46 research outputs found

    Cluster formation during aging of colloid-polymer dispersions and re-entrant rheological behavior at interfaces and the microscale

    Get PDF
    We report the dynamics of aqueous dispersions of the disk-shaped colloidal clay laponite® with poly(ethylene oxide) (PEO) chains of moderate molecular weight, explored via angle-dependent dynamic light scattering (DLS), bulk rheology, passive microrheology, and interfacial rheology. The PEO chains adsorb onto the laponite® surfaces, causing interesting dynamic behavior, including transitions from arrested states to liquid states as the concentration and molecular weight of PEO is increased. This re-entrant behavior has been attributed to formation of particle clusters induced free PEO chains. Our DLS results are consistent with a slow diffusive dynamic process, suggesting the formation of large particle clusters, in samples at aging times \u3c 75 days (Figure 1). By contrast to behavior observed in laponite® dispersions with a non-adsorbing polymer, poly(acrylic acid) (PAA), diffusion coefficients of these clusters in the laponite®-PEO systems continue to decrease with aging time until samples reach an arrested state. Finally, interfacial rheology and passive microrheology also show some evidence of re-entrant behavior, although the polymer concentrations at which this occurs do not exactly correspond to the conditions under which re-entrant behavior is observed in bulk rheology Please click Additional Files below to see the full abstract

    The triphenylmethane dye brilliant blue G is only moderately effective at inhibiting amyloid formation by human amylin or at disaggregating amylin amyloid fibrils, but interferes with amyloid assays; Implications for inhibitor design.

    Get PDF
    The development of inhibitors of islet amyloid formation is important as pancreatic amyloid deposition contributes to type-2 diabetes and islet transplant failure. The Alzheimer's Aβ peptide and human amylin (h-amylin), the polypeptide responsible for amyloid formation in type-2 diabetes, share common physio-chemical features and some inhibitors of Aβ also inhibit amyloid formation by h-amylin and vice versa. Thus, a popular and potentially useful strategy to find lead compounds for anti-amylin amyloid agents is to examine compounds that have effects on Aβ amyloid formation. The triphenylmethane dye, brilliant blue G (BBG, Sodium;3-[[4-[(E)-[4-(4-ethoxyanilino)phenyl]-[4-[ethyl-[(3-sulfonatophenyl)methyl]azaniumylidene]-2-methylcyclohexa-2,5-dien-1-ylidene]methyl]-N-ethyl-3-methylanilino]methyl]benzenesulfonate) has been shown to modulate Aβ amyloid formation and inhibit Aβ induced toxicity. However, the effects of BBG on h-amylin have not been examined, although other triphenylmethane derivatives inhibit h-amylin amyloid formation. The compound has only a modest impact on h-amylin amyloid formation unless it is added in significant excess. BBG also remodels preformed h-amylin amyloid fibrils if added in excess, however BBG has no significant effect on h-amylin induced toxicity towards cultured β-cells or cultured CHO-T cells except at high concentrations. BBG is shown to interfere with standard thioflavin-T assays of h-amylin amyloid formation and disaggregation, highlighting the difficulty of interpreting such experiments in the absence of other measurements. BBG also interferes with ANS based assays of h-amylin amyloid formation. The work highlights the differences between inhibition of Aβ and h-amylin amyloid formation, illustrates the limitation of using Aβ inhibitors as leads for h-amylin amyloid inhibitors, and reinforces the difficulties in interpreting dye binding assays of amyloid formation

    Large-area alginate/PEO-PPO-PEO hydrogels with thermoreversible rheology at physiological temperatures

    Get PDF
    Alginate hydrogels have shown great promise for applications in wound dressings, drug delivery, and tissue engineering. Here, we report the fabrication, rheological properties, and dynamics of a multicomponent hydrogel consisting of alginate and poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers, and the achievement of thick, castable gels with tunable, thermoreversible behavior at physiological temperatures (Figure 1). PEO-PPO-PEO triblock copolymers can form temperature-sensitive hydrogels that exist as liquids at low temperatures and soft solids at high temperatures. In this work, we have employed PEO-PPO-PEO triblock copolymers to impart thermoresponsive properties to alginate hydrogels in the form of a multicomponent hydrogel. These systems can transition between a weak gel and a stiff gel, with a corresponding increase in the viscoelastic moduli of approximately two orders of magnitude as temperature is increased. The temperatures corresponding to the upper and lower boundaries of the stiff gel region, as well as the storage modulus at physiological temperatures (e.g., 36 – 40 C), can be controlled through the PEO-PPO- PEO concentration. Additionally, we explore the properties of these materials under compression and large deformations, and describe how alginate and F127 concentration can be used to control the fracture stress and strain. Finally, we compare the results from bulk rheology to the structure and dynamics of the gels measured via small-angle X-ray scattering (SAXS) and X-ray photon correlation spectroscopy (XPCS) experiments. Please click Additional Files below to see the full abstract

    Can softer junctions lead to stiffer gels? Understanding the role of stereochemistry in associative polymer gels

    Get PDF
    The ability to create synthetic materials that mimic the structural and mechanical properties of soft biological tissues remains a significant challenge. In this presentation, we focus on creating stiff hydrogels and novel nanoscale and microscale structure by engineering crystalline domains into associative hydrogels of poly(lactic acid)-poly(ethylene oxide)-poly(lactic acid) (PLA-PEO-PLA) triblock copolymers. In aqueous media, these materials form associative gels of micelles with PLA cores that serve as network junctions. We extend previous studies from our group and others by varying the stereochemistry of the PLA block to create polymers with PLA blocks with ratios of L/D lactide units varying from 100/0 to 50/50. We had previously found that the 100/0 systems (triblocks with poly(L-lactide) blocks) formed gels with nanoscale crystalline domains, and these gels displayed a high value of the elastic modulus which was strongly dependent on PLA block length. Interestingly, our most recent results show that the storage modulus of these gels does not vary monotonically with L/D ratio. Rather, systems at intermediate L/D values are stiffer than the 100/0 systems, displaying higher storage moduli in spite of the fact that the PLA domains are expected to have a lower degree of crystallinity than in the 100/0 systems. Small-angle neutron scattering (SANS) results also indicate that the strongest interactions between micelles occurs for systems with intermediate L/D ratios, and ultra-small angle neutron scattering (USANS) shows evidence of larger structures in these gels, reminiscent of the hierarchical structures observed in biological gels. Collectively, our work shows that stereochemistry can be used in unexpected ways to access novel structures and properties in relatively simple synthetic polymers, giving insight into new routes for creating complex soft materials

    Softer Junctions Can Result In Stiffer Gels: Associative Polymer Gels With Crystalline And Semicrystalline Domains

    Get PDF
    The ability to create synthetic materials that mimic the structural and mechanical properties of soft biological tissues remains a significant challenge. In this presentation, we discuss rheology and structural studies of poly(lactide)-poly(ethylene oxide)-poly(lactide) (PLA-PEO-PLA) triblock copolymer gels with various ratios of L-lactide and D-lactide in the PLA blocks (Figure 1). These materials form associative micellar gels in water, and previous work has shown that stereoregular triblocks with a L/D ratio of 100/0 form much stiffer gels than triblocks with a 50/50 L/D ratio. Our systems display an unexpected maximum in the storage modulus, G’, of the hydrogels at intermediate L/D ratio. The impact of stereochemistry on the rheology is very striking; gels with an L/D ratio of 85/15 have storage moduli that are ~1-2 orders of magnitude higher than hydrogels with L/D ratios of 100/0. No stereocomplexation is observed in the gels, although PLLA crystals are found for gels with L/D ratios of 95/5 and 90/10, and SANS results show a decrease in the intermicellar spacing for intermediate L/D ratios. We expect the dominant contribution to the elasticity of the gels to be intermicellar brdging chains and attribute the rheology to a competition between an increase in the time for PLA endblocks to pull out of micelles as the L/D ratio is increased and PLLA crystallization occurs, and a decrease in the number of bridging chains for micelles with crystalline PLA domains, as formation of bridges may be hindered by crowded crystalline PLA domains. Ultra-small angle neutron scattering (USANS) and confocal microscopy shows evidence of larger structures in these gels, reminiscent of the hierarchical structures observed in biological gels. These results provide a new strategy for controlling the rheology of PLA-based hydrogels for potential applications in biomaterials, as well as fundamental insights into how intermicellar interactions can be tuned via stereochemistry. Collectively, our work shows that stereochemistry can be used in unexpected ways to access novel structures and properties in relatively simple synthetic polymers, giving insight into new routes for creating complex soft materials. Please click Additional Files below to see the full abstract

    Structure and intermicellar interactions in block polyelectrolyte assemblies

    No full text
    corecore