1,721 research outputs found

    Disruption to the Skills Ecosystem of India in the Wake of the New Normal Emerging Post ‘COVID-19’

    Get PDF
    Every new scenario that has unfolded in the canvas of time has brought with it,an impetusforsociety’s progress. In this perspective, the COVID-19 pandemic, (believed to be caused by an organismof 65-125 nm) has dramatically churned the times we are into today. Businesses, Economies and systems worldwide are undergoing unprecedented dynamic changes towards ‘Adaptability’ and adoption of newer models that could increase their pace of recovery in the wake of the new normal. The Skills ecosystem in India has been no different. Ever since the inception of the Skill India movement in the early 2015, this system has evolved into a vibrant integrated mission encompassing both Academic and vocational skill training courses.In this article we present to you what has been trending in the world of IT/ITeS skills and how the new normal is expected to emerge and progress from here

    Estimating global warming potential for agricultural landscapes with minimal field data and cost

    Get PDF
    Greenhouse gas (GHG) emissions from agriculture comprise 10-12% of anthropocentric global emissions; and 76% of the agricultural emissions are generated in the developing world. Landscape GHG accounting is an effective way to efficiently develop baseline emissions and appropriate mitigation approaches. In a 9,736-hectare case study area dominated by rice and wheat in the Karnal district of Haryana state, India, the authors used a low-cost landscape agricultural GHG accounting method with limited fieldwork, remote sensing, and biogeochemical modeling. We used the DeNitrification-DeComposition (DNDC) model software to simulate crop growth and carbon and nitrogen cycling to estimate net GHG emissions, with information based on the mapping of cropping patterns over time using multi- resolution and multi-temporal optical remote sensing imagery. We estimated a mean net emission of 78,620 tCO2e/yr (tons of carbon dioxide equivalents per year) with a 95% confidence interval of 51,212-106,028 tCO2e/yr based on uncertainties in our crop mapping and soil data. A modeling sensitivity analysis showed soil clay fraction, soil organic carbon fraction, soil density, and nitrogen amendments to be among the most sensitive factors, and therefore critical to capture in field surveys. We recommend a multi-phase approach to increase efficiency and reduce cost in GHG accounting. Field campaigns and aspects of remote sensing image characteristics can be optimized for targeted landscapes through solid background research. An appropriate modeling approach can be selected based on crop and soil characteristics. Soil data in developing world landscapes remain a significant source of uncertainty for studies like these and should remain a key research and data development effort

    Microwave-Assisted Ruthenium Trichloride-Catalyzed Synthesis of Pyrrole Fused With Indole System in Water

    Get PDF
    A simple and efficient microwave-induced ruthenium trichloride-catalyzed synthesis of pyrrole fused with indole system in water is developed by reacting commercially available isatin and 4-hydroxyproline

    Effect of Graded Levels of Condensed Tannin (CT) from \u3cem\u3eMimosa pudica\u3c/em\u3e on \u3cem\u3ein-Vitro\u3c/em\u3e Methane Production

    Get PDF
    Livestock in the country are primarily being fed on fibrous feed resulted in high enteric methane (CH4) emission along with low nutrients availability to host animal. Rumen methano genesis is necessary for the host system as this process ensure the removal of fermentative H2 through the reduction of CO2 into CH4. At the same time this process is wasteful because the emission also represents a loss of dietary energy (6-12% of gross energy intake) apart from contributing to global warming. Worldwide livestock contribute around 90-95 Tg methane to the pool with a contribution of 12-13% from the Indian livestock. Various nutritional and other approaches have been attempted with highly variable success rate in the country and elsewhere for the enteric methane amelioration. The cost of the item used for the mitigation purpose, adaptation of ruminal microbes and toxicity to either host animal or inhabiting microbes are few important criteria for an economic, sustainable and effective amelioration approach (Malik et al. 2015). Herbal materials are being used by the peoples since ages; however, their anti-methanogenic effect is recently established. The anti-methanogenic effect of different herbal materials mainly lies in their secondary metabolites which are highly effective even at very low concentration (Bhatta et al., 2014). Keeping these facts in view, a study was carried to ascertain the effect of varying levels of CT on in vitro total gas and methane production

    Oxidation mechanism in metal nanoclusters: Zn nanoclusters to ZnO hollow nanoclusters

    Full text link
    Zn nanoclusters (NCs) are deposited by Low-energy cluster beam deposition technique. The mechanism of oxidation is studied by analysing their compositional and morphological evolution over a long span of time (three years) due to exposure to ambient atmosphere. It is concluded that the mechanism proceeds in two steps. In the first step, the shell of ZnO forms over Zn NCs rapidly up to certain limiting thickness: with in few days -- depending upon the size -- Zn NCs are converted to Zn-ZnO (core-shell), Zn-void-ZnO, or hollow ZnO type NCs. Bigger than ~15 nm become Zn-ZnO (core-shell) type: among them, NCs above ~25 nm could able to retain their initial geometrical shapes (namely triangular, hexagonal, rectangular and rhombohedral), but ~25 to 15 nm size NCs become irregular or distorted geometrical shapes. NCs between ~15 to 5 nm become Zn-void-ZnO type, and smaller than ~5 nm become ZnO hollow sphere type i.e. ZnO hollow NCs. In the second step, all Zn-void-ZnO and Zn-ZnO (core-shell) structures are converted to hollow ZnO NCs in a slow and gradual process, and the mechanism of conversion proceeds through expansion in size by incorporating ZnO monomers inside the shell. The observed oxidation behaviour of NCs is compared with theory of Cabrera - Mott on low-temperature oxidation of metal.Comment: 9 pages, 8 figure

    Effect of Selected Tanniniferous Leaves on \u3cem\u3ein Vivo\u3c/em\u3e Enteric Methane Emission in Sheep

    Get PDF
    Concentration of methane is continuously increasing in atmosphere and now almost 155% (IPCC, 2007) more than that recorded during pre-industrial era. Livestock production is a major sector accountable for high methane emission into atmospheric pool. World’s livestock is contributing around 15% of total atmospheric methane on annual basis feeds (Moss et al., 2000). Additionally, methane emission from ruminants leads to a loss of 2 to 15% of the dietary energy (Holter and Young, 1992). Due to these two crucial issues, researchers are working tirelessly to find a suitable and effective way for enteric methane amelioration accompanied with minimal inputs. So far numerous interventions have been tried with variable results, but due to one or another reason the search for effective strategy is on the priority of animal scientist. One of the possible approaches for enteric methane amelioration may be the use of plant secondary metabolites which are being traditionally used by the people since ages. Under the ICAR sponsored outreach project on Estimation of methane emission under different feeding systems and development of mitigation strategies more than 1700 feed, herbs and grasses samples were screened through in vitro gas production technique at different participating centres and finally selected few plant & herbs for evaluating the secondary metabolites on in vivo enteric methane emission. Three selected tanniniferous leaves were evaluated for their effect on enteric methane emission and feed fermentability in adult sheep

    CCAFS site atlas – Mid-Western Terrai / Rupandehi

    Get PDF
    CCAFS site atlas for Mid-Western Terrai / Rupandehi, Nepal
    • …
    corecore