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Abstract 

 
New porous 3D metal-organic frameworks are synthesized that contain 

infinite chains of Srn and Ban rectangles. Their structures are elucidated by means of 
spectroscopic techniques such as NMR and IR, and the respective crystal structures 
are determined. The electronic structure of basic units of the crystals are computed 
using density functional theory at the B3LYP/6-31G(d,p)/def2-TZVP level of theory 
and the bonding and reactivity are analyzed using natural bond orbital analysis, the 
quantum theory of atoms in molecules and conceptual density functional theory. The 
possibilities of noble gas storage inside the crystal structures are explored through the 
free optimization of the noble gas atom containing crystal, keeping frozen the 
geometries of the units derived from the crystal structure. It was found that a neon 
atom can fit into a cavity in the Sr and Ba crystal structures whereas other noble gases 
(He, Ar, Kr) exhibit repulsive interaction with the crystal structure. Ab initio 
molecular dynamics simulations for up to 500 fs at 77 K and 298 K suggest that the 
structures incorporating a neon atom are kinetically stable. 
  
Keywords: Metal-organic framework, Natural bond orbital analysis, Reactivity 
descriptors, Electron density analysis, Noble gas storage.
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1. Introduction 
 

Metal-organic frameworks (MOFs) are molecular structures based on metal 

ions coordinated to organic ligands[1-
2

3] which can act as porous hosts.[4,5] Syntheses of 

3D polymeric materials have received much attention in recent years.[6] This is mainly 

due to their potential use in gas absorption, gas separation, ion exchange and catalysis. 

These framework materials typically have very low density and very high surface 

area, which can make them ideal for gas absorption, storage and separation.[5,7-
8

9] For 

example, MOFs have been widely used for gas chromatographic separation of 

alkenes[10] and they have also been shown to be effective in the absorption of harmful 

gases such as SO2, NH3, Cl2 and CO.[11] One of the major interests in this field is the 

syntheses of MOFs for hydrogen storage.[5-8] It may be noted that it is mainly 

transition metals including zinc and cadmium complexes that have been used so far 

for the formation of MOFs, whereas there have been relatively few studies of porous 

networks based on group 1 or group 2 elements.[12]  We report here, the synthesis and 

structure determination of [M(NTA-H)(H2O)1.5]n MOFs in which M is Sr (1a) or Ba 

(1b), and NTA and NTA-H are nitrilotriacetate and N-protonated nitrilotriacetate, 

respectively (see scheme 1).  

 
Scheme 1 

Ma and Zhou[13] have studied a number of porous MOFs, which are suitable 

for H2, CO2 and CH4 storage. We find that the spacing between two acetate ligands in 

1a and 1b is close to 3 Ǻ, which could be large enough to enclose noble gas atoms, 

but it is not sufficient for storing molecules. 

In the recent years, many noble gas (Ng) compounds have either been detected 

experimentally[14
15

-
1617

18] or have been predicted to be stable theoretically[19
20

-
21 22

23] despite 

their inertness. The encapsulation of Ng atoms inside a cage like fullerene and other 

smaller cages has also been investigated theoretically as well as experimentally.[24,25] 

However, the number of experimental and/or theoretical studies on Ng storage with 
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MOFs is small. In computational studies, Greathouse et al.[26] have shown selective 

absorption of Xe and Ar from air by some specific MOFs. Ryan and coworkers[27] 

have shown computationally that MOFs can be promising materials for the separation 

of Xe and Keskin et al.[28] have studied various MOFs for Xe/Kr and Xe/Ar 

separations. 

In the present work, we assess the bonding pattern and reactivity of the crystal 

structures 1a and 1b by means of natural bond orbital (NBO) analysis, the quantum 

theory of atoms in molecules (QTAIM) and the use of various descriptors based on 

conceptual density functional theory (CDFT). Subsequently, the MOFs, 1a and 1b, 

are examined as potential storage materials for Ng atoms; specifically He, Ne, Ar and 

Kr. Ab initio molecular dynamics simulation are used to assess the kinetic stability of 

Ng atoms inside 1a and 1b. 

 

2. Experimental Section 

The chemicals used were reagent grades products. The 1H NMR spectrum was 

recorded on a Bruker Avance II spectrometer (400 MHz). Carbon, hydrogen and 

nitrogen analyses were performed using a Perkin Elmer 2400 series II analyzer. 

Infrared spectrum was recorded on a Perkin Elmer FT-IR Spectrometer (SPECTRUM 

RXI).  

 

2.1. Syntheses of [Sr(NTA-H)(H2O)1.5]n (1a) and [Ba(NTA-H)(H2O)1.5]n (1b) 

{NTA-H = N - protonated nitrilotriacetate }  

Nitrilotriacetic acid (H3NTA) (0.91 g, 1 mmol) was added to an aqueous 

solution of NaOH (0.08 g, 2 mmol) and the mixture was stirred for 15 mins. The 

resulting solution was filtered and to this SrCl2.6H2O (1.066 g, 4 mmol) was added 

and the solution was refluxed for 3 hrs. The solution pH at this stage was found to be 

1. The solution was filtered and allowed to stand for a week, whereupon colorless 

crystals of [Sr(NTA-H)(H2O)1.5]n appeared. The same procedure was used for the 

synthesis of compound 1b, using barium chloride dihydrate (0.976 g, 4 mmol). 1a: 

Yield: 87% (0.263 g). Anal calcd. for C6H10NO7.5Sr (mol wt. = 303.77): C; 23.72; H: 

3.32; N: 4.61. Found: C: 23.90; H: 3.02; N: 4.84.  IR (cm-1): 2985, 1665, 1630, 1395. 

1b: Yield: 84% (0.297 g). Anal calcd. for C6H10NO7.5Ba (mol wt. = 353.475): C; 

20.52; H: 2.72; N: 4.01. Found: C: 20.39; H: 2.85; N: 3.96.  IR (cm-1): 2988, 1660, 

1632, 1391. 
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2.2. Crystal structure determination 

Suitable crystals of [Sr(NTA-H)(H2O)1.5]n  (1a) and [Ba(NTA-H)(H2O)1.5]n (1b) 

were grown from water over a period of five to seven days at room temperature.[29] 

The single crystal data were collected on a Bruker Smart APEX system that uses 

molybdenum Kα radiation (λ = 0.71073 Å). No absorption correction was used. The 

structure was solved by direct method and refined by least square method on F2 

employing WinGx package[30] and the relevant programs (SHELXS[31] and 

SHELXL[31] and ORTEP[32] for windows) implemented therein. Non hydrogen atoms 

were refined anisotropically and hydrogen atoms on carbon atoms and nitrogen atoms 

could be located in Fourier difference map and refined by mixed method. 

 

3. Theoretical study 

The molecular structures of Sr and Ba crystals were extracted from the 

experimental crystallographic data presented in this article.[29] Single point 

computations were carried out on the simplified models of the extended crystal 

structures (2a, 2b, 3a and 3b in supporting information) without geometry 

optimization to better reflect the characteristics of 1a and 1b. All single point 

calculations were done using Gaussian 09 program package.[33] The B3LYP[34] 

functional was used for single point calculations employing 6-31G(d,p)[35] basis set 

for C, N, O and H atoms and def2-TZVP[36] basis set with corresponding quasi-

relativistic pseudopotentials[37] for Sr and Ba atoms. Natural bond orbital (NBO)[38] 

analysis was performed at the same level of theory as implemented in Gaussian 09. 

Electron density analysis was done with Multiwfn software package.[39] For electron 

density analysis the wave functions were generated at B3LYP/6-31G(d,p)/def2-TZVP 

level of theory using Gaussian 09. CDFT based reactivity descriptors are employed to 

analyze the stability and reactivity of these clusters. Several electronic properties like 

ionization potential (IP), electron affinity (EA), electronegativity (χ),[40] hardness 

(η)[41] and electrophilicity (ω)[42] were calculated for these systems using the 

Koopmans’ theorem[43] as follows: 

IP = – EHOMO         (1) 

EA = – ELUMO         (2) 
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where EHOMO and ELUMO are energies of the highest occupied molecular orbital 

(HOMO) and the lowest unoccupied molecular orbital (LUMO), respectively. 

η = (IP – EA)          (3) 

χ = (IP + EA)/2         (4) 

ω = χ2/2η         (5) 

To understand the Ng adsorption capability of the studied crystals, Ng atom 

was placed inside the framework and optimized, keeping the framework frozen. The 

optimizations were performed in Turbomole 6.5 software package[44] using B3LYP 

functional employing def2-SVP[45] basis set and the corresponding auxiliary basis set 

for all the atoms. For Sr and Ba the effective core potentials[37] were taken into 

account for all the related structures. Empirical dispersion correction (D3)[46] with BJ 

dumping[47] was included in all optimization. Restricted approach was used in the 

computational analysis for the closed shell structures. The dynamics of the Ne@3a 

and Ne@3b systems were evaluated using ab initio molecular dynamics, atom-

centered density matrix propagation (ADMP)[48] technique as implemented in 

Gaussian 09. The dynamics were studied at the B3LYP-D/LanL2DZ level with the 

above mentioned geometries. Boltzmann distribution was used to generate the initial 

nuclear kinetic energies of the systems. The temperature was maintained by using a 

velocity scaling thermostat throughout the simulation. For each of the system, 

simulation was carried out separately at 298 K and 77 K. Default random number 

generator seed was used, as implemented in Gaussian 09 to initiate the initial mass 

weighted Cartesian velocity. For all the cases, trajectories up to 500 fs were 

generated. 

 

4. Results and discussion 

The complexes are synthesized by a reaction of SrCl2⋅6H2O or BaCl2⋅2H2O and 

monosodium salt of nitrilotriacetic acid (Na[H2NTA]) in water, in high yield. The 

compounds are characterized by elemental analyses and spectroscopic studies as well 

as single crystal X-ray diffraction studies. The elemental analyses agree well with the 

composition. FT-IR spectrum of the compound shows a strong band at 1630 cm-1 

which is characteristic C=O stretching frequency and observed strong bands at 1665 

and 1395 cm-1 characteristic of coordinated COO– stretching frequencies. In addition, 

a band at 2986 arises for N-H stretching. 
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4.1. Crystal structure 

Since the complexes, [Sr(NTA-H)(H2O)1.5]n (1a) and [Ba(NTA-H)(H2O)1.5]n 

(1b) are isostructural, only the details of the structural features of [Sr(NTA-

H)(H2O)1.5]n have been described. The ORTEP drawing of the asymmetric unit of 1a 

and 1b is shown in Figures 1a and 1b. 

The complex crystallizes in monoclinic space group C2/c. The asymmetric 

unit of [Sr(NTA-H)(H2O)1.5]n consists of one strontium atom coordinated to one 

oxygen, O1, of NTA-H ligand and two water oxygens O1W with full occupancy and 

O2W, with half occupancy (Figure 1a). 

In the full structure, the strontium ion is nine coordinated and is coordinated to 

five NTA-H ligands and two water oxygens. Two carboxylate groups of two different 

NTA-H ligands bind the strontium center in a bidentate fashion through O1 and O2 of 

one ligand and O5 and O6 of another ligand. The other three carboxylate groups of 

NTA-H ligands bind the metal center in a monodentate fashion via O3, O4 and O7. In 

addition, the strontium center is coordinated to two water oxygens, O1W and O2W 

(Figure 2). Each NTA-H ligand binds five strontium atoms through five bridging 

carboxylate oxygens, O1, O2, O4, O5 and O6, out of which O1 and O6 bind two 

strontium ions in a µ2 fashion (Figure 3). Thus, in solid state the complex forms a 

polymeric compound. Previously, Barnett et al.[49] described similar infinite network 

in Na(CaNTA) where (CaNTA)− units are linked together by the Na+ ions and a 

formal charge on Ca in the complex is assumed to be close to +2. Lu et al.[50] reported 

3D coordination polymers having molecular formulas Na3[Cu2(NTA)2(4,4´-

bpy)]ClO4.5H2O and [Cu2(NTA)(4,4´-bpy)2]ClO4.4H2O. In 1a, each O1 oxygen binds 

two strontium centers whereas two carboxylate oxygens, O6, from two ligands bind 

two strontium atoms in µ2 fashion. Similarly, the water oxygen, O2W is bonded to 

two strontium atoms in a µ2 fashion. Thus, four Sr atoms form a rectangular ring of 

Sr4 units as evidenced by the observed ∠Sr1−Sr1− Sr1 angle, which is exactly 90° 

(Figure 4).  The rectangular Sr4 units are planar like cyclobutadiene as evidenced by 

the observed successive torsion angles, which were found to be zero (0) degree. In the 

Sr4 rectangular unit, one of the observed Sr–Sr distances is 4.022 Å and another Sr–Sr 

distance is 5.056 Å. 
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In solid state, each strontium atom forms a node joining four strontium ions 

and forms a 3D polymeric network extending along crystallographic a, b and c axes 

(Figure 5). The most interesting feature of the network is the formation of infinite 1D 

chain of planar rectangular Sr4 units. The polymeric Sr4 network is planar as 

evidenced by the observed angles between three adjacent Sr atoms in the chain are 

180 degree. This 1D chain grows along crystallographic b axis. There are three types 

of channels having average diameters, 7.5 Å, 6.6 Å and 6.3 Å.  

 

4.2. Bonding 

The crystal structures show that each metal site is coordinated with five NTA-

H ligands and two water molecules. These are shown in structures, 2a (having Sr as 

the metal) and 2b (having Ba as the metal). Both 2a and 2b have four Sr and Ba 

atoms, respectively, six water molecules and fourteen NTA-H ligands (Figures 6a and 

6b). The surface charges of the two acetate units originated from each NTA-H are 

passivated by adding hydrogen atoms. To understand the bonding pattern on the local 

sites of each metal atom, we have prepared two more structures 3a and 3b. In 3a 

(containing Sr, shown in Figure 7a) and 3b (containing Ba, shown in Figure 7b), each 

metal atom is surrounded by two water molecules and five NTA-H ligands. The 

surface charges are passivated by hydrogen atoms both in 3a and 3b. 

 

4.2.1. NBO Analysis 

Natural Population Analysis (NPA) shows that in the structure 2a, Sr atoms 

have the natural charges as 1.05, 1.07, 1.08 and 0.93 |e|. Therefore, the average 

natural charge on each Sr atom is 1.03 |e|. The oxygen atoms of η2 coordinated acetate 

units have -0.73, -0.73, -0.72 and -0.72 |e| natural charges for each Sr atom. The 

Wiberg bond indices (WBI)[51] for these Sr-O bonds are 0.15, 0.11, 0.14 and 0.10. The 

other oxygen atoms, which are directly coordinated to Sr atoms have the natural 

charges as -0.73, -0.73, -0.70 |e|. These Sr-O bonds show WBI values of 0.22, 0.22 

and 0.14. In 2a, N atoms have the natural charges ranging from -0.36 to -0.38 |e|. The 

water oxygen atoms for each Sr atoms show -0.92 and -0.98 |e| natural charges. WBI 

for Sr-O (water) bonds are 0.15 and 0.11. Similar charge distribution and WBI values 

like 2a are found in 3a. In 3a, the natural charge on Sr atom is 1.01 |e|. The oxygen 

atoms of η2 coordinated acetate units show natural charges ranging from -0.68 to -
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0.75 |e|. For these η2 coordinated Sr-O bonds, WBI values are in the range of 0.14-

0.17. The other oxygen atoms, which are coordinated to Sr atom, have the natural 

charges around -0.70 |e|. These Sr-O bonds show WBI values of 0.24, 0.23 and 0.22. 

Nitrogen atoms in 3a have the natural charges around -0.37 |e|. The water oxygens 

demonstrate NPA charges -0.96 and -0.95 |e|. WBI for Sr-O (water) bonds are 0.17 

and 0.16. Therefore, we can consider 3a as a smaller representation of 2a. In case of 

2b and 3b, similar trend of WBI values and charge distribution are observed.  

 

4.2.2. Reactivity Descriptors 
 
 We have compared the reactivity descriptors between 2a and 3a and between 

2b and 3b (see Table 1).  

 
Table 1. Electronic state (ES), ionization potential (IP), electron affinity (EA), 
hardness (η), electronegativity (χ) and electrophilicity index (ω) in eV of 2a, 2b, 3a 
and 3b structures. 
 

System ES IP EA η χ ω 
2a 1A 1.752 1.491 0.261 1.622 5.040 
2b 1A 1.204 0.949 0.255 1.077 2.273 
3a 1A 1.889 1.641 0.248 1.765 6.270 
3b 1A 1.214 0.913 0.301 1.064 1.881 

 
Inspection of the reactivity descriptors reveals that the values are almost similar for 2a 

and 3a. The same trend is found between 2b and 3b. All these geometries are in 1A 

electronic state. The IP and EA values have very small change between 2a and 3a, 

and also in between 2b and 3b. Similarly, the other reactivity parameters are almost 

similar. Therefore, we can consider the 3a and 3b as the smaller representation of 2a 

and 2b, respectively, where all the signatures for reactivity and bonding patterns are 

preserved.  

 

4.2.3. Electron Density Analysis 

An idea about the nature of bonding in 3a and 3b can be obtained from the 

analysis of the electron density. In AIM[52] formalism, the authentication of bonding is 

through the existence of a bond path between two atoms and a bond-critical point 

(BCP) associated with the path. The topological parameters obtained at the bond 

critical point (BCP) in between Sr-O and Ba-O bonds are provided in Table 2. 
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Negative value of Laplacian of electron density (∇2ρ(rc)) at the BCP indicates the 

accumulation of electron density, whereas positive value indicates electron density 

depletion at the BCP.[52] Hence, a negative value of ∇2ρ(rc) represents covalent 

interaction and a positive value describes non-covalent interaction. Thus, all the Sr-O 

bonds in 3a and Ba-O bonds in 3b are of non-covalent type as per this analysis, 

because ∇2ρ(rc) are positive in all the BCPs. Low electron density (ρ(rc)) also 

indicates the non-covalent nature. However, Macchi et al. have argued that for the 

systems comprising heavy atoms, ∇2ρ(rc) is not an efficient descriptor on its own.[53] 

There are also many failures of ∇2ρ(rc) to describe correctly a bond involving even 

lighter atoms.[54,55] Therefore, other parameters like kinetic energy density (G(rc)), 

potential energy density (V(rc)), electron energy density (H(rc)) and the ratios -

G(rc)/V(rc) and G(rc)/ρ(rc) are also calculated to get further insight into the bonding 

nature in 3a and 3b. Cremer et al.[56] suggested that if ∇2ρ(rc) > 0 and H(rc) < 0, the 

bonding is partially of covalent type whereas H(rc) > 0 can be an indication of non-

covalent bonding. Further, if the value of -G(rc)/V(rc) remains in between 0.5 and 1 

then there exists some degree of covalent character (partial covalent character).[57] The 

ratio of G(rc)/ρ(rc) is also employed as an indicator of covalent bond.[53, 58, 59] 

Generally the value of G(rc)/ρ(rc) less than 1 indicates the presence of covalent 

bonding and more than 1 suggests non-covalent interactions. In case of 3a and 3b the 

Sr-O and Ba-O bonds show G(rc)/ρ(rc) values close to 1 and -G(rc)/V(rc) value is more 

than 1. Hence these Sr-O bonds in 3a and Ba-O bonds in 3b show non-covalent 

bonding induced by electrostatic interactions.  

Table 2. Electron density descriptors (au) at the bond critical points (BCP) in the 
coordination sphere of 3a and 3b obtained from the wave functions generated at 
B3LYP/6-31G(d,p)/def2-TZVP level of theory. 

BCP ρ(rc) ∇2ρ(rc) G(rc) V(rc) H(rc) -G(rc)/V(rc) G(rc)/ρ(rc) 

Sr-O (Water) 0.0263 0.1175 0.0262 -0.0230 0.0032 1.1374 0.9964 
Sr-O (Water) 0.0272 0.1292 0.0282 -0.0241 0.0041 1.1705 1.0344 

Sr-O (η2) 0.0138 0.0553 0.0124 -0.0109 0.0015 1.1356 0.8971 

Sr-O (η2) 0.0267 0.1114 0.0253 -0.0228 0.0025 1.1108 0.9481 

Sr-O (η2) 0.0196 0.0775 0.0176 -0.0158 0.0018 1.1130 0.8973 

Sr-O (η2) 0.0215 0.0843 0.0192 -0.0173 0.0019 1.1104 0.8918 
Sr-O (M-O) 0.0258 0.1087 0.0243 -0.0214 0.0029 1.1338 0.9420 
Sr-O (M-O) 0.0266 0.1235 0.0270 -0.0231 0.0039 1.1693 1.0129 
Sr-O (M-O) 0.0257 0.1156 0.0254 -0.0220 0.0035 1.1572 0.9888 
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Ba-O (Water) 0.0355 0.1230 0.0317 -0.0327 -0.0010 0.9697 0.8932 
Ba-O (Water) 0.0362 0.1274 0.0325 -0.0331 -0.0062 0.9813 0.8962 

Ba-O (η2) 0.0224 0.0785 0.0179 -0.0162 0.0017 1.1043 0.7996 

Ba-O (η2) 0.0192 0.0674 0.0154 -0.0140 0.0014 1.0997 0.8057 

Ba-O (η2) 0.0193 0.0684 0.0157 -0.0143 0.0014 1.0961 0.8137 

Ba-O (η2) 0.0257 0.0938 0.0217 -0.0199 0.0018 1.0891 0.8447 
Ba-O (M-O) 0.0253 0.0946 0.0212 -0.0188 0.0024 1.1276 0.8405 
Ba-O (M-O) 0.0268 0.1097 0.0243 -0.0212 0.0031 1.1470 0.9076 
Ba-O (M-O) 0.0238 0.0926 0.0206 -0.0181 0.0025 1.1392 0.8668 

 
5. Noble gas storage (He, Ne, Ar, Kr) 
 

To identify the plausible storage of Ng inside the structures 3a and 3b, we 

have considered a particular pore inside the crystal as a case study and have analyzed 

the interaction energy (ΔEint). The interaction energy is calculated following the 

equation,  

             ΔEint = ENg@x – (ENg + Ex)                (x = 3a or 3b)              (6) 

 

Negative value of ΔEint indicates that the presence of Ng inside the crystal 

stabilizes the system. Hence, from Table 3 we can say that only Ne shows stabilizing 

interaction with 3a and 3b. 

 

Table 3. Interaction energy (ΔEint) in kcal/mol between the noble gas (Ng) and crystal 
structures calculated at the B3LYP-D3(BJ)/def2-SVP level of theory.  
 

System ΔEint  System ΔEint  System ΔEint  System ΔEint 
He@3a 1.8  Ar@3a 29.1  He@3b 0.4  Ar@3b 14.9 
Ne@3a -1.8  Kr@3a 57.0  Ne@3b -5.4  Kr@3b 36.4 

 

 Helium shows small destabilizing interaction, whereas Ar and Kr show large 

destabilization on entrapment inside 3a and 3b. The size of pore seems to be 

responsible for this observation. The selective absorption of Ne atom further shows 

the applicability of these MOFs towards separation of Ne from a mixture of noble 

gases. It may also be noted that the pore is too small to entrap a diatomic molecule, 

even a H2 molecule. Therefore, the present MOFs can also separate Ne from a mixture 

with other gases. Though previously some studies reported the selective absorption of 

heavier Ng atoms,[Error! Bookmark not defined.
Error! Bookmark not defined.

-
Error! Bookmark not defined.

Error! Bookmark not defined.] with best of our 

knowledge no study is made so far on selective Ne absorption. Hence, the present 
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systems may find their importance in industry also. It may be noted that since here we 

have only optimized the Ng atoms keeping the crystal units frozen, the thermal effects 

and entropy contributions are not taken into account. 

To explore this result further we have performed ab initio molecular dynamics 

at 77 K and 298 K on Ne@3a and Ne@3b systems. The movies are supplied in the 

electronic supporting information file. Recent articles have shown that the gas storage 

capacity of cages and MOFs increases at 77 K.[60] Dynamics at 77 K show that in 

Ne@3a, the distance between Ne and Sr atoms becomes 4.001 Ǻ at the end of the 

simulation, which is slightly more than the initial Ne-Sr distance of 3.900 Ǻ. During 

the simulation Ne atom remains trapped in between three acetate units of 3a. At 298 

K simulation, after 500 fs the distance between Ne and Sr decreases to 3.240 Ǻ, and 

the crystal structures become somewhat distorted. In case of Ne@3b, molecular 

dynamics simulation at 77 K reveals that Ne atom comes closer to the central Ba atom 

gradually with time of simulation (at 0 and 500 fs the Ne-Ba distances are 4.008 Ǻ 

and 3.365 Ǻ, respectively). At 298 K, after 500 fs the distance between Ne and Ba 

atoms becomes 3.254 Ǻ. All the movies show that the Ne atoms are not going out of 

the crystal units, though distortions can be seen in some parts of the crystal units at 

higher temperatures. Evolution of reactivity descriptors with time is shown in Figure 

S1 (supporting information). These plots show that the values of η and χ gradually 

increase up to 200 fs and thereafter the regular fluctuations of η and χ begin. On the 

other hand, ω decreases rapidly and after 200 fs the regular oscillation starts. The 

fluctuations are more in case of 298 K than the corresponding 77 K cases as the 

nuclear kinetic energy is larger in former case than that in the latter. The energy 

versus time plot is given in Figure 8. As we have started with the crystal structures 

without optimization of the crystal units, the initial decrease in energy is due to the 

relaxation of the geometry during simulation. Moreover, after 200 fs we can see the 

regular fluctuation and oscillation of energy with the increase in time. The intact 

structure throughout the simulation at 77 K as well as at 298 K indicates the kinetic 

stability of the Ne@3a and Ne@3b systems. 

  

6. Conclusions 

We have synthesized new porous 3D metal-organic frameworks containing 

group 2 metals Sr and Ba as infinite chains of planar Srn and Ban rings. Each metal 

site in the crystals is coordinated with five protonated nitrilotriacetic acid ligands and 
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two water molecules. The metal atoms in the crystal carry a positive charge of around 

1.0 |e|. The bonding between the metal and oxygen atoms present in the coordination 

sphere of 3a and 3b is of non-covalent type and mostly originating from electrostatic 

interactions. The computation of interaction energy suggests that one Ne atom can be 

suitably trapped inside the pores of 3a and 3b through an attractive interaction. 

However, entrapment of other Ng atoms (He, Ar and Kr) are energetically 

unfavorable. Our ab initio molecular dynamics simulations suggest that Ne atom 

entrapment inside the crystals is kinetically favorable. The optimized geometries 

show that the Ne atom is situated inside the cavity made by protonated nitrilotriacetic 

acid ligands and the central metal atom. Since 3a and 3b are the smaller 

representations of the extended crystal structures, therefore it can be assumed that a 

number of Ne atoms can be accommodated inside the full crystal. The size of the pore 

inside the crystals is mostly responsible for the observed selectivity of Ne atoms over 

other noble gases. Therefore, the present crystals could potentially be useful as a filter 

to separate Ne from a gas mixture. 
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Figure Captions 
 
Figure 1. ORTEP view of the asymmetric unit of (a) [Sr(NTA-H)(H2O)1.5] (b) 
[Ba(NTA-H)(H2O)1.5]. 
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Figure 2. View of the coordination environment of strontium in [Sr(NTA-
H)(H2O)1.5]. Color code: Sr; green ball, O; red ball, N; light blue ball, C; gray ball. 
 
Figure 3. View of the bonding mode of the ligand with five strontium ions. Color 
code: Sr; green ball, O; red ball, N; light blue ball, C; gray ball. 

 
Figure 4. View of the four member Sr4 ring. Color code: Sr; green ball, O; red ball. 
 
Figure 5. Space fill model of the 3D network viewed along the crystallographic b 
axis. Color code: Sr; green, O; red, N; light blue, C; gray ball.  
 
Figure 6. Geometry of 2a (shown in a) and 2b (shown in b). Each metal center 
surrounded by five NTA-H ligands and 2 water molecules, as a total fourteen NTA-H 
and six water molecules. Hydrogen atoms are not shown for clarity. 
 
Figure 7. Geometry of 3a (shown in a) and 3b (shown in b). Each metal center is nine 
coordinated. Each metal center is surrounded by five NTA-H ligands and 2 water 
molecules. 
 
Figure 8. Time (in fs) evolution of energy (in au) for Ne@3a and Ne@3b.
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