35 research outputs found

    A universal model for predicting human migration under climate change: examining future sea level rise in Bangladesh

    Get PDF
    open4siopenDavis, Kyle Frankel; Bhattachan, Abinash; D’Odorico, Paolo; Suweis, SamirDavis, Kyle Frankel; Bhattachan, Abinash; D’Odorico, Paolo; Suweis, Sami

    Antarctica’s Dry Valleys: A potential source of soluble iron to the Southern Ocean?

    Get PDF
    The soluble iron content and dust emission potential of sediment samples collected from the Taylor Valley in the McMurdo Dry Valleys (MDVs) and sea ice in the McMurdo Sound were evaluated to determine whether inputs to the Southern Ocean may be sufficient to affect ocean productivity. Our results show that the dust-generating potential from the MDVs soils are comparable to those of sediments from other major dust sources in the Southern Hemisphere. Sediments from the MDVs and sea ice are one order of magnitude richer in soluble iron than those in other dust sources in the Southern Hemisphere. Forward trajectory analyses show that the dust from the MDVs is likely to be deposited in the Southern Ocean. These results provide evidence of the possible supply of soluble iron to the Southern Ocean associated with dust transport from the MDVs, should climate change expand the exposed areas of the continent

    Evaluating Ecohydrological Theories of Woody Root Distribution in the Kalahari

    Get PDF
    The contribution of savannas to global carbon storage is poorly understood, in part due to lack of knowledge of the amount of belowground biomass. In these ecosystems, the coexistence of woody and herbaceous life forms is often explained on the basis of belowground interactions among roots. However, the distribution of root biomass in savannas has seldom been investigated, and the dependence of root biomass on rainfall regime remains unclear, particularly for woody plants. Here we investigate patterns of belowground woody biomass along a rainfall gradient in the Kalahari of southern Africa, a region with consistent sandy soils. We test the hypotheses that (1) the root depth increases with mean annual precipitation (root optimality and plant hydrotropism hypothesis), and (2) the root-to-shoot ratio increases with decreasing mean annual rainfall (functional equilibrium hypothesis). Both hypotheses have been previously assessed for herbaceous vegetation using global root data sets. Our data do not support these hypotheses for the case of woody plants in savannas. We find that in the Kalahari, the root profiles of woody plants do not become deeper with increasing mean annual precipitation, whereas the root-to-shoot ratios decrease along a gradient of increasing aridity

    Can land use intensification in the Mallee, Australia increase the supply of soluble iron to the Southern Ocean?

    No full text
    The supply of soluble iron through atmospheric dust deposition limits the productivity of the Southern Ocean. In comparison to the Northern Hemisphere, the Southern Hemisphere exhibits low levels of dust activity. However, given their proximity to the Southern Ocean, dust emissions from continental sources in the Southern Hemisphere could have disproportionate impact on ocean productivity. Australia is the largest source of dust in the Southern Hemisphere and aeolian transport of dust has major ecological, economic and health implications. In the Mallee, agriculture is a major driver of dust emissions and dust storms that affect Southeastern Australia. In this study, we assess the dust generating potential of the sediment from the Mallee, analyze the sediment for soluble iron content and determine the likely depositional region of the emitted dust. Our results suggest that the Mallee sediments have comparable dust generating potential to other currently active dust sources in the Southern Hemisphere and the dust-sized fraction is rich in soluble iron. Forward trajectory analyses show that this dust will impact the Tasman Sea and the Australian section of the Southern Ocean. This iron-rich dust could stimulate ocean productivity in future as more areas are reactivated as a result of land-use and droughts

    TrajectoryFiles.zip

    No full text
    These are raw 168hour forward trajectory files used in the paper titled "Mapping areas of the Southern Ocean where productivity likely depends on dust delivered iron"<div><br></div><div>The "Analyses.zip" contains results used in the paper.</div

    Characterizing the Role of Wind and Dust in Traffic Accidents in California

    No full text
    Wind is a common ground transportation hazard. In arid regions, wind-blown dust is an added risk. Here, we analyzed the relationship between accidents and wind speed, dust events to study how they may have contributed to vehicular accidents in California. The California Highway Patrol reports information about weather conditions that potentially contributed to traffic accidents, including a code for wind but not for reduced visibility due to dust. For the three counties that contain the major dust source regions in California (the Mojave Desert and the Imperial Valley), we found greater daily maximum wind speed for days with accidents coded for wind compared to all days with accidents. The percentage of people injured in accidents attributed for weather other than wind and coded for wind were the same; however, the percentage of people who died in wind-related accidents was about double the deaths in accidents caused by weather other than wind. At ground meteorological stations closest to accidents, we found lower median minimum visibility for days with wind-related accidents compared to all days with accidents. Across the region, wind speed recorded at ground meteorological stations increased the probability of high satellite-derived dust optical depth values. Over the period of 2006 to 2016, the correlation between daily minimum visibility and daily maximum satellite-estimated dust optical depth was negative. Our analysis of the correlation between dust and accidents shows that with increased wind storm and dust-event frequency in the future, the risk of traffic incidents due to wind and dust could increase
    corecore