discovery helps identify deeply uncertain factors, which drive the 
performance deterioration of objective functions and potential strategy fail-
ure. Here, we identify which uncertain factors control the robustness of trans-
fer alternatives to DU SOWs using CART to perform scenario discovery for 
each of the 79 Pareto-approximate strategies (Step VI of Figure 2). As an 
example, we perform this analysis for the system level water supply metric, 
the actor sector combination 5 for a uniform sampling of scenarios (Figure 8). 
Notably, the order of influence of the deeply uncertain factors on strategy 
failure is found to be the same across all strategies: amplitude of inflows  to 

the donor and recipient basins, mean inflows to the donor and recipient basins, standard deviation of inflows to 
the donor and recipient basins and demands in the donor basin. Climate models struggle to reproduce the complex 
spatio-temporal patterns of the Indian Summer Monsoon (Kodra et al., 2012; Konduru & Takahashi, 2020; Saha 
et al., 2021), but understanding potential future river flows is crucial to understanding potential strategy fail-
ure. Our analysis suggests an urgent need to focus on understanding the potential temporal dynamics of future 
hydro-climatology of this region given its significantly important role in influencing strategy failure.

5. Conclusion
We apply an innovative framework to a major water transfer project in India, to illustrate how the role of different 
sectoral priorities, stakeholder preferences, policy options, uncertainties and robustness metrics, affect robustness 
assessments. This study contributes a proof-of-concept to demonstrate how evolving analytical frameworks can 
support infrastructure planning and decision making under uncertainty. Our results reveal how tacit assumptions 
within robustness metrics could influence the perceived robustness of INS IBWT policies. We find stronger 
variation in robustness values across different risk-attitudes and actor-sector combinations compared to sampling 
choices. Different actor-sector combinations may yield different robustness values of selected strategies. For 
example, when risk averse measures of robustness are applied to donor favored measures of system performance, 
we find that the no-transfer strategy has the highest robustness. Alternatively, the proposed transfer is also identi-
fied as the highest rank for a selected stakeholder preferences which are recipient centered. Our analysis suggests 
that while the high-cost INS IBWT infrastructure investment may be considered feasible under historically 
observed stationary climatic conditions, that future climate change effects have the potential to strongly degrade 
its robustness performance across all of the operational strategies and actor-sector concerned assessed. In assess-
ing the robustness of the INS IBWT, the distribution of scenarios has a greater impact on the inferred robustness 
values versus the number of scenarios considered, in agreement with prior analysis by McPhail et al.  (2020). 
Overall, this study highlights the importance of an exploratory evaluation of the robustness of mega-investments 
projects.

The choice of robustness metric presents a daunting challenge for the complex decision context of the INS IBWT. 
It follows that an easy to attain performance goal will lead to high robustness values while a stricter performance 

Figure 8. Understanding the importance of different uncertain factors on 
performance of optimized strategies using classification and regression trees. 
Shown are the ranking of deeply uncertain factors: changes in amplitude, 
standard deviation, demands in recipient, mean, demand donor and phase shift 
in determining robustness of strategies. Purple, blue, green, and lime green 
colors represent primary, secondary, tertiary, and higher factor ranking. The 
CIRCOS plot displays the uncertain factors as the circles outer edge in red and 
each optimized strategy is shown on the circle's outer edge in black. A purple 
line connecting a strategy to a factor indicates that factor being the primary 
control on strategy failure under deeply uncertain futures.
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requirement that maintain key system performance goals may result in lower robustness values. The ranking 
across robustness metrics therefore does not distinguish the relative value or importance of the underlying metrics 
to real operations, but rather the consequences of risk attitudes and stakeholder preferences. This could be altered 
in future studies with stakeholder elicitation to discover acceptable and stricter performance values. For example, 
the proposed strategy attains 90% reliability of maintaining MEF under the DU SOWs which is the worst perfor-
mance compared to other strategies. Here, the contention between different decision makers on the acceptable 
level of risk emphasizes that future work would need to clarify the accepted value of reliability or other perfor-
mance requirements. In other words, 90% reliability may be seen as a failure or sufficient across diverse decision 
makers.

In this study, we constructed combinations of actor-sector preferences based on an understanding of the stakehold-
ers involved in the INS IBWT. The exploratory robustness assessment framework contributed here has significant 
potential to provide a quantitative basis for stakeholder elicitations using a participatory modeling framework and aid 
in building a shared understanding of potential irreversible decision lock-ins. Such participatory approaches require 
inclusive thinking to account for different worldviews, priorities and preferences of marginalized communities and 
avoiding the monopolization of project benefits (Eriksen et al., 2021). While we know that the “planners” associated 
with this project want to minimize system level deficits and that all stakeholders are neither well represented nor 
consulted, there are issues regarding their understanding of decision analysis terminology and techniques. So, to 
facilitate an appropriate uptake of such approaches, it will require investments in building capacity and understand-
ing of robustness, uncertainty, risks, and participatory stakeholder engagement. Additionally, research on the appli-
cability and usefulness of approaches such as dynamic planning, will help improve the design and management of 
institutionally complex water resources systems balancing conflicting demands and complex interdependent risks.

Recent research has highlighted the complex nature of IBWTs and their multi-faceted challenges. We contribute 
to this growing body of literature by highlighting the type of information that advanced decision support can 
provide for better engaging a variety of stakeholders. This framework could also be extended to other robustness 
metrics such as satisficing criteria and higher-order moments. Analyzing the robustness of alternatives against 
different thresholds using the satisficing criteria, usefully indicates their stability and is worth exploring, espe-
cially during participatory engagement. Stakeholders may implicitly favor one actor-sector over others because 
of hidden assumptions within their robustness analysis. The framework in this paper offers a means of revealing 
those hidden assumptions and making the decision process transparent. This has benefits of (a) ensure stakehold-
ers are not blind to potential risks and trade-offs and (b) aid the co-production process by providing insight into 
the implications for all actors-sectors. The methodology introduced in this study is widely applicable to other 
large infrastructure planning projects with multiple stakeholders and multisectoral implications.

While the exploratory robustness assessment framework contributed in this study may be considered rather complex 
in the way it compares alternative strategies for deeply uncertain futures, it provides a wealth of decision rele-
vant information that would not available from more traditional planning methods. Typically, practitioners rely on 
scenario analysis or probability distributions to characterize future uncertainties. However, in absence of an under-
standing of which probability distributions to use or how to parameterize them, robustness analysis is valuable for 
enabling stress testing of management strategies against deeply uncertain futures (Singh, 2023). By exploring diverse 
definitions of robustness, we enable stakeholders to better understand the implications of their levels of risk aversion 
and potentially competing interests in defining consequential outcomes across the sectors and actors involved in 
institutionally complex decision contexts such as the INS IBWT considered here. Our framework for exploratory 
assessment of system robustness provided insights that would be missed in simplified abstractions of the INS IBWT.

We found that not transferring water between the basins (i.e., using the no-transfer strategy) is a robust alterna-
tive for half of the actor-sector combinations considered. On the other hand, a robustness definition focusing on 
system level reliability of water supply would rate this option as inferior to other water transfer alternatives. Thus, 
by using multiple definitions of robustness that consider a range of actors and sectors, we were able to show for 
which particular actors and sectors the INS megaproject may be considered an inferior option when compared to 
within-basin measures to augment water supply or reduce demands. This information is important as generally 
robustness analysis presume actor-sector combinations and interpret strategy performance accordingly.

We also identified a compromise strategy from across the 79 Pareto approximate strategies that balances perfor-
mance between actors and sectors, irrespective of choice of robustness metrics. This strategy would and its 
tradeoffs context would not be discovered by stakeholders using a simpler aggregated system-level cost-benefit 
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analysis, and the insights gained from our exploratory robustness analysis provides a rich context for stakehold-
ers to evaluate their own perceptions of INS IBWT's utility as well as its impacts (positive and negative). Our 
exploratory scenario discovery reveals that variations in monsoonal amplitude is the most important uncertain 
factor that controls failure of a majority of water transfer strategies under deeply uncertain futures. This type 
of sensitivity analyses identifies the cause of failure and the variation across policies. The framework allows 
decision-makers to map actions to consequences from different stakeholder perspectives, identifying drivers of 
failure in large infrastructure projects, and questioning the necessity of the project. Overall, this study is used to 
highlight the dire need to do these complex analyses for understanding the consequences of investment decisions 
when there are no simple relationships between decisions and outcomes.

Data Availability Statement
All code for replicating the analysis and figure generation can be found at https://doi.org/10.5281/zenodo.7470815. 
DOI: https://doi.org/10.5281/zenodo.7470815 (Sunkara, 2022). The inflow time series for the donor basin was 
obtained from Central Water Commission (CWC) requesting the data in this link https://cwc.gov.in/get-hydro-
logical-data and the recipient reservoir (Nagarjuna Sagar) was provided by Irrigation and CAD department, 
Telangana (https://irrigation.telangana.gov.in/icad/contact).
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