5,100 research outputs found
In re Harrods Ltd.: The Brussels Convention and the Proper Application of Forum Non Conveniens to Non-Contracting States
Although the doctrine of forum non conveniens is unknown in Continental legal systems, Community law does not prevent English courts from preserving their discretion to stay proceedings, in conflicts involving a defendant domiciliary, in favor of more appropriate courts in a non-Contracting State. Where the provisions of the Brussels Convention do not address a legal question, the answer must be sought in the objectives and scheme of the Convention. The English Court of Appeals in Harrods properly understood that Community law does not require ritualistic reliance on the Convention\u27s jurisdiction conferring provisions in cases involving a defendant domiciled in a Contracting State and the jurisdiction of a court in a non-Contracting State
Unconventional superconductivity in the cage type compound ScRhSn
We have examined the superconducting ground state properties of the caged
type compound ScRhSn using magnetization, heat capacity, and
muon-spin relaxation or rotation (SR) measurements. Magnetization
measurements indicate type-II superconductivity with an upper critical field
= 7.24 T. The zero-field cooled and field cooled
susceptibility measurements unveil an onset of diamagnetic signal below = 4.4 K. The interpretation of the heat capacity results below
using the BCS model unveils the value of = 2.65, which gives
the dimensionless ratio 2 = 5.3, intimating that
ScRhSn is a strong-coupling BCS superconductor. The zero-field
SR measurements in the longitudinal geometry exhibit a signature of a
spontaneous appearance of the internal magnetic field below the superconducting
transition temperature, indicating that the superconducting state is
characterized by the broken time-reversal symmetry (TRS). We have compared the
results of broken TRS in ScRhSn with that observed in
RRhSn (R = Lu and Y).Comment: 6 pages, 4 figures. arXiv admin note: text overlap with
arXiv:1411.687
Proximity-induced supercurrent through topological insulator based nanowires for quantum computation studies
Proximity induced superconducting energy gap in the surface states of
topological insulators has been predicted to host the much wanted Majorana
fermions for fault tolerant quantum computation. Recent theoretically proposed
architectures for topological quantum computation via Majoranas are based on
large networks of Kitaevs one dimensional quantum wires, which pose a huge
experimental challenge in terms of scalability of the current single nanowire
based devices. Here, we address this problem by realizing robust
superconductivity in junctions of fabricated topological insulator Bi2Se3
nanowires proximity coupled to conventional s wave superconducting W
electrodes. Milling technique possesses great potential in fabrication of any
desired shapes and structures at nanoscale level, and therefore can be
effectively utilized to scale up the existing single nanowire based design into
nanowire based network architectures. We demonstrate the dominant role of
ballistic topological surface states in propagating the long range proximity
induced superconducting order with high IcRN product in long Bi2Se3 junctions.
Large upper critical magnetic fields exceeding the Chandrasekhar Clogston limit
suggests the existence of robust superconducting order with spin triplet cooper
pairing. An unconventional inverse dependence of IcRN product on the width of
the nanowire junction was also observed.Comment: 12 page
Classical no-cloning theorem under Liouville dynamics by non-Csisz\'ar f-divergence
The Csisz\'ar f-divergence, which is a class of information distances, is
known to offer a useful tool for analysing the classical counterpart of the
cloning operations that are quantum mechanically impossible for the factorized
and marginality classical probability distributions under Liouville dynamics.
We show that a class of information distances that does not belong to this
divergence class also allows for the formulation of a classical analogue of the
quantum no-cloning theorem. We address a family of nonlinear Liouville-like
equations, and generic distances, to obtain constraints on the corresponding
functional forms, associated with the formulation of classical analogue of the
no-cloning principle.Comment: 6 pages, revised, published versio
Isospin asymmetric nuclear matter and properties of axisymmetric neutron stars
Pure hadronic compact stars, above a limiting value (1.6 M)
of their gravitational masses, to which predictions of most of other equations
of state (EoSs) are restricted, can be reached from the equation of state (EoS)
obtained using DDM3Y effective interaction. This effective interaction is found
to be quite successful in providing unified description of elastic and
inelastic scattering, various radioactivities and nuclear matter properties. We
present a systematic study of the properties of pure hadronic compact stars.
The -equilibrated neutron star matter using this EoS with a thin crust
is able to describe highly-massive compact stars, such as PSR B1516+02B with a
mass M=1.94 M and PSR J0751+1807 with a mass
M=2.10.2 M to a 1 confidence level.Comment: 5 pages, 4 figure
United States benefits of improved worldwide wheat crop information from a LANDSAT system
The value of worldwide information improvements on wheat crops, promised by LANDSAT, is measured in the context of world wheat markets. These benefits are based on current LANDSAT technical goals and assume that information is made available to all (United States and other countries) at the same time. A detailed empirical sample demonstration of the effect of improved information is given; the history of wheat commodity prices for 1971-72 is reconstructed and the price changes from improved vs. historical information are compared. The improved crop forecasting from a LANDSAT system assumed include wheat crop estimates of 90 percent accuracy for each major wheat producing region. Accurate, objective worldwide wheat crop information using space systems may have a very stabilizing influence on world commodity markets, in part making possible the establishment of long-term, stable trade relationships
Broken time-reversal symmetry probed by muon spin relaxation in the caged type superconductor Lu5Rh6Sn18
The superconducting state of the caged type compound Lu5Rh6Sn18 has been investigated by using magnetization, heat capacity, and muon spin relaxation or rotation (?SR) measurements, and the results interpreted on the basis of the group theoretical classifications of the possible pairing symmetries and a simple model of the resulting quasiparticle spectra. Our zero-field ?SR measurements clearly reveal the spontaneous appearance of an internal magnetic field below the transition temperature, which indicates that the superconducting state in this material is characterized by broken time-reversal symmetry. Further, the analysis of the temperature dependence of the magnetic penetration depth measured using the transverse-field ?SR measurements suggests an isotropic s?wave character for the superconducting gap. This is in agreement with the heat capacity behavior, and we show that it can be interpreted in terms of a nonunitary triplet state with point nodes and an open Fermi surface
- …