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Abstract  

Greenhouse gas (GHG) emissions from agriculture comprise 10-12% of anthropocentric global 

emissions; and 76% of the agricultural emissions are generated in the developing world. 

Landscape GHG accounting is an effective way to efficiently develop baseline emissions and 

appropriate mitigation approaches. In a 9,736-hectare case study area dominated by rice and 

wheat in the Karnal district of Haryana state, India, the authors used a low-cost landscape 

agricultural GHG accounting method with limited fieldwork, remote sensing, and 

biogeochemical modeling. We used the DeNitrification-DeComposition (DNDC) model 

software to simulate crop growth and carbon and nitrogen cycling to estimate net GHG 

emissions, with information based on the mapping of cropping patterns over time using multi-

resolution and multi-temporal optical remote sensing imagery. We estimated a mean net 

emission of 78,620 tCO2e/yr (tons of carbon dioxide equivalents per year) with a 95% 

confidence interval of 51,212-106,028 tCO2e/yr based on uncertainties in our crop mapping and 

soil data. A modeling sensitivity analysis showed soil clay fraction, soil organic carbon 

fraction, soil density, and nitrogen amendments to be among the most sensitive factors, and 

therefore critical to capture in field surveys. We recommend a multi-phase approach to increase 

efficiency and reduce cost in GHG accounting. Field campaigns and aspects of remote sensing 

image characteristics can be optimized for targeted landscapes through solid background 

research. An appropriate modeling approach can be selected based on crop and soil 

characteristics. Soil data in developing world landscapes remain a significant source of 

uncertainty for studies like these and should remain a key research and data development effort. 

Keywords 

Greenhouse gas accounting; Biogeochemical modeling; Remote sensing; Geographic 

Information Systems; Low emissions development; Climate change mitigation 
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1. Introduction 

The global agricultural sector contributes 10-12% to annual anthropocentric greenhouse gas 

(GHG) emissions (Metz et al. 2007), and 76% of agricultural emissions are generated in the 

developing world, defined as Non-annex 1 countries under the United Nations Framework 

Convention on Climate Change (UNFCCC) (WRI 2014). Emissions measurement and 

accounting are necessary to develop appropriate GHG mitigation practices; landscape-level 

GHG accounting offers particular advantages in that landscape-level accounting assesses a 

specifically defined geographic area and reports on a defined set of emissions (Walker et al. 

2014). Landscape accounting is advantageous both in terms of reducing relative costs and 

assessing the ecological flows from one part of a landscape to another (Milne et al. 2013). 

Significant challenges to acquiring the necessary data for GHG accounting currently exist in 

the developing world. Precise data on emissions are often lacking or of poor spatial 

resolution; collection of field data, particularly GHG emissions data, tends to be expensive 

and time consuming. Intergovernmental Panel on Climate Change (IPCC) emission factors 

can be used, but they often have significant associated uncertainty, such as stated uncertainty 

ranges and the applicability of factors, which may not have been developed for the landscape 

in question. As an alternative, process-based biogeochemical models (PBMs) provide an 

inexpensive way to estimate agricultural emissions and crop yields, particularly when 

combined with field data (on crop management and spatial patterns), ancillary inputs data 

(e.g. climate and soils), and crop maps based on remote sensing. PBMs can also evaluate 

mitigation options without performing costly additional field experiments. 

In this paper, we describe an approach to landscape-level GHG estimation using a 

combination of limited field work and mapping of agricultural systems via remote sensing. 

We use freely available data in combination with a freely available process-based 

biogeochemical model. While it has been argued that field measurement of GHG emissions is 

necessary for the success of landscape-level accounting (Milne et al. 2013) and we do not 

disagree, the reality is that field measurements are cost-prohibitive for many quantification 

efforts.  
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In this study, we used a robust and well-parameterized agro-ecological model, the De-

Nitrification-De-Composition model (DNDC) (Li and Frolking 1992, Li et al., 1994, Li 2001; 

DNDC 2014 available online at http://www.dndc.sr.unh.edu). We provide a case-study in a 

developing-world landscape dominated by smallholder agriculture. For illustrative purposes, 

we include a model sensitivity analysis to demonstrate how field data collection could be 

targeted. In addition, we provide recommendations for future work based on lessons learned 

at our case study site and others like it. 

2. Case Study: Greenhouse gas accounting in Karnal, India 

This case study illustrates our approach to combining field work, remote sensing, and 

biogeochemical modeling for GHG quantification. The Karnal, India site is approximately an 

11.5km x 11.5km region (~9,736 hectares), centered at latitude 29.80 and longitude 76.94. 

Soils are loamy with moderate clay and organic matter content. The principal summer crop 

(July-October) is rice. The principal autumn-winter crop (November-April) is wheat. Other 

autumn-winter crops include berseem clover, mustard, and vegetables (all of which are grown 

in rotation with rice). The spring season is usually fallow, though sometimes vegetables are 

planted. 

2.1. Methods 

2.1.1. Field data 

Field data collection informed both GHG simulations and remote sensing work. Crop 

management data and locational data on crop rotations were collected for both image 

calibration and validation. Our field data collection consisted of a priori, off-site expert 

interviews and documents review, expert (farmer) on-site interviews, sampling scheme 

development, and photographic sampling. Field work occurred February 15-18, 2013.  

We utilized information from Karnal household surveys (Singh 2013), in coordination with 

agronomists (for example, through personal communications with M.L. Jat of the 

International Maize and Wheat Improvement Center, CIMMYT), and interviews with local 

experts (knowledgeable farmers). We surveyed 50 farmers with relatively large farms (>0.5 

ha) across 21 villages, to account for geographic heterogeneity. We stratified our selection of 
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farmers by existing crop rotation category, approximately as follows: 70% rice-wheat, 20% 

rice-non-wheat, 10% vegetables and other non-rice crops. From each farmer, we collected 

crop management and yield information (crop types, plant and harvest dates, fertilizer and 

organic amendment applications, and tillage regimes). Since crop management variability was 

low, we created a consistent set of crop management parameters augmented using ancillary 

data (Department of Agriculture and Cooperation 2013, IRRI 2013, Gathala et al. 2013). Crop 

management was verified via expert review (personal communication with P.K. Aggarwal of 

CCAFS).  

Based on information from local experts, we selected ground truth points from which to 

collect photographs. We took 96 photographs of relatively homogeneous fields across all 

rotation types (continuous rice-wheat, rice-non-wheat, and other non-rice crops). 

2.1.2. GHG simulations 

DNDC was used to simulate crop growth and yield, carbon (C) and nitrogen (N) cycling, N 

leaching, and GHG emissions for the predominant rotations (rice-wheat, rice-mustard, rice-

berseem, rice-vegetables). Emissions were calculated for the cropping years 2010-2012. 

We ran DNDC for an 18 years-simulation to ensure that soil organic carbon (SOC) pools were 

in approximate equilibrium. The first 15 years were the SOC initialization phase (1995-2009). 

The last three years allowed for and captured climatic variability and were the summary 

timeframe (2010-2012). We assumed consistent management throughout the 18-year time 

period. 

Daily meteorological data (maximum and minimum temperature in °C and precipitation in 

centimeters for 1995 through 2012) were derived from the NASA Modern Era Retrospective-

Analysis for Research and Applications dataset (MERRA), extracted from the University of 

New Hampshire Earth Systems Atlas website (NASA 2010). To estimate nitrogen deposition, 

we used data from the Oak Ridge National Laboratory Distributed Active Archive Center for 

Biogeochemical Dynamics. To derive mean N deposition for this site, we calculated a year-

weighted average from the Global Maps of Atmospheric Deposition datasets (1993 estimated 

and 2050 predicted; Dentener 2006) to derive a 2010-2012 average. 

Soil characteristics were extracted from the Harmonized World Soils Database (HWSD; 

FAO/IIASA/ISRIC/ISSCAS/JRC 2009). We used top-soil attributes for clay fraction (a proxy 
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for soil texture), bulk density, soil organic carbon fraction, and pH. HWSD is effectively 

geographic information systems (GIS) polygon data. Within each soil polygon, there are one 

or more soil types (HWSD ID)–the fraction of each soil type within each polygon is reported, 

however, the specific location of each soil type is not reported. We used soil types as the base 

modeling unit for this simulation. Model outputs were aggregated via area-weighting of soil 

types. 

Crop management information was provided by CCAFS staff (Gopal Bhatta, Pramod 

Aggarwal personal communication) and integrated into a database processed via DNDC. To 

simulate biomass production accurately, DNDC requires precise calibration of all crop 

parameters. We used an iterative process to calibrate crop timing (duration to maturity), water 

requirements, and yield. Duration to crop maturity is based on total degree days (TDD) from 

the planting date. Degree days, as used by DNDC, accumulate on any day where the mean 

temperature meets or exceeds 10°C (i.e. a day with a mean temperature of 11°C would have 

11 degree days). To estimate the TDD parameter, we calculated the sum of degree days 

between plant date and maturity date; we assumed that most producers harvested shortly after 

grain maturity and so set maturity dates to one week prior to harvest date (or drainage date in 

the case of rice). We selected the minimum TDD value over the 2010-2012 period to allow 

the crop to mature in all years. 

We next calibrated crop growth based on mean yield as reported by CCAFS staff (Gopal 

Bhatta, unpublished data). We set the maximum biomass parameter based on mean reported 

grain yield, corrected for standard moisture content, and carbon content of 40% in all cases 

(Changsheng Li, personal communication). We simulated crop growth using actual fertilizer 

amounts and actual irrigation. Using this approach, modeled mean-annual yields were within 

10% of reported yields. 

We also calculated indirect (downstream) nitrous oxide (N2O) emissions using IPCC emission 

factors (Nevinson 2000) and DNDC-modeled leaching and ammonia and nitric oxide 

emissions as: 

N2Oi = ((NH3 + NO) * 0.01) + (Nleach * 0.015) 

We calculated total N2O emissions as direct plus indirect emissions: 

N2Ot = N2Od + N2Oi 
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For each of the above, we calculated a three-year annual mean based on the results from 2010, 

2011 and 2012. 

Global warming potential (GWP) was calculated using IPCC factors (Forster et al., 2007) as 

follows: 

dSOCgwp = dSOC * -1.0 * 44.0 / 12.0 where dSOC is the SOC sequestration rate 

CH4gwp = CH4* 16.0 / 12.0 * 21.0 

N2Otgwp = N2Od* 44.0 / 28.0 * 310.0 

The overall global warming potential rate was calculated as: 

GWP = dSOCgwp + CH4gwp + N2Otgwp 

For each site, to derive a single set of rates for each attribute, we calculated the following: 

rateawm = ∑ratei*weighti 

where, 

rateawm = the area-weighted mean rate 

ratei = ith rate in a set of rates 

weighti = ith weight in a corresponding set of area-weights, calculated as: 

soil polygon fraction of site * soil type fraction of polygon 

2.1.3. Remote sensing 

In Karnal, the objective of the remote sensing was to map the different crop rotations (e.g., 

winter wheat, fallow in spring, summer rice) for the area. It was important to use imagery 

from as few cropping years as possible to minimize the errors due to land use changes (such 

as urban development, changes in crop rotations). The seasonal crop maps were combined 

into crop rotation maps that were used to calculate total GHG emissions. 

Based on the field surveys and crop management information, we classified the study region 

into as many different types of crop rotations classes as was possible with the imagery. Using 

atmospherically corrected surface reflectance (using the 6S atmospheric model) of the 

resulting clusters in combination with information from field photos, all pixels within a 
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cluster were assigned to a land-use class (i.e., wheat, berseem clover, mustard, vegetables, 

rice) depending on the season. 

The crop year was divided into three seasons and appropriately timed satellite data were 

identified to provide information about the crop types during that period. Algorithms (see 

below) were employed to segment the image by the Season 1 crops (wheat, berseem clover, 

mustard, or vegetables), Season 2 crops (vegetables or other), and the Season 3 crops (rice or 

other). 

For each cropping year and season, scenes from Landsat were identified. The imagery used is 

summarized in Table 1. A cloud-free Rapid Eye image was acquired for the site in February 

2012. The image provided estimated reflectance at a five-meter spatial resolution in five 

spectral bands (blue, green, red, red-edge, and near infrared). The image was ortho-rectified 

and used to identify agricultural areas. 

Table 1: Classification of data and remote sensing imagery used to 

identify presence or absence of individual crops at times when they are 

likely to be visible by remote sensing 

Date (Year-DOY) Sensor Classes 

Season 1 (November 15 – April 15) 

2011-01 RapidEye urban, forest, fallow, berseem, mustard, wheat, 

vegetables 

Season 2 (April 15 – June 15) 

2011-143 Landsat 7 fallow, vegetables 

2011-151 Landsat 5 fallow, vegetables 

Season 3 (June 15 – October 15) 

2011-263 Landsat 5 fallow, rice 

2011-271 Landsat 7 fallow, rice 

 

For the winter season, a random forest classifier (Scikit-learn 2013) was used with the training 

polygons provided by ground truth, along with some added training sets to identify urban, 

forest, river, and other non-agricultural areas. A random forest classifier utilizes several 

decision-tree classifiers on multiple subsets of the data and averages the results. The 

implementation used was from the open-source python library ‘scikits.’ 
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For the spring season, a NDVI (Normalized Difference Vegetation Index) (Rouse et al. 1973) 

threshold was used to identify green pixels in the agricultural areas, which were taken to be 

growing vegetables. A threshold was determined visually to obtain the best coverage of the 

non-fallow areas as determined by the visual interpretation. 

For the summer season, an LSWI (Land Surface Water Index) (Chandrasekar et al. 2010) 

threshold was used in conjunction with the NDVI to identify areas that could be visually 

determined to be like water. The river regions (and other non-agricultural regions) were then 

masked out to generate a map of likely rice paddies. 

There was some ambiguity due to the small field sizes (typically 15 x 15 m and sometimes as 

small as 5 x 5 m) and highly heterogeneous nature of the landscape. At this scale, nearly all of 

the 30 m Landsat pixels contain mixed information from multiple farm fields. Even the 5 m 

RapidEye data frequently contained mixed information, making estimate of error difficult. 

Agricultural area accounted for 82.2 % of total land; the rest consists of urban, suburban, and 

forested regions. The makeup of crop rotations within the agricultural land is shown in Table 

2. Using the multiple crop rotation maps, the average land cover for each class was 

determined, along with a standard deviation, as shown in Table 2. 

Table 2: Crop rotation land cover 

Season % of Agricultural Land 

Season 1 Season 2 Season 3 Mean Std Dev 

Wheat - Rice 74.1 % 1.3 % 

Berseem 

clover 

- Rice 11.0 % 0.3 % 

Mustard - Rice 4.8% 0.1 % 

Winter Veg Summer Veg Rice 3.8 % 0.1 % 

Winter Veg Summer Veg - 0.5 % 0.1 % 

Wheat - - 4.0 % 1.3 % 

Berseem 

clover 

- - 1.1 % 0.3 % 

Mustard - - 0.6 % 0.1 % 
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2.1.4. Uncertainty qualification  

Every classification approach has some amount of uncertainty. However, due to the lack of 

training data for the spring and summer seasons, uncertainty estimates could not be made 

based on ground-truthed data. Since there were multiple scenes for each of the spring and 

summer seasons, multiple classifications resulted. These multiple rotation maps were used as 

an indication of the uncertainty due to temporal differences, such as un-modeled atmospheric 

variables. The low error levels demonstrate there is a high agreement across multiple 

observations. 

The authors estimate that a likely source of error is unknown temporal differences that cannot 

be measured from a single observation. Multiple observations were used for both the spring 

and summer seasons. When all the scenes (one for winter, two for spring, two for summer) 

were combined to generate crop rotation classes, four possible combinations result. Pixels 

with a clear and certain crop will have that class in most of the maps. Areas with mixed and 

uncertain classes will be classified differently in each classified map. 

Each classification map was assigned the appropriate emissions in kgCO2e/ha, and the 

resulting ensemble was considered to follow a normal distribution. The mean and standard 

deviation of the sum of each map resulted in the total emissions for the region, with error 

bounds. This was divided by the total area of agricultural land to determine the emissions per 

hectare. 

To calculate the total amount of error, the combined weighted variance was calculated from 

all modeled sources of error. For the Karnal case study, this included the variance due to 

unknown soil types as well as the variance in total population of each crop rotation. If there 

were additional modeled sources of error, these could easily be included in the weighted sum 

of the variances. 
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2.2. Results  

DNDC model results by crop rotation are provided on a per hectare and regional basis below.  

Table 3: Global warming potential rates 

  % of Ag. Yield GWP (kgCO2e/ha/y) 

Scenario area (kgDM/ha/y) dSOC CH4 N2O total GWP Soil σ 

rice-wheat 74.2% 8,336 630 7,878 1,937 10,445 1,806 

rice-berseem clover 11.0% 14,594 899 6,805 3,098 10,802 1,729 

rice-mustard 4.8% 5,707 796 7,466 2,537 10,799 1,847 

wheat 4.1% 4,190 230 -13 366 584 133 

rice-vegetables 3.8% 14,831 692 3,173 3,919 7,784 888 

Berseem clover 1.1% 15,179 370 -11 1,793 2,152 381 

mustard 0.6% 1,456 375 -11 446 810 176 

winter veg.- summer veg. 0.5% 10,785 356 -10 2,671 3,018 412 

 
Table 4: Global warming potential totals  

  Ag. Area Ag. σ GWP (tonnes CO2eq) 

Scenario (ha) Total GWP Soil σ Class σ Total σ 

rice-wheat 5,940 127 62,042 10,728 1,322 10,809 

rice-berseem clover 881 29 9,521 1,524 316 1,557 

rice-mustard 388 14 4,188 716 147 731 

wheat 325 126 189 43 73 85 

rice-vegetables 301 14 2,345 268 106 288 

Berseem clover 86 29 185 33 63 71 

mustard 47 14 38 8 11 14 

win. veg.-sum. veg. 37 14 111 15 41 44 

Total 8,005  78,620 13,335 2,079 13,598 

 

Methane emissions were the dominant source of GHG emissions for the crop rotations with 

rice. Differences in modeled emission for crops grown on the same soils and climate 

conditions were driven by crop residue conditions and management. The rice-wheat, rice-

mustard and rice-berseem clover rotations had significantly higher methane emissions than 

the rice-vegetable rotations. Our field surveys indicated that crop residues were burned, thus 

we assumed that 95% of aboveground crop residues were removed at harvest. Despite low 

litter additions to soil C, high modeled methane (CH4) emissions for the rice-wheat, rice-

mustard and rice-berseem rotations were due to anaerobic decomposition during the rice 

cropping season of high residue root biomass following harvests of wheat, berseem clover, 

and mustard crop.  
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Results indicate a loss of SOC from all cropping systems. The losses ranged from 230 to 899 

kgCO2e/ha with higher SOC losses in the rice rotation systems. This was due to anaerobic 

decomposition and increased soil disturbance due to more intense tillage under the multiple 

crop rotations. Loss of SOC accounted for 8% of the total GHG emissions. Nitrous oxide 

emissions varied from less than 1 kg N-N2O/ha/yr to around 8 kg N-N2O/ha/yr. Variability 

was largely due to differences in nitrogen fertilizer application rates. Total N2O emissions 

accounted for 24% of the GHG emissions. 

The agricultural area in Karnal (~8,005 hectares) showed mean GHG emissions of 9.8 

tCO2e/ha/yr. Accounting for uncertainty in the crop rotation maps and soil condition at a 95% 

confidence interval leads to a range of 6.4-13.2 tCO2e/ha. Therefore, over the entire site the 

net emissions from agriculture were estimated to be 78,620 tCO2e/yr with a 95% confidence 

interval of 51,212-106,028 tCO2e. The rice-wheat, rice-berseem clover, and rice-mustard 

rotations were the dominant sources of GHG emissions in Karnal. The rice-wheat system 

accounted for almost 75% of the cropland area and accounted for 79% of the total greenhouse 

gas emissions. The rice-berseem clover and rice-mustard rotations accounted for 

approximately 12% and 5% of total emissions, respectively.  

Soil conditions were the major source of modeled uncertainty and were largely driven by 

DNDC sensitivity to soil texture and SOC on net methane and nitrous oxide emissions. 
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3. Sensitivity analysis 

Uncertainty in model simulations is at least partially determined by sensitivity to model 

inputs. To capture variability in emissions accurately, a certain level of precision is required 

for each input. To streamline the collection and prioritization of model inputs (field work and 

background research) it is critical to know which parameters are most influential (and, 

conversely, which variables have little to no effect). As a way to illustrate issues of model 

sensitivity to inputs, using the Karnal site as a basis for geography and crop management, we 

varied several input parameters, including soil attributes, crop timing, organic inputs, and 

fertilizer N rates,  and analyzed the model results. 

The Karnal site has one major rotation (rice-wheat; 85% of agricultural area) and three other 

common rotations (rice-berseem clover, rice-mustard, and rice-vegetables; 4%, 4%, and 8% 

of agricultural area respectively; Gopal Bhatta, unpublished data). Other single-crop rotations 

are uncommon (berseem clover, mustard, wheat, and vegetables). The Karnal site is 

dominated by rice, but to demonstrate DNDC’s sensitivity to inputs for upland crop systems, 

we also looked at crop rotations where rice was replaced with maize. There are significant 

differences between the combined annual GWP for crop rotations at Karnal; notably however, 

there are some rotations that are not statistically different (e.g., rice-wheat, rice-berseem 

clover, and rice-mustard are not distinguishable via t-test, p<0.01, see Fig. 1), suggesting that 

remote sensing analyses could be simplified to focus on distinguishing only rotations with 

different GWP profiles. Given the similarities in the emissions profiles for the common 

rotations, we look only at the dominant system (rice-wheat) and its upland proxy (maize-

wheat) for subsequent analyses. 

We looked at the effects of varying each of the four key soil inputs to DNDC (clay fraction, 

SOC, bulk density, and pH) on GWP. To test each soil attribute, we looked at the low (90% of 

mean) and high (110% of mean) values for each attribute while keeping all other attributes 

constant.  

High clay soils showed suppressed GWP from reduced CH4 emissions: gas transport through 

heavier soils is reduced, which increases CH4 residence time in the soil and thus attenuates 

emissions through larger relative methanotrophy and adsorption of dissolved organic carbon 

(DOC). This is a similar finding to elsewhere in Asian rice systems: Li et al. (2004) found that 
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CO2, CH4, and N2O emissions (and hence net GWP) were inversely proportionate to clay 

fraction in rice-winter wheat rotations in China and Babu et al. (2006) found that CH4 was 

moderately inversely proportional to the clay fraction in Indian rice crop rotations. 

As SOC increased, CO2, CH4, and N2O emissions increased due to expanded microbial 

biomass. This, in turn, enhanced decomposition (CO2 emissions) and methanogenesis (CH4 

emissions) and increased soil N mineralization (N2O emissions) over the timeframe of the 

simulation. CO2 and N2O vary substantially and CH4 varies moderately proportionally with 

soil SOC in rice-wheat rotations in China (Li et al. 2004). CH4 varies moderately with 

increasing pH in Indian rice crop rotations (Babu et al. 2006).  

Bulk density and pH had only marginal effects on rice-wheat GWP. However, bulk density 

had a notable effect on maize-wheat GWP.  

Fig. 1 Crop rotations at the Karnal site. Letters a-e indicate statistically 

significant similarity. This figure also illustrates variability in GWP across 

soil types at the Karnal site. 
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The fact that soil attributes vary substantially over space, and even over small areas like a 

single farm field, suggests that (a) soil attribute variability in each HWSD polygon may not 

well represent the variability at this site because it is such a small fraction of the polygon and 

(b) uncertainty in site GWP from soil attributes stems not only from uncertainty in the 

location of soil attributes within the soil polygon, but in the uncertainty of the soil polygon 

itself (which is necessarily highly generalized). 

Synthetic N fertilizer rate and timing can have significant effects on N2O emissions. N2O 

emissions generally increase with increasing N application in rice systems (Pathak et al. 2005, 

Li et al. 2004, Babu et al. 2006), except for soils with low N and high levels of crop up-take. 

N fertilizer applied in place of organic N inputs (green manure or wheat straw) can increase 

N2O emissions (Babu et al. 2006). When the N fertilizer rate was adjusted from 90% to 110% 

of actual, combined GWP followed expected patterns at Karnal; i.e., GWP increased 

principally due to increases in N2O emissions. 

Organic fertilizers can affect both N2O (to the extent that they create surplus NH4 in the soil 

environment) and dSOC and CH4 in rice systems (to the extent that they add carbon to the 

soil, in whatever form). Rice straw incorporation has substantial effects on CH4 emissions (Li 

et al. 2004), and timing is important as emissions are significantly different when applied just 

prior to planting, or in-season versus post-season (Sander et al. 2014). Various types of green 

manure— rice straw and compost—applied in combination with N fertilizer can increase CH4 

emissions over N fertilizer applied alone (Babu et al. 2005). At the Karnal site, increases to 

organic amendments had little effect on upland emissions (a small decrease to dSOC was 

offset by a small increase in N2O) but had the expected larger effects rice CH4. 

We simulated two different floodwater management options: continuous flooding (CF) and 

rain-fed (using the rain-fed option in DNDC simulates the paddy water table based on 

available water from precipitation moderated by DNDC’s evapo-transpiration sub-model). 

Simulating rain-fed systems generated lower GWP due to reductions in CH4 emission. The 

Karnal site has relatively low mean annual precipitation (326 mm/yr) over the simulation 

timeframe and is inconsistent enough through the rice season to allow paddies to partially dry 

and reduce anoxic conditions. 

Increased crop residue and residue incorporation can increase net emissions, principally by 

increasing CH4 emissions (in rice systems via increased soil C source) and N2O emissions 
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(increased soil N mineralization from increased SOM), despite decreased CO2 emissions from 

sequestration (Li et al. 2004). At the Karnal site, increasing the residue fraction from 4.5 to 

5.5% had negligible effects on the upland rotation but showed the expected effect of a small 

CH4 increase from increased soil C substrate availability to methanogenic microbes.  

Increasing the duration of the season had minor effects on the upland rotation (minor 

increases to CO2 emissions were offset by decreases to N2O emissions from increased plant N 

uptake). Similar CO2 and N2O effects were seen on the rice rotation, however, CH4 emissions 

increased due to the longer duration of the rice crop (the principal CH4 soil-atmosphere 

pathway). 

DNDC requires local weather data (temperature and precipitation at minimum) to drive crop 

growth and soil processes. We did not evaluate weather drivers here, but increased 

temperature should increase soil microbial activity and thus increase CO2, CH4, and N2O 

emissions. Precipitation should affect N2O emissions in upland crop systems (aerobic soils) as 

N2O emission is mediated in part by soil moisture (Li et al. 2004). Precipitation has little 

effect on emissions from rice, except in rain-fed systems where dry periods could affect soil 

moisture status (thus reducing CH4 emissions and, in the presence of ample soil nitrogen, 

increasing N2O emissions).  

Figure 2 is an illustration of the relative effects of each input. We calculated the relative effect 

(%) as: 

Relative effect = changeinput * changegwp
-1 

Where, 

changeinput = the difference between the high and low inputs as a percent of the mean 

input 

changegwp
-1 = the absolute difference between the high and low GWP result as a 

percent of the mean GWP result 
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Figure 2 Relative effects of key inputs* to the DNDC model for (a) rice-

wheat and (b) maize-wheat 

Figure 2a 

 

 Figure 2b 

 
* Key inputs described in table: mgt = management; org. = organic matter application; res. = crop residue; seas. = season  
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4. Recommendations 

In this section, we outline a method to combine remote sensing, fieldwork, and GHG 

simulations for GHG quantification with low cost and low uncertainty. Our view is that field 

campaign costs can be reduced by optimizing data collection, which requires focusing on the 

most important model inputs. In addition, we believe that remote sensing efforts can be made 

more efficient through a priori simulations of crop rotations and proper coordination with 

field work. Because of the complex interplay between field and ancillary data, remote sensing 

analyses, and GHG simulations, it is difficult to prescribe a rigid process or even an exact 

order. For instance, remote sensing can be made more efficient by having final emissions data 

available (rotations with the same emissions need not be discriminated); conversely, the work 

to prepare and simulate GHGs could be made more efficient if the area of a rotation is found 

to be negligible based on remote sensing was not simulated. In all likelihood an iterative 

process proceeding toward increasingly refined analyses would have to be adopted. We 

suggest the following process would apply in most cases:  

1. Background research & planning 

2. Field data collection 

3. GHG simulation 

4. Remote sensing analyses 

5. Uncertainty analysis 

4.1. Background research 

We recommend gathering available data about the site as a first step, prior to selecting 

imagery. This might include available agricultural statistics, including yield, crop area, etc., 

GIS data and prior remote sensing-based products, and remote expert interviews. A 

preliminary understanding of typical crops and their seasonality, field areas, and crop 

management would facilitate improved selection of appropriate remote sensing imagery in 

terms of type (e.g., optical versus synthetic aperture radar (SAR)), resolution and scale (fine 

versus coarse), and timing (temporal consistency between key cropping timeframes and image 

dates). In addition, this would facilitate preliminary selection of ground truth points and the 

identification of key ground targets for field investigation. This is particularly important in 
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areas with smallholder agriculture where remote identification of large targets is crucial for 

calibration. 

4.2. Field data 

In addition to fulfilling research design sampling requirements (appropriate sample size and 

strategy), a field data collection campaign should be designed with remote sensing 

requirements in mind and targeted to collect data for key model inputs. The field campaign 

should identify all major crop rotations and their seasonality so that appropriately timed 

remote sensing images can be acquired. Weather is a key driver of biogeochemical processes. 

Whenever possible, local weather data should be acquired, and this process may be simplified 

by the presence of a team familiar with local sources. Information about N fertilizer 

application rates is essential as the principal driver of N2O emissions and crop growth (see 

Fig. 2). Fertilizer form is less important, for example Li (2004) found all GHG emissions to 

be relatively insensitive to fertilizer form. In wetland systems (i.e., rice), care should be paid 

to carbon inputs (organic amendments and residue amounts) as changes to SOC can have 

significant effects on CH4 emissions. Other aspects of management such as seasonal and flood 

duration, tillage timing, should be collected to approximate the growing season dynamics 

appropriately. However, precision is less of an issue as these inputs have only minor effects 

on outcomes. 

Soils characteristics are key drivers of biogeochemical processes. At the Karnal site, for both 

rice-wheat and maize-wheat rotations, soil attributes represent three of the top four most 

sensitive variables determining GHG emissions (see Fig. 2). Soil data present a daunting 

challenge when working in the developing world: comprehensive and high-resolution survey 

data are rarely available, and data that are available, while potentially accurate, are imprecise 

both in terms of spatial resolution (e.g., HWSD) and confidence intervals around soil 

attributes (e.g., ISRIC SoilGrids1km; ISRIC 2013). In addition, soil testing is expensive and 

time-consuming, even if facilities even exist near the field site to perform soil analyses. That 

said, soil properties (particularly clay and SOC fraction) are important drivers of GHG 

emissions and data that are imprecise are a significant source of uncertainty. For instance, at 

the Karnal site, soil uncertainty represented 98% of total uncertainty. As with any modeling 

effort, uncertainty is inversely proportional to input data precision and cost. Cost-benefit 

tradeoffs with soils data include using coarse data (least precise, but inexpensive), improved 
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precision with soil surveys (most precise, but expensive), soil modeling via remote sensing or 

other GIS data (precise, but time consuming and with potentially limited accuracy; see Croft 

et al. 2012, Vagen and Winowiecki 2013), and producer questionnaires. Producer 

questionnaires may be useful in some areas where soils data are poor and farmers know the 

soil properties of their fields. If enough farmers can be surveyed to be able to extrapolate soil 

properties across a landscape, this could be effective and done with minimal added costs. 

4.3. GHG simulations 

Where feasible, some analysis of GHG emissions be carried out prior to remote sensing 

analyses, preferably using the selected model software (due to the increased precision and site 

applicability). This would facilitate a more efficient mapping process so that a classification 

scheme could be developed that discriminates only between agricultural land cover classes 

which differ by GHG emission (e.g., see Figure 1), potentially reducing analysis time and cost 

and increasing map accuracy, while reducing map uncertainty.  

The DNDC model has the advantage of being one of the only major biogeochemical models 

used in agro-ecosystems that simulates both C (CO2 and CH4) and N dynamics, as well as 

phosphorus, to a more limited extent. Thus, to calculate all the major aspects of GWP 

generated at a site (dSOC/CO2, CH4, and N2O), only a single set of inputs and outputs is 

required. In addition, DNDC offers great flexibility over a large set of farm management 

practices and crops and delivers highly precise and comprehensive results. Its disadvantage is 

the that DNDC requires a large amount of input data and, as with any model, the quality of its 

output is highly related to the quality of the inputs. Thus, in data-poor areas, these facts can 

lead to a situation where either (a) many input assumptions are required, leading to uncertain 

results, or (b) intensive data-gathering is required, leading to high costs. 

Other major models generally are not as comprehensive in terms of crop modules and output 

(e.g. APSIM, Keating et al 2003) or have more intensive processing time or input 

requirements (e.g., ECOSYS) (Grant 2014, Smith et al. 2008). The DayCent model (Parton et 

al, 1998) is similar to DNDC in many respects and has been validated in many different 

regions. Its advantage over DNDC is in having more precise control over soil profile 

characteristics; however, this potentially requires additional inputs and processing time on top 

of its already intensive long-term SOC initialization phase using native vegetation (Smith et 
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al. 2008). DNDC accepts SOC as an input and can be equilibrated via 5 to10 years of 

initialization (Perlman et al. 2013). 

4.4. Remote sensing 

The type of remote sensing data to be utilized will largely depend on the crop details, as 

determined by the background research and the quality and quantity of field data received. 

Optical imagery is particularly useful for identifying patterns of greenness associated with 

vegetation while SAR imagery provides useful data about surface water and vegetative 

biomass.  

During the background research phase, the area of interest should be examined with any 

available remotely sensed imagery. Recommended sensors, along with details of their utility, 

are described below. This will enable the analyst to identify the quality and availability of 

data for the area and perform an initial assessment of spectral separability in the region. This 

may be limited to general classes (e.g., water, urban, forest, agriculture). However, some 

individual crops may be separable. By analyzing multiple large fields, the analyst can 

determine how many different classes can be feasibly separated. This may be done with 

multiple iterations of a k-means (MacQueen 1967) or similar unsupervised classifier, or even 

just examining average spectra for different fields across the region. Summer data may be 

used to classify among major crops, while spring scenes may be used to determine the 

presence of growing vegetables (using NDVI), and winter scenes may be used to detect 

flooded regions (using LSWI and NDVI) that are typical of rice paddies. 

The data will usually need to be pre-processed, a step that can be largely performed before or 

during the field data collection. This involves ortho-rectification, radiometric correction 

(conversion of digital number to top-of-atmosphere radiance), atmospheric correction, 

calculation of appropriate index bands such as NDVI, and image mosaicking where 

appropriate. In areas with a prolonged rainy season, there is a high likelihood of cloud cover 

for any given sensor scene. Precise masking of the clouds is important to maximize the 

available data for mapping, but may still greatly reduce the amount of usable data due to the 

climate in the regions of interest. 

After the field data are collected, the available sensor scenes can be used to perform 

supervised classification using the field data as training data. While we have used rpart 
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decision tree classifier (as described in Therneau and Atkinson 2013), and the random forest 

classifier (Scikits-learn 2013) from Scikits for past work, other supervised classifiers can be 

used. In fact, ideally an analyst will utilize several supervised classifiers and examine the 

differences and agreement among them. 

4.4.1. Sensors 

Following is a summary of each of the recommended sensors. We discuss several free 

(Landsat, MODIS) and low-cost (PALSAR) sources of imagery in addition to higher-cost 

commercial imagery. Each sensor provides information at a spatial resolution (i.e., the size of 

a pixel) and temporal resolution (i.e., frequency of repeat images) for a given field of view. A 

higher resolution per pixel means a smaller field of view since it is limited by the size of the 

imaging array. Furthermore a smaller field of view means it takes longer to image the earth. A 

sensor can be high resolution, or it can have a high revisit time, but it cannot have both. The 

most complete picture of agriculture in a region will be obtained by combining information 

from multiple satellite sensors and calibrating these observations with ground surveys.  

The Landsat sensors (now Landsat 7 and 8) provide a moderate resolution of 30 meters and a 

revisit time of 16 days. Landsat 7 and 8 have alternating orbits: thus one of the Landsat 

sensors will revisit every location every eight days. Landsat 7 has a current issue where the 

scan line corrector, a set of mirrors used to correct for the along-track motion of the satellite, 

failed. This results in strips of no data regions that get larger the further away from nadir. 

Landsat 8, launched in 2013, has greater accuracy as well as some additional spectral bands 

that are useful for better masking of clouds. Due to the number of spectral bands, Landsat can 

be effectively used to create a land use map as long as the fields are of sufficient size. At the 

basic level this would at least includes the ability to map water, urban, forest, and agricultural 

regions. Some crops may also be separable,, a factor that depends on the difference in the 

crops’ spectral signature. This highly depends on the individual crops and would be 

determined by analyzing ground truth data and temporally matched Landsat scenes. This 

calibration step will produce the complete set of classes that can be expected to be reasonably 

separated. 

The MODIS sensors Aqua and Terra are much lower resolution (250m for red and NIR bands, 

500m for visible, SWIR and LWIR, and 1000m for the remaining bands), but have a larger 

number of bands and a shorter revisit time. The additional bands allow for wider variety of 
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products to be derived, although many of them are for ocean and atmospheric applications and 

thus not applicable to remote sensing for agriculture. The lower resolution of the MODIS 

sensors makes them unsuitable for mapping and identifying individual fields. However the 

higher revisit time (one to two times/day depending on latitude) are useful for determining an 

approximate crop calendar, at least across large regions. Although planting and harvesting 

dates for individual fields may vary, it is dependent on local weather patterns and thus 

roughly consistent across local regions. MODIS can be used to estimate these dates by 

looking at large-scale trends across the study site. 

Radar backscatter from active sensors, such as PALSAR from the Japanese space agency JAXA, 

provide information about surface water and vegetation biomass. Radar sensors also have the 

advantage of being able to penetrate through clouds. These features make them well suited for 

detection of rice fields, even in the presence of extensive cloud cover. 

In addition to the sensors noted above, there are several sources of commercial imagery 

including Quickbird, RapidEye, and IKONOS. Their advantage is their high spatial resolution 

(1-5m), which makes them useful for visually identifying landscape features, agricultural 

fields--especially in developing-world smallholder contexts-- and generating masks of water 

and urban regions. Each commercial satellite has different imaging characteristics, though 

most only have a limited number of bands (typically 3 visible and a near-infrared band) and 

irregular revisit times since they are often tasked to collect customer specified regions. The 

lack of multiple collects over time makes commercial imagery generally unsuitable for land 

use mapping. Because of the high costs of commercial imagery, there is generally not a 

benefit in terms of classification accuracy;. the higher costs do not outweigh the potential 

classification advantages. 

4.5. Uncertainty  

Model uncertainty can be viewed in two ways: as a function of the inputs, as handled in the 

Karnal case study, and as a function of the inherent structural uncertainty of the model. Input 

uncertainty can be controlled for to some extent in accounting efforts through quality control 

of data research and collection. Depending on how survey data and input assumptions are 

handled, input uncertainty can be quantified via Monte Carlo simulations, and sensitive inputs 

such as SOC and fertilizer N rate can be varied to develop confidence intervals around mean 
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results. Structural uncertainty can only be reduced by improving the model itself. Quantifying 

and reporting structural uncertainty requires field-measured data paired with simulated results 

of the same field experiments for the landscape in question. This is a potentially time-

consuming and expensive exercise and potentially not realistic for non-model developers. 

However, global model uncertainty for each reported constituent (CH4, N2O, etc.) could 

potentially be reported for the model as a whole with the assumption that the region in 

question fell in the range of total model uncertainty. Datasets are becoming available via the 

Global Research Alliance Modeling Platform (GRAMP) website for DNDC as well as other 

agro-ecological models that would facilitate comparisons of measured versus modeled results 

for multiple crop-systems in multiple geographies (Babu et al. 2014).  

5. Conclusion  

Low-cost landscape GHG accounting in developing world smallholder contexts is a 

necessary, but challenging endeavor. The approach in our case study site in Karnal, India is a 

step forward in terms of integrating remote sensing, field work, and biogeochemical 

modeling. However, it is limited by challenges of spatial scale and heterogeneity and 

available ancillary data (particularly for soils). These limitations lead to greater uncertainty in 

both remotely sensed maps and model simulation results. Our sensitivity analysis for both 

upland and wetland crops (rice), in combination with similar efforts by other researchers, 

demonstrate that there are a few very important variables that must be captured to reduce 

uncertainty, particularly fertilizer N rate, SOC, clay fraction, and bulk density. Our 

recommendations include a two-phase approach where efficiencies can be gained through an 

investigation of temporal and spatial farm scales in the geographic landscape and cropping 

patterns. . Through careful consideration of model sensitivity to external parameters such as 

crop management, weather, and soils, and spatial heterogeneity, a field campaign design can 

be streamlined to minimize effort and therefore cost. There are several sources of free high-

quality, moderate spatial resolution data that, with proper planning and coordination with 

biogeochemical modeling and field work, can be used effectively for crop mapping. 

Uncertainty should be estimated for all aspects of the accounting effort through an integrated 

process. Remote sensing inaccuracies stemming from issues of contrasting temporal and 
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spatial scale between landscape and imagery should be combined with model variability from 

input parameters and overall model structural uncertainty. 
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