41 research outputs found

    Conversion of Polyethylene Waste into Gaseous Hydrocarbons via Integrated Tandem Chemical-Photo/Electrocatalytic Processes.

    Get PDF
    The chemical inertness of polyethylene makes chemical recycling challenging and motivates the development of new catalytic innovations to mitigate polymer waste. Current chemical recycling methods yield a complex mixture of liquid products, which is challenging to utilize in subsequent processes. Here, we present an oxidative depolymerization step utilizing diluted nitric acid to convert polyethylene into organic acids (40% organic acid yield), which can be coupled to a photo- or electrocatalytic decarboxylation reaction to produce hydrocarbons (individual hydrocarbon yields of 3 and 20%, respectively) with H2 and CO2 as gaseous byproducts. The integrated tandem process allows for the direct conversion of polyethylene into gaseous hydrocarbon products with an overall hydrocarbon yield of 1.0% for the oxidative/photocatalytic route and 7.6% for the oxidative/electrolytic route. The product selectivity is tunable with photocatalysis using TiO2 or carbon nitride, yielding alkanes (ethane and propane), whereas electrocatalysis on carbon electrodes produces alkenes (ethylene and propylene). This two-step recycling process of plastics can use sunlight or renewable electricity to convert polyethylene into valuable, easily separable, gaseous platform chemicals

    Is Vibrio fluvialis emerging as a pathogen with epidemic potential in coastal region of Eastern India following cyclone Aila?

    Get PDF
    An isolated area with diarrhoea epidemic was explored at Pakhirala village of the Sundarbans, a coastal region of South 24 Parganas district of West Bengal, eastern India. The Pakhirala village was surrounded by other villages affected by a similar epidemic. The affected villages experienced this epidemic following the cyclone Aila, which had hit the coastal region of the Sundarbans in eastern India. In Pakhirala, the situa-tion was the worst. Within a span of six weeks (5 June-20 July 2009), 3,529 (91.2%) of 3,871 residents were affected by watery diarrhoea. Of all the cases (n=3,529), 918 (26%) were affected by moderate to severe diarrhoea. In other villages, 28,550 (70%) of the 40,786 people were affected; of them, 3,997 (14%) had moderate to severe watery diarrhoea. The attack rate and the severity of the cases were significantly higher in Pakhirala village compared to other affected villages. The laboratory results revealed that Vibrio fluvialis was the predominant pathogen in Pakhirala village (5 of 6 laboratory-confirmed organisms) whereas Vibrio cholerae O1 Ogawa was the predominant pathogen in other villages of Gosaba block (7 of 9 bacteriologi-cally-confirmed organisms). This result indicates that V. fluvialis behaves more aggressively than V. cholerae O1 in an epidemic situation with a higher attack rate and a different clinical picture. An in-depth study is required to explore its pathogenicity in detail, geographical distribution, and possible control measures, including development of specific vaccine preparation and determination of its efficacy

    Blue carbon stock of the Bangladesh Sundarban mangroves: what could be the scenario after a century?

    Get PDF
    The total blue carbon stock of the Bangladesh Sundarban mangroves was evaluated and the probable future status after a century was predicted based on the recent trend of changes in the last 30 years and implementing a hybrid model of Markov Chain and Cellular automata. At present 36.24 Tg C and 54.95 Tg C are stored in the above-ground and below-ground compartments respectively resulting in total blue carbon stock of 91.19 Tg C. According to the prediction 15.88 Tg C would be lost from this region by the year 2115. The low saline species composition classes dominated mainly by Heritiera spp. accounts for the major portion of the carbon sock at present (45.60 Tg C), while the highly saline regions stores only 14.90 Tg C. The prediction shows that after a hundred years almost 22.42 Tg C would be lost from the low saline regions accompanied by an increase of 8.20 Tg C in the high saline regions dominated mainly by Excoecaria sp. and Avicennia spp. The net carbon loss would be due to both mangrove area loss (~ 510 km2) and change in species composition leading to 58.28 Tg of potential CO2 emission within the year 2115

    Does particle creation mechanism favour formation of black hole or naked singularity?

    No full text
    Abstract The paper deals with collapse dynamics of a spherically symmetric massive star in the framework of non-equilibrium thermodynamic prescription through particle creation mechanism. The matter content in the star is in the form of perfect fluid with barotropic equation of state, and the dissipative phenomena due to non-equilibrium thermodynamics is in the form of bulk viscosity. For simplicity, the thermodynamic system is chosen to be adiabatic so that the effective bulk viscous pressure is linearly related to the particle creation rate. As a result, the evolution of the collapsing star also depends on the particle creation rate. By proper choice of creation rate as a function of the Hubble parameter, it is found that the end state of the collapse may be either a black hole (BH) or a naked singularity (NS)
    corecore