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Abstract The soluble iron content and dust emission potential of sediment samples collected from the
Taylor Valley in the McMurdo Dry Valleys (MDVs) and sea ice in the McMurdo Sound were evaluated to
determine whether inputs to the Southern Ocean may be sufficient to affect ocean productivity. Our
results show that the dust-generating potential from the MDVs soils are comparable to those of sediments
from other major dust sources in the Southern Hemisphere. Sediments from the MDVs and sea ice are
one order of magnitude richer in soluble iron than those in other dust sources in the Southern Hemisphere.
Forward trajectory analyses show that the dust from the MDVs is likely to be deposited in the Southern
Ocean. These results provide evidence of the possible supply of soluble iron to the Southern Ocean
associated with dust transport from the MDVs, should climate change expand the exposed areas of
the continent.

1. Introduction

Most dust emissions on Earth occur in the Northern Hemisphere, whereas in the Southern Hemisphere
the dust sources are fewer and not as prolific [Goudie and Middleton, 2006]. The lower atmospheric dust
concentrations in the Southern Hemisphere limit the supply of important micronutrients (e.g., iron) to
the Southern Ocean, thereby constraining its productivity [e.g., Martin, 1990; Jickells et al., 2005; Okin et al.,
2011]. This fact explains why the Southern Ocean exhibits high nutrient low chlorophyll (HNLC) regions. Iron
enrichment studies confirm that the productivity of HNLC waters of the Southern Ocean is indeed limited
by iron [Boyd et al., 2000]. Sources of iron to the Southern Ocean include dust [Jickells et al., 2005; Cassar et al.,
2007], upwelling [Tagliabue et al., 2010], and subglacial meltwater [Death et al., 2014]. Increased delivery of
iron-rich dust during glacial maxima has been invoked to explain periods of enhanced Southern Ocean
productivity and the consequent fluctuations in atmospheric CO2 concentrations during glacial-interglacial
transitions [Martin, 1990; Harrison et al., 2001]. Because the current deposition flux of soluble iron in dust to
the Southern Ocean is low [e.g., Okin et al., 2011], an emergence of new dust sources in the Southern
Hemisphere can affect ocean biogeochemical cycles and this could have large-scale implications to carbon
cycling. Presently, the supply of soluble iron through the mineral dust in sea ice accounts for only 5% of the
total productivity of the Southern Ocean [e.g., Edwards and Sedwick, 2001], but enhanced dust emissions from
Antarctica could have an important impact on the productivity of downwind HNLC ocean regions. To this
end, in this study we investigate the extent to which dust from the sediments of the McMurdo Dry Valleys
(MDVs) of Antarctica could increase in the future and contribute to the supply of micronutrients (in the form
of soluble iron) to the Southern Ocean.

The MDVs are the largest (~4800 km2) ice-free area on Antarctica [Doran et al., 2002]. The abundance of
source material (mostly derived frommoraines deposited by an ice sheet that entered the MDVs during the
Last Glacial Maximum) coupled with wind speeds that exceed the threshold for entrainment makes this
region the dustiest in Antarctica [Chewings et al., 2014]. Climate change studies indicate that temperatures
over Antarctica are expected to increase in the coming decades [Shindell and Schmidt, 2004; Bromwich
et al., 2013]. Some areas of West Antarctica have shown measurable ice mass loss and thinning, especially
in coastal regions [Rignot et al., 2008; Joughin and Alley, 2011; Mouginot et al., 2014]. It is estimated that
between 1957 and 2006, the air temperature in Antarctica has increased on average by 0.12°C per decade,
with West Antarctica warming at a slightly higher rate (0.17°C per decade) [Steig et al., 2009; Bromwich
et al., 2013].
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While a number of authors have identified the sources of the dust reaching Antarctica [e.g., Basile et al., 1997;
Revel-Rolland et al., 2006; Gassó et al., 2010], fewer studies have investigated the modern dust flux from
Antarctica.Malin [1991] provided the first estimate of long-term aeolian sediment flux, while Lancaster [2002]
later measured dust fluxes within the MDVs. Atkins and Dunbar [2009] stressed how the potential amount
of dust from Antarctica could fertilize the Southern Ocean, though more recently the significance of these
dust fluxes has been challenged [Chewings et al., 2014]. The soluble iron content in the dust from the MDVs,
however, remains poorly quantified, and it is unclear whether dust emissions from the exposed surfaces
in the MDVs can reach the HNLC waters of the Southern Ocean. To this end, we use a laboratory dust
generator to assess the potential of the exposed sediments to be dust sources and compare it to other
currently active dust sources in the Southern Hemisphere. We also estimate the soluble iron content in
aeolian sediments from the MDVs and sediment under the sea ice and use trajectory analyses to determine
the footprint of the deposition of dust from the MDV.

2. Methods
2.1. Study Sites

Soil samples from the MDVs were collected in the Taylor Valley (77°37′S, 163°00′E) in the dry edges of Lake
Fryxell and Lake Bonney (Figure 1). Three replicates from each of these sites were sampled in 2008 from
the top 10 cm of the exposed soil surface. Lake regions within the MDVs are ideal for sampling because
there is a large grain size range in a relatively small area and fine particles are prone to aeolian erosion
and entrainment in the airflow. A subsample of soil from the Taylor Valley was run through a particle size
analyzer (LS 13 320, Beckmann-Coulter) to calculate grain size distribution. Seafloor sediment samples from
Explorers Cove at the mouth of the Taylor Valley were from cores taken by divers beneath the multiyear
sea ice (Figure 1 and Table 1). Two samples from the surface of the sea ice were also sampled, as was a
seafloor core sample from ~16 km north of Explorers Cove (Figure 1 and Table 1).

2.2. Dust Generator Experiment

Samples of sediment susceptible to aeolian transport (i.e., only sediments from the Taylor Valley sites) were
analyzed for dust emitting potential using a laboratory dust generator (Custom Products, Big Spring, TX). For each

Figure 1. Study sites in theTaylor Valley, McMurdo Dry Valleys (LB: Lake Bonney; LF: Lake Fryxell). The sea floor sediments were
sampled in cores taken at Explorers Cove, 20m beneath the surface (#9). Two samples (#8) are windblown sediment collected
on the top of the sea ice. Samples from other locations (3, 4, 6, and 7) are from the uppermost 4 cm of short cores of the
seafloor (20m deep from the surface) underneath the multiyear sea ice.
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run, 1 g of air-dried sediment was
used for each sample and placed in
a sealed tube that rotates about a
horizontal axis at the speed of
13 rpm. An air pump draws air from
the tube to a settling chamber at
a rate of 0.014m3 s�1. Thus, the
dust produced by the impact of the
sediment with the bottom of the
rotating tube (and the consequent
breakup of aggregates) is
transported to the settling chamber,
where dust concentrations are
measured using an aerosol
spectrometer (Grimm, Model 1.108)
which provides real time readings

(a reading each 6 s) of particle counts per volume for different size classes (0.3 and 20μm in diameter). In this
studywe focus on the finer soil fractions (<10μm). For each sample, the dust generator was run for 11min, and it
was observed that it took about a minute for the readings to reach a steady state. Particle counts per volume
were then converted to concentrations (mgm�3) [see Bhattachan et al., 2012]. The dust concentrations for the
size classes between 0.3 and 10μmwere integrated to determine the PM10 values (concentration of particulate
matter less than 10μm) and divided by the mass of the sample in order to present the dust concentrations
as PM10 per unit mass of the sediment sample (Figure 2).

2.3. Soluble Iron

Soil from the Taylor Valley sites, i.e., Lake Bonney Lake Fryxell, and sediment on the surface of multiyear
sea ice at the mouth of the Taylor Valley were analyzed for soluble ferrous ion, Fe(II) because Fe(II) is
considered the most bioavailable form of iron. For each sample, 0.25 g of sediment was soaked in 10mL
of 0.5MHCl, shaken for an hour, and then filtered to eliminate particulate matter. The pH of the aliquot was
increased to 5.5 with an acetate buffer. Then, 0.1M ferrozinewas added to the solution tomeasure Fe(II) content
spectrophotometrically using a Shimadzu® 4100 UV photospectrometer at 562 nm [Stookey, 1970; Zhu

et al., 1997]. A standard stock solution
(1000mg/L) of ammonium iron (II)
sulfate was prepared in 0.5MHCl and was
diluted with varying concentrations (0,
0.5, 1, 3, 5, 10, 20, and 50mg/L) to create
the calibration curve.

2.4. Forward Trajectory Analysis

To test the aeolian deposition patterns
of dust emitted from the study region,
we used a trajectory model (HYSPLIT,
Hybrid Single-Particle Lagrangian
Integrated Trajectory [Draxler and Rolph,
2003]) to calculate the terminal points of
7 day forward trajectories of air parcels
originating from the Taylor Valley. The
model calculates the trajectories using
the Global Data Assimilation System
1 data set between the years 2010
and 2013. The model was set up to
run forward trajectories starting daily
at 5 UTC with a starting altitude of 500m
above sea level.

Table 1. Soluble Iron Content (mg/g) of Sediments From the Taylor Valley, the
Shallow Sea Floor, and Sea Ice (Figure 1, From Lakes Bonney (n=3) and Fryxell
(n=3) the Seafloor Underneath Multiyear Sea Ice (3 (n=3), 4 (n=5), 6 (n=3), 7
(n=3), and 9 (n=5)) and the Sea Ice Surface (8 (Two Samples Without Replicates)))a

Site (Figure 1) Fe(II) (mg/g) Clay (%) Silt (%)

Lake Bonney (LB) 1.36 ± 0.07 1.04 ± 0.07 2.28 ± 0.70
Lake Fryxell (LB) 1.51 ± 0.18 1.60 ± 0.48 3.57 ± 1.13
9 1.55 ± 0.01
3 1.55 ± 0.005
7 1.56 ± 0.01
4 1.55 ± 0.01
6 1.53 ± 0.03
8 1.55
8 1.56

aThe grain size distribution was calculated for a subsample of the soil
collected from Lakes Bonney and Fryxell.
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Figure 2. The average PM10 concentration per unit mass (mgm�3 g�1)
of the sediments from the Taylor Valley in McMurdo Dry Valleys with
±1 standard deviation. The average PM10 concentration per unit mass
of Lake Fryxell and Lake Bonney soils were 60.03 mgm�3 g�1 and
38.26 mgm�3 g�1, respectively. The PM10 concentration per unit mass
of sediments from the Makgadikgadi Pan, Etosha Pan, and Mallee
are calculated following the same parameters in the dust generator
[Bhattachan and D’Odorico, 2014].

Geophysical Research Letters 10.1002/2015GL063419

BHATTACHAN ET AL. ©2015. American Geophysical Union. All Rights Reserved. 3



3. Results

The average clay and silt percent
for soil samples from the MDVs of
Antarctica is 1.04 ± 0.07, 2.28 ± 0.70
for Lake Bonney and 1.60 ± 0.48,
3.57 ± 1.13 for Lake Fryxell (Table 1).
We use PM10 measurements (per unit
sample mass) from the dust generator
as indicators of the dust emission
potential of each sediment sample. To
evaluate the relative importance of the
dust generation potential of sources
from the MDVs of Antarctica and other
active dust sources in the Southern
Hemisphere, we compare the PM10

values obtained for samples from
the MDVs with those from Australia,
Namibia, and Botswana [Bhattachan
and D’Odorico, 2014] (Figure 2). The
PM10 concentration per unit mass
(mgm�3 g�1) of sediments from the
MDVs is comparable to the potential

for dust emission from the agricultural fields in the Mallee region of Australia and slightly lower than those
determined for the Makgadikgadi and Etosha saltpans in Southern Africa (Figure 2). The forward trajectory
analysis with the HYSPLIT model shows the deposition footprint, expressed as the probabilities that dust
from the MDVs is deposited in each of the cells of the 5° by 5° grid used by HYSPLIT (Figure 3). The deposition
is largely in the Ross Sea and the Pacific section of the Southern Ocean.

Soil sampled from other Southern Hemisphere dust sources have Fe(II) content of 0.51 ± 0.18mg/g in
the Mallee (Australia), 0.17 ± 0.21mg/g in the Makgadikgadi Pan (Botswana), and 0.13 ± 0.06mg/g in the
Etosha Pan (Namibia) [Bhattachan and D’Odorico, 2014]. Sediments from the Lake Fryxell and Lake Bonney
areas of the McMurdo Dry Valleys of Antarctica exhibited a much higher bioavailable iron (Fe(II)) content
of 1.51±0.18 and 1.36±0.07mg/g compared to these currently active dust sources in the Southern Hemisphere
(Table 1). Similarly, the soluble iron (Fe(II)) content of sea ice sediments and subsea ice sediments was found
to be about 1.55mg/g, consistently across all sites (Table 1).

4. Discussion

These results show that the potential for dust emissions from sediments collected in the Taylor Valley
within the MDVs is of the same order of magnitude as that of sediments from the Mallee region of Australia
and slightly smaller than those of currently active dust sources in Southern Africa (Figure 2). We stress that
the dust concentrations measured within the settling chamber of the dust generator are not an actual
measurement of the dust concentrations as these measurements do not account for the intensity of the
wind forcing nor the state of the surface (e.g., percent cover of nonerodible elements). Rather, the dust
generator provides a standardized measurement of the ability of soils to generate dust [e.g., Gill et al.,
2006]. By comparing values obtained on different sediment samples from different regions of the world
it is possible to rank them on the basis of the amount of dust they can generate. This device has been used
on soil samples from various dust sources around the world [e.g., Singer et al., 2003; Bhattachan et al., 2012;
Bhattachan and D’Odorico, 2014].

Lancaster [2002] reported that the aeolian sediment flux in the MDVs is lower than those from warm deserts.
The relatively low dust emission rates in Antarctica are overall not surprising if we consider that the mean
annual wind speeds are moderate (about 5m s�1) [e.g., Doran et al., 2002], and the saltation events in this
area occur at low temperatures in the range of �40°C to +5°C [Gillies et al., 2013]. Other studies have shown
that in the Taylor Valley, maximum wind speeds of 30m s�1 are reported [e.g., Doran et al., 2002]; however,

Figure 3. The deposition footprint of the 7 day forward trajectory from a
site in Taylor Valley, McMurdo Dry Valleys.
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Gillies et al. [2013] found that maximum wind speeds did not exceed 25m s�1. Although soils in Antarctica are
generally cemented by ice and sometimes covered by a crust [Doran et al., 2002], a warming of +0.5°C h�1

in spring and summer was observed as a precursor to initiate saltation [Gillies et al., 2013]. However, during the
winter months, wind gusts can often exceed 37m s�1 [e.g., Nylen et al., 2004], and the occurrence of a dry
and ice-free top part of the soil profile associated with hyperaridity may favor saltation and aeolian transport
[Gillies et al., 2013]. Several studies predict a possible poleward shift and strengthening of the Southern
Hemisphere westerlies that encircle Antarctica [e.g., Kushner et al., 2001; Yin, 2005]; however, the simulated
surface winds over Antarctica show only small changes over the 21st century [e.g., Bintanja et al., 2014]. We
show that soil samples from the Lake Fryxell and Lake Bonney areas in the MDVs showed values of dust
yield potential similar to those of other (warmer) dust sources in the Southern Hemisphere (Figure 2). Even
though in the global context the actual dust emissions from soils in the MDVs are smaller than those from
other dust sources in the Southern Hemisphere, the deposition of dust fromAntarctica is likely to have a greater
impact on the biogeochemistry of the Southern Ocean [Jickells et al., 2005] both because of the proximity of
these dust sources and their relatively high soluble iron content (Table 1).

For dust emissions from the study region to contribute to the fertilization and increase in productivity
of the Southern Ocean, this dust will have to be transported by winds to HNLC zones of the ocean. Our
forward trajectory analysis shows that the likely deposition footprint of the dust from the MDVs is the Ross
Sea and the Pacific Ocean sector of the Southern Ocean (Figure 3). Although this analysis does not actually
estimate the amount of dust and/or soluble iron that will be deposited and made available for ocean
fertilization, it gives an indication of the region potentially affected by emissions from the MDVs and their
likely transport pathway.

Cassar et al. [2007] outlined fivemechanisms for soluble iron to reach waters of the Southern Ocean; however,
the determination of the transport pathways of iron carried by dust from the MDVs to the Southern Ocean
needs further investigation. Based on our trajectory analysis and the current knowledge of ocean current
patterns, we propose two main mechanisms for transport of soluble iron from the MDVs to the ocean:

4.1. Direct Aeolian Transport From the MDVs to the Southern Ocean

Wehypothesize that dust from theMDVs will be carried to the Southern Ocean during intense wind events. The
production of fine particles via aeolian abrasion during saltation is also likely and diminishes over time as the
fines are blown away and a deflated surface made of nonerodible clasts starts to armor the underlying fines.
The particle size analysis shows that the sediments in the MDVs are richer in silt than in clay (Table 1). This is
consistent with grain size of till in the lower Taylor Valley which consists of ~ 7% silt and clay, primarily silt
size with typically only 0.1% clay size [Miller et al., 2015]. Sediment blown from the Taylor Valley onto the sea ice
up to 8 to 9 km from shore has an even smaller fraction of silt and clay (<2% silt and clay, nearly all silt size)
[Miller et al., 2015]. The paucity of silt and clay size sediment suggests that the fine components (clay and silt)
were either transported farther out to sea or the fine particles can be held down by armoring at their source
in the Taylor Valley [e.g., Campbell et al., 1998]. However, there is no definite support for either mechanism
in the literature. Hence, if the direct transport to the Southern Ocean mechanism is the dominant one, our
hypothesis of stronger dust emissions from the MDVs during intense wind events will be supported.

4.2. Aeolian Transport and Deposition of MDV Sediments Onto Sea Ice

We hypothesize that aeolian transport from the MDVs and deposition onto sea ice that eventually melts is
the second mechanism by which soluble iron is transported to the ocean. It is important to note that the
source of iron in sea ice is atmospheric dust [e.g., Martin, 1990], from both local and distant sources, or
sediments sourced from aeolian sediments in the MDVs that are deposited to the sea ice. In our study,
we have estimated the soluble iron content of sediments collected from the underlying seafloor and from
the surface of the multiyear sea ice; we have shown that these sediments are indeed rich in soluble iron
(Table 1). In a recent study, Chewings et al. [2014] found that the McMurdo Ice Shelf debris bands (south of the
MDVs) are the largest source of sediment entrained in annual snow on the sea ice within McMurdo Sound
with potential contributions to sea floor sedimentation [e.g., Atkins and Dunbar, 2009] and supply of soluble
iron to the Ross Sea [e.g., Edwards and Sedwick, 2001; Arrigo and van Dijken, 2004]. Although the extent
of increased productivity of the Southern Ocean by exposure of the sediment in the debris bands is not
explored in this study, we show that the sediment collected from the multiyear sea ice sourced from the
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moraines in the Taylor Valley is rich in soluble iron and the melting of sea ice is expected to contribute iron
to the Southern Ocean. We argue that the sea ice sediment may be carried farther away from the continent,
as little is known about where the sea ice travels before melting. We notice that previous studies have
evaluated the contribution of bioavailable iron from melting of sea ice in the Ross Sea [e.g., Sedwick and
DiTullio, 1997] and established the close link between sea ice retreat and increased productivity [e.g., Arrigo
and van Dijken, 2004].

5. Conclusions

Our results show that the dust-generating potential of the MDVs soil is comparable to that of other dust
sources in the Southern Hemisphere and the emitted dust is likely deposited in the Ross Sea and the
Southern Ocean. Furthermore, we analyzed the sediments under the sea ice for soluble iron and found
that the sediment on the surface and under the multiyear sea ice is rich in soluble iron. These sediments
could also contribute to ocean productivity, though the relative importance of this source of bioavailable
iron (compared to aeolian dust) is not explored in this study. Finally, it is unclear at what rate changes
in regional climate could enhance the aeolian activity in the MDVs and turn them into a potentially important
dust source. The rate of warming in the second half of the twentieth century has been high in Antarctica
[e.g., Vaughan et al., 2003]. Previous research suggests that an intensification of Southern Hemisphere
winds [e.g., Yin, 2005], and a positive Southern Annular Mode trend would increase the frequency of windy
days in the summer and also the days with average temperature greater than 0°C which could lead to
greater melting and thawing in the MDVs [e.g., Speirs et al., 2013]. Thus, we expect that increased wind
speed and temperature might enhance dust emissions and the increased flux of iron-rich dust to the
Southern Ocean could impact its productivity.

References
Arrigo, K. R., and G. L. van Dijken (2004), Annual changes in sea-ice, chlorophyll a, and primary production in the Ross Sea, Antarctica,

Deep Sea Res. Part II, 51(1), 117–138.
Atkins, C., and G. Dunbar (2009), Aeolian sediment flux from sea ice into Southern McMurdo Sound, Antarctica, Global Planet. Change, 69(3),

133–141.
Basile, I., F. E. Grousset, M. Revel, J. R. Petit, P. E. Biscaye, and N. I. Barkov (1997), Patagonian origin of glacial dust deposited in East Antarctica

(Vostok and Dome C) during glacial stages 2, 4 and 6, Earth Planet. Sci. Lett., 146(3), 573–589.
Bhattachan, A., and P. D’Odorico (2014), Can land use intensification in the Mallee, Australia increase the supply of soluble iron to the

Southern Ocean?, Sci. Rep., 4, doi:10.1038/srep06009.
Bhattachan, A., P. D’Odorico, M. C. Baddock, T. M. Zobeck, G. S. Okin, and N. Cassar (2012), The Southern Kalahari: A potential new dust source

in the Southern Hemisphere?, Environ. Res. Lett., 7(2), 7, doi:10.1088/1748-9326/7/2/024001.
Bintanja, R., C. Severijns, R. Haarsma, and W. Hazeleger (2014), The future of Antarctica’s surface winds simulated by a high-resolution global

climate model: 2. Drivers of 21st century changes, J. Geophys. Res. Atmos., 119, 7160–7178, doi:10.1002/2013JD020848.
Boyd, P. W., A. J. Watson, C. S. Law, E. R. Abraham, T. Trull, R. Murdoch, D. C. Bakker, A. R. Bowie, K. Buesseler, and H. Chang (2000), A mesoscale

phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization, Nature, 407(6805), 695–702.
Bromwich, D. H., J. P. Nicolas, A. J. Monaghan, M. A. Lazzara, L. M. Keller, G. A. Weidner, and A. B. Wilson (2013), Central West Antarctica among

the most rapidly warming regions on Earth, Nat. Geosci., 6(2), 139–145.
Campbell, I. B., G. G. C. Claridge, D. I. Campbell, and M. R. Balks (1998), The soil environment of the Mcmurdo Dry Valleys, Antarctica, in Ecosystem

Dynamics in a Polar Desert: The Mcmurdo Dry Valleys, Antarctica, edited by J. C. Priscu, AGU, Washington, D. C., doi:10.1029/AR072p0297.
Cassar, N., M. L. Bender, B. A. Barnett, S. Fan, W. J. Moxim, H. Levy, and B. Tilbrook (2007), The Southern Ocean biological response to Aeolian

iron deposition, Science, 317(5841), 1067–1070, doi:10.1126/science.1144602.
Chewings, J. M., C. B. Atkins, G. B. Dunbar, and N. R. Golledge (2014), Aeolian sediment transport and deposition in a modern high-latitude

glacial marine environment, Sedimentology, 61, 1535–1557, doi:10.1111/sed.12108.
Death, R., J. Wadham, F. Monteiro, A. Le Brocq, M. Tranter, A. Ridgwell, S. Dutkiewicz, and R. Raiswell (2014), Antarctic Ice Sheet fertilises the

Southern Ocean, Biogeosciences, 11, 2635–2643, doi:10.5194/bg-11-2635-2014.
Doran, P. T., C. P. McKay, G. D. Clow, G. L. Dana, A. G. Fountain, T. Nylen, and W. B. Lyons (2002), Valley floor climate observations from the

McMurdo Dry Valleys, Antarctica, 1986–2000, J. Geophys. Res., 107(D24), 4772, doi:10.1029/2001JD002045.
Draxler, R. R., and G. D. Rolph, (2003), HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) Model, NOAA Air Resources

Laboratory, Silver Spring, Md. [Available at www.arl.noaa.gov/ready/hysplit4.html.]
Edwards, R., and P. Sedwick (2001), Iron in East Antarctic snow: Implications for atmospheric iron deposition and algal production in Antarctic

waters, Geophys. Res. Lett., 28(20), 3907–3910, doi:10.1029/2001GL012867.
Gassó, S., A. Stein, F. Marino, E. Castellano, R. Udisti, and J. Ceratto (2010), A combined observational and modeling approach to study

modern dust transport from the Patagonia desert to East Antarctica, Atmos. Chem. Phys., 10(17), 8287–8303.
Gill, T. E., T. M. Zobeck, and J. E. Stout (2006), Technologies for laboratory generation of dust from geological materials, J. Hazard. Mater., 132,

1–13.
Gillies, J. A., W. G. Nickling, and M. Tilson (2013), Frequency, magnitude, and characteristics of aeolian sediment transport: McMurdo Dry

Valleys, Antarctica, J. Geophys. Res. Earth Surf., 118, 461–479, doi:10.1002/jgrf.20007.
Goudie, A., and N. Middleton (2006), Desert Dust in the Global System, Springer, Heidelberg.
Harrison, S. P., K. E. Kohfeld, C. Roelandt, and T. Claquin (2001), The role of dust in climate changes today, at the last glacial maximum and in

the future, Earth Sci. Rev., 54(1), 43–80.

Geophysical Research Letters 10.1002/2015GL063419

BHATTACHAN ET AL. ©2015. American Geophysical Union. All Rights Reserved. 6

Acknowledgments
We would like to thank Ross A. Virginia
for providing us soil samples from the
Taylor Valley. The analysis of sediment
from sea ice and Explorers Cove was
supported by the National Science
Foundation through grant ANT-0739496
toMolly M. Miller. L. Wang acknowledges
partial support from NSF (IIA-1427642)
and USDA (2014-51130-22492). P.D. was
partly funded by NSF grant EAR 1147545.
We gratefully acknowledge the NOAA
Air Resources Laboratory (ARL) for the
provision of the HYSPLIT transport and
dispersion model and/or READY website
(www.arl.noaa.gov/ready.php) used in
this publication. We are grateful to Ted
M. Zobeck for sharing with us the design
of his dust generator and providing
useful advice. We are also grateful to
Jack A. Gillies and an anonymous
reviewer for their thoughtful and
thorough review of our work.

The Editor thanks John Gillies and an
anonymous reviewer for their assistance
in evaluating this paper.

http://dx.doi.org/10.1038/srep06009
http://dx.doi.org/10.1088/1748-9326/7/2/024001
http://dx.doi.org/10.1002/2013JD020848
http://dx.doi.org/10.1029/AR072p0297
http://dx.doi.org/10.1126/science.1144602
http://dx.doi.org/10.1111/sed.12108
http://dx.doi.org/10.5194/bg-11-2635-2014
http://dx.doi.org/10.1029/2001JD002045
www.arl.noaa.gov/ready/hysplit4.html
http://dx.doi.org/10.1029/2001GL012867
http://dx.doi.org/10.1002/jgrf.20007
http://www.arl.noaa.gov/ready.php


Jickells, T. D., et al. (2005), Global iron connections between desert dust, ocean biogeochemistry, and climate, Science, 308(5718), 67–71,
doi:10.1126/science.1105959.

Joughin, I., and R. B. Alley (2011), Stability of the West Antarctic ice sheet in a warming world, Nat. Geosci., 4(8), 506–513.
Kushner, P. J., I. M. Held, and T. L. Delworth (2001), Southern Hemisphere atmospheric circulation response to global warming, J. Clim., 14(10),

2238–2249.
Lancaster, N. (2002), Flux of eolian sediment in the McMurdo Dry Valleys, Antarctica: A preliminary assessment, Arct. Antarct. Alp. Res., 34,

318–323.
Malin, M. (1991), Short term variations in the rate of eolian processes, southern Victoria Land, Antarctica, Antarct. J. USA, 26(5), 27–29.
Martin, J. H. (1990), Glacial-interglacial CO2 change: The iron hypothesis, Paleoceanography, 5(1), 1–13, doi:10.1029/PA005i001p00001.
Miller, M. F., Z. Fan, and S. S. Bowser (2015), Sediments beneath multi-year sea ice: Delivery by deltaic and aeolian processes, J. Sediment. Res.,

doi:10.2110/jsr.2015.20.
Mouginot, J., E. Rignot, and B. Scheuchl (2014), Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica,

from 1973 to 2013, Geophys. Res. Lett., 41, 1576–1584, doi:10.1002/2013GL059069.
Nylen, T. H., A. G. Fountain, and P. T. Doran (2004), Climatology of katabatic winds in the McMurdo dry valleys, southern Victoria Land,

Antarctica, J. Geophys. Res., 109, D03114, doi:10.1029/2003JD003937.
Okin, G. S., A. R. Baker, I. Tegen, N. M. Mahowald, F. J. Dentener, R. A. Duce, J. N. Galloway, K. Hunter, M. Kanakidou, and N. Kubilay (2011),

Impacts of atmospheric nutrient deposition on marine productivity: Roles of nitrogen, phosphorus, and iron, Global Biogeochem. Cycles,
25, GB2022, doi:10.1029/2010GB003858.

Revel-Rolland, M., P. De Deckker, B. Delmonte, P. Hesse, J. Magee, I. Basile-Doelsch, F. Grousset, and D. Bosch (2006), Eastern Australia: A
possible source of dust in East Antarctica interglacial ice, Earth Planet. Sci. Lett., 249(1), 1–13.

Rignot, E., J. L. Bamber, M. R. Van Den Broeke, C. Davis, Y. Li, W. J. Van De Berg, and E. Van Meijgaard (2008), Recent Antarctic ice mass loss from
radar interferometry and regional climate modelling, Nat. Geosci., 1(2), 106–110.

Sedwick, P. N., and G. R. DiTullio (1997), Regulation of algal blooms in Antarctic Shelf Waters by the release of iron from melting sea ice,
Geophys. Res. Lett., 24(20), 2515–2518, doi:10.1029/97GL02596.

Shindell, D. T., and G. A. Schmidt (2004), Southern Hemisphere climate response to ozone changes and greenhouse gas increases, Geophys.
Res. Lett., 31, L18209, doi:10.1029/2004GL020724.

Singer, A., T. Zobeck, L. Poberezsky, and E. Argaman (2003), The PM10 and PM2.5 dust generation potential of soils/sediments in the Southern
Aral Sea Basin, Uzbekistan, J. Arid Envion., 54, 705–728.

Speirs, J. C., H. A. McGowan, D. F. Steinhoff, and D. H. Bromwich (2013), Regional climate variability driven by foehn winds in theMcMurdo Dry
Valleys, Antarctica, Int. J. Climatol., 33(4), 945–958.

Steig, E. J., D. P. Schneider, S. D. Rutherford, M. E. Mann, J. C. Comiso, and D. T. Shindell (2009), Warming of the Antarctic ice-sheet surface
since the 1957 International Geophysical Year, Nature, 457(7228), 459–462.

Stookey, L. L. (1970), Ferrozine—A new spectrophotometric reagent for Iron, Anal. Chem., 42(7), 779–781, doi:10.1021/ac60289a016.
Tagliabue, A., et al. (2010), Hydrothermal contribution to the oceanic dissolved iron inventory, Nat. Geosci., 3(4), 252–256, doi:10.1038/

ngeo818.
Vaughan, D. G., G. J. Marshall, W. M. Connolley, C. Parkinson, R. Mulvaney, D. A. Hodgson, J. C. King, C. J. Pudsey, and J. Turner (2003), Recent

rapid regional climate warming on the Antarctic Peninsula, Clim. Change, 60(3), 243–274.
Yin, J. H. (2005), A consistent poleward shift of the storm tracks in simulations of 21st century climate, Geophys. Res. Lett, 32, L18701,

doi:10.1029/2005GL023684.
Zhu, X. R., J. M. Prospero, and F. J. Millero (1997), Diel variability of soluble Fe(II) and soluble total Fe in North African dust in the trade winds at

Barbados, J. Geophys. Res., 102(D17), 21,297–21,305, doi:10.1029/97JD01313.

Geophysical Research Letters 10.1002/2015GL063419

BHATTACHAN ET AL. ©2015. American Geophysical Union. All Rights Reserved. 7

http://dx.doi.org/10.1126/science.1105959
http://dx.doi.org/10.1029/PA005i001p00001
http://dx.doi.org/10.2110/jsr.2015.20
http://dx.doi.org/10.1002/2013GL059069
http://dx.doi.org/10.1029/2003JD003937
http://dx.doi.org/10.1029/2010GB003858
http://dx.doi.org/10.1029/97GL02596
http://dx.doi.org/10.1029/2004GL020724
http://dx.doi.org/10.1021/ac60289a016
http://dx.doi.org/10.1038/ngeo818
http://dx.doi.org/10.1038/ngeo818
http://dx.doi.org/10.1029/2005GL023684
http://dx.doi.org/10.1029/97JD01313


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




